用字母表示数_典型例题四

合集下载

完整版)用字母表示数练习题

完整版)用字母表示数练习题

完整版)用字母表示数练习题一、填空1、长为a,宽为b的长方形周长是2a+2b。

2、教室里有x人,走了y人,此时教室里有x-y人。

3、三个连续的自然数,中间的一个为n,则第一个为n-1,第三个为n+1.4、用a、b表示两个数,加法交换律可表示成a+b=b+a。

5、用字母a表示XXX的单价,b表示数量,c表示总价。

那么c=ab,b=c/a。

6、一个等边三角形,每边长a米。

它的周长3a米。

7、一辆汽车t小时行了300千米,平均每小时行300/t千米。

XXX每小时加工40个零件,加工了a小时,一共加工了40a个。

8、每袋面粉重a千克,每袋大米重b千克,8袋面粉和5袋大米共重8a+5b千克。

9、XXX在5月5日这一天,某品牌的手机十分畅销,上午卖出75部,下午卖出100部,已知每部手机a元,这一天一共卖出175a元,上午比下午少卖出25a元。

10、5x+4x=9x,8y-y=7y,7a×a=7a²,15x+6x=21x,5b+4b-9b=0.11、学校买来x盒红粉笔,买来白粉笔的盒数是红粉笔的10倍,学校买来11x盒粉笔;当x=10时,学校买来110盒粉笔。

二、选择1、a²与(3)a×a相等。

2、2x一定(3)等于x²。

3、XXX比XXX小,XXX今年a岁,XXX今年b岁,2年后XXX比XXX小(2)b-a岁。

4、当a=5、b=4时,ab+3的值是(2)54+3=57.5、甲数是a,比乙数的4倍少b,乙数是(1)a÷4-b。

三、用含有字母的式子表示下面各题的数量关系1、在一个三角形中,∠1=a°,∠2=b°,用含有字母的式子表示∠3的度数。

∠3=180-a-b。

2、在一个等腰三角形中,底角是a°,用含有字母的式子表示顶角的度数。

顶角=180-2a。

3、一个正方形的周长是C,用含有字母的式子表示这个正方形的边长。

边长=C/4.4、比x的5倍多20的数。

用字母表示数练习题(通用8篇)

用字母表示数练习题(通用8篇)

用字母表示数练习题(通用8篇)用字母表示数练习题篇1一、填空(1)当b=6时,b的4倍是(),b÷2是(),38-b(),b+4().(2)当x=8时,x=(),2x==(),x+2=(),x+x().(3)在○里填>、<或=6○6×2 20○20×20 3.6+3.6○3.6二、列出包含字母的式子.(1)15减去b的.差.(2)8除a的商.(3)b除以15的商.(4)一根铁丝长a米,用去b米,还剩多少米?三、写出包含字母算式的意义.苹果每千克a元,梨每千克b元,各买m千克.(ab)(1)am表示.(2)bm表示.(3)(a+b)m表示.(4)(a-b)m表示.四、先写出下列各题包含字母的计算公式,再把题中数值代入进行计算.1.一个长方形的长是3.5厘米,宽是2.8厘米,求它的周长和面积.2.一个正方形的边长6.5分米,求出它的周长和面积.参考答案一、填空(1)24 3 32 10(2)64 16 10 16(3)>=<二、列出包含字母的式子(1)15-b(2)a÷8(3)b÷15(4)a÷b三、写出包含字母算式的意义.(1)am表示(苹果的总钱数).(2)bm表示(梨的总钱数).(3)(a+b)m表示(苹果与梨的总钱数).(4)(a-b)m表示(苹果比梨多的钱数).四、先写出下列各题包含字母的计算公式,再把题中数值代入进行计算.1.C=2(a+b)S=ab=2×(3.5+2.8)=3.5×2.8=12.6=9.8答:它的周长是12.6厘米,面积是9.8平方厘米.2.C=4aS=a=4×6.5=6.5×6.5=26=42.25答:它的周长是26厘米,面积是42.25平方厘米. 用字母表示数练习题篇2一.确定题1.代数式在时的值为零.2.学生校服每套成本为元,售价为元,则利润率为.3.不是单项式.4.多项式是关于、的四次四项式,且常数项是.二.单选题1.下列代数式中,书写规范的是.A.;B.;C.;D.2.下列说法中正确的是.A.不是整式;B.的次数是;C.与是同类项;D.是单项式3.ab减去等于.A.;B.;C.;D.4.当与时,代数式的两个值.A.相等;B.互为倒数;C.互为相反数;D.既不相等也不互为相反数三.填空题1.一个正方形的边长为a厘米,把它的边长增加2,得到的新正方形的周长是.2.A、B两地相距S千米,甲、乙两人分别从A、B两地同时同向而行,现假设甲的速度为a千米小时,乙的`速度为b千米小时,且ab,问小时后,甲追上乙.3.一个多项式加上得到,这个多项式是.4.如果是关于x的五次四项式,那么p+q=.四.解答题1.某市出租车的收费标准是:3千米内(含3千米)起步价为12.5元,3千米外每千米收费为2.4元.某乘客坐出租车x千米,(1)试用关于x的代数式分情景表示该乘客的付费.(2)如果该乘客坐了10千米,应付费多少元?2.已知m、x、y满足:(1),(2)与是同类项.求代数式:的值.参考答案:单元检测题(A卷)一.1.×2.√3.×4.√二.1.B2.B3.C4.A三.1.2.3.4.四.1.(1)若,付费为元;若3,付费为元;(2)元2.44用字母表示数练习题篇31. 用包含字母的式子表示下列各题的数量关系.(1)8与b的和.(2)m除以5的商.(3)x的一半.(4)比x少1.5的数.(5)x的3倍.(6)比x的2倍多6的数.2. 在里填上适当的数或包含字母的式子.(1)一枝铅笔2.2元,买5枝应付元.(2)一枝铅笔2.2元,买x枝应付元,当x=6时,应付元.(3)一枝铅笔x元,买9枝应付元.3. 甲、乙两地相距150千米,客、货两车同时分别从两地相对开出,客车每小时行a千米,货车每小时行b千米,经过几小时两车相遇?(用包含字母的式子表示.)4. 用简便方法计算下头各题,再用字母表示出来.(1)15.6-9.2-0.8a-b-c=(2)390÷15÷2 a÷b÷c=(3)38×95-38×75 a×b-a×c=重点难点,一网打尽.5. 确定下头的写法是否正确,对的在括号里打“√”,错的打“×”.(1)a×2.4写作a2.4.(2)b×c写作bc.(3)a×9×c写作9ac.(4)3×x写作3x.(5)a×b×c写作abc.(6)a2表示a+a.(7)x22x(8)x×x×5=5x26. 写出下头各题的式子.(1)一辆汽车每小时行驶86千米,t小时行驶多少千米?(2)电视机厂每一天生产a台电视机,20天生产多少台电视机?7. 用式子表示下头各题的数量关系.(1)四年级植树x棵,五年级植树y棵,五年级比四年级多植树多少棵?(2)客车每辆乘坐a人,是小轿车人数的3倍,每辆小轿车坐多少人?(3)张教师买8个足球和8个篮球,足球每个x元,篮球每个a 元,买这些球一共要多少钱?答案1. (1)8+b(2)m÷5(3)x÷2(4)x-1.5(5)3x(6)2x+62. (1)11(2)2.2x13.2(3)9x3. 150÷(a+b)小时4. (1)5.6a-b-c=a-(b+c)(2)13a÷b÷c=a÷(b×c)(3)760a×b-a×c=a×(b-c) m5. (1)×(2)√(3)√(4)√(5)√(6) ×(7) ×(8×6. (1)86t千米(2)20a台7. (1)(y-x)棵(2)(a÷3)人(3)8(x+a)元用字母表示数练习题篇4一、填空:1、长为a,宽为b,周长为c的长方形周长字母公式是.2、教室里有x人,走了y人,此时教室里有人.3、三个连续自然数,中间的一个为n,则较小的数表示为,较大的为.4、用a、b表示两个数,加法交换律可表示为.5、用字母a表示苹果的单价,b表示数量,c表示总价.那么c= ,b= .6、一个等边三角形,每边长a米.它的周长米.7、一辆汽车t小时行了300千米,平均每小时行千米.李师傅每小时加工40个零件,加工了a小时,一共加工了个.8、每袋面粉重a千克,每袋大米重b千克,8袋面粉和5袋大米共重千克.9、苏宁公司在5月5日这一天,某品牌的手机十分畅销,上午卖出75部,午时卖出100部,已知每部手机a元,这一天一共卖出元,上午比午时少卖出元.10、学校买来x盒红粉笔,买来白粉笔的.盒数是红粉笔的10倍,学校买来盒粉笔;当x=10时,学校买来盒粉笔.二、选择:1、a2与()相等.(1)a×2(2)a+2(3)a×a2、2x必须()x2.(1)大于(2)小于(3)等于(4)不能确定3、丁丁比昕昕小,丁丁今年a岁,昕昕今年b岁,2年后丁丁比昕昕小()岁.(1)2(2)b-a(3)a-b(4)b-a+24、当a=5、b=4时,ab+3的值是().(1)5+4+3=12(2)54+3=57(3)5×4+3=235、甲数是a,比乙数的4倍少b,乙数是().(1)a÷4-b(2)(a-b)÷4(3)(a+b)÷4三、简写下列各式:a×a= a+a=4×a×b= 4+b+b=a×5= a+a+5×b=a+a+a= a×b×x=5x+4x= 8y-y=7x+7x+6x= 7a×a=15x+6x= 5b+4b-9b=用字母表示数练习题篇5一、填空:1.学校有图书4000本,又买来a本,此刻一共有()本.2.学校有学生a人,其中男生b人,女生有()人.3.李师傅每小时生产x个零件,10小时生产()个.4.姐姐今年a岁,比妹妹年龄的2倍少2岁,妹妹今年()岁.5.一个等边三角形,每条边长a米,这个三角形的周长()米.6.一辆汽车t小时行了300千米,平均每小时行()千米.7.李师傅每小时加工40个零件,加工了a小时,一共加工了()个.8.每袋面粉重a千克,每袋大米重b千克,8袋面粉和5袋大米共重()千克.9.甲数是x,比乙数少y,乙数是(),甲乙两数的和是(),那么两数的差是().10.小花今年12岁,比小兰大a岁,小兰今年()岁.11.一件上衣54元,一件裤子48元,买b套这样的衣服,要用()元.12.一本故事书有a页,小明每一天看x页,看了y天,看了()页,还剩()页没看.13.王阿姨买了m千克香蕉和n千克苹果,香蕉每千克4.8元,苹果每千克5.4元,一共花了()元.14.学校买来a个足球,每个m元,又买来b个排球,每个n元,一共用去( )元,足球比排球多用( )元.15.某工厂每月用水a吨,全年用水( )吨16.张师傅每时加工x个零件,朱师傅每时加工15个零件,那么x-15表示(),5x表示().二、选择:1.甲、乙两地相距150千米,一辆汽车从甲地出发,每小时行m 千米,5小时以后离乙地还有()千米.A.150÷5+mB.150+5mC.150-5m2.用5除以a与b的差,商是()A.5÷a-bB.5÷(a-b)C.(a-b)÷53.张师傅每一天做m个零件,是王师傅每一天做的6倍,王师傅每一天做()个零件.A.m+6B.m÷6C.6m4.a2与下头的()相等.A.a×2B.a+2C.a×a5.丁丁比昕昕小,丁丁今年a岁,昕昕今年b岁,2年后丁丁比昕昕小()岁.A.a-bB.b-aC.b-a+2三、将下头各式写成简写形式:a×12= b×b= m×b=x×y×7= 5×x= 2×c×c=7x×5= 2×a×b= 40+b×用字母表示数练习题篇6一、确定,对的打“√”错的打“×”1、a×4能够写成a4. ()2.(b+a)×7就是7(b+a)()3. b+2能够写成2 b. ()4. 5xy就是5(x+y)()5. b×b就是2b ()6. 1×a简写成1a ()7、x?表示2个x相加.()8、18×18的乘号能够省略不写.()二、填空1、m×5简写为()2、x×2×y简写为()3、(3+a)×6简写为()4、n×1+a÷2简写为()5、a×a简写为()6、乘法的结合律用字母的式子表示()乘法的分配律用字母的式子表示()7、正方形的边长a厘米,它的周长为()厘米,它的面积为()平方厘米.当a=5㎝时,周长为()厘米,面积为()平方厘米.8、食堂一天烧煤a千克,8天烧煤()千克.9、书店运来故事书420本,卖出χ本,还剩()本.10、书店运来故事书a本,卖出b本,还剩()本.11、一枝铅笔价钱是0.25元,买χ枝应付()元.12、一枝铅笔价钱是a元,买b枝应付()元.13、一辆汽车每小时行48千米,t小时行()千米.14、洗衣机厂每一天生产b台洗衣机,30天生产()台.15、一架飞机3小时飞行s千米,平均每小时飞行()千米.16、工厂要运进a吨煤,已经运进650吨.还需要运()吨.17、一种糖每千克a元,买1千克付()元,买2千克付()元,3千克付()元.18、一种火箭的速度是每秒4.5千米,比普通炮弹速度快c千米.普通炮弹速度是()千米.三、用字母式子表示下头的数量关系.1、从100里减去a加上b的和.2、x除以5的商加上n.3、320减去12的m倍.4、80加上b的和乘5.5、S的6倍,减去2的差.6、b与90的和的6倍.四、用字母式子表示下头的数1、一本书X元,买10本同样的书应付多少元?案2、搭一个正方形要4根小棒,搭n个正方形要多少根小棒?3、仓库里有一批水泥,运走5车,每车n吨,一共运了多少吨水泥?4、装订练习本,每本用纸25页,装订b本共用多少页纸.5、一个工厂制造500辆自行车,总价是a元,单价是多少元.6、根据下头的条件写出式子.一个机器人玩具50元,一架玩具飞机m元,一辆玩具汽车n元.(1)买一个机器人和一辆玩具汽车,一共要多少元.(2)买一架玩具飞机和一辆玩具汽车,一共要多少元.(3)买一个机器人、买一架玩具飞机和一辆玩具汽车,一共要多少元.(4) 买2架飞机和3辆汽车,一共要多少元.(5) 一架飞机比一辆汽车贵多少元.7、装订练习本,每本用纸c页,装订了45本.(1)用式子表示出一共用纸多少页.(2)根据这个式子,求当c=30时,共用纸多少页.8、一个水果店运来20筐苹果,每筐b千克.(1)写出共运来苹果多少千克的式子.(2)根据以上式子,当b=25时,求共运来苹果多少千克.9、某工厂生产零件2400个,运走了a个,又生产了b个.此刻工厂里有多少个零件.10、要用8辆车运苹果,每辆车装a千克,把这些苹果平均分成4个商店.每个商店分到苹果多少千克.用字母表示数练习题篇7一、确定题:1、x × 1 = x ( )2 、4 + a = 4a ( )3 、10 × 2 = 10 2 ( )4 、8 × 2 = 82 ( )二、选择题:a2 表示( )A . 2个a相加B . 2个a相除C.2个a相减D . 2个a相乘三、说一说:一本字典e元,一本笔记本f元2e表示( )10f表示( )e+15f表示( )四、填一填:1、正方形的边长为a分米,4a表示( ),a2表示( ).2、在校运动会上,四年级同学获得a枚金牌,五年级同学获得18枚金牌.①两个年级一共获得( )枚牌.②a-18表示( )③a÷18表示( )3、说一说,下头的式子表示什么意思?篮球每个68元,足球每个45元.某个学校买了a个篮球,b个足球.那么①、68 a表示( )②、a-b表示( )③、68a+45b表示( )④、68a -45b表( )五、我要挑战:1、某班有40名学生,其中男生有40-a名,在向“期望工程”捐书活动中,平均每人捐书3本,试分析下头问题.(1)a表示什么?(2)3a表示什么?2、学校买来9个足球,每个a元,又买来b个篮球,每个45.6元9a表示45.6b表示45.6b – 9a表示9a + 45.6b表示用字母表示数练习题篇8一、填空题1、用字母表示梯形面积公式是( )2、学校有学生a人,其中男生b人,女生有( )人.3、李师傅每小时生产x个零件,10小时生产( )个.4、食堂买来大米400千克,每一天吃a千克,吃了几天后还剩b千克,已吃了( )天.5、姐姐今年a岁,比妹妹年龄的2倍少2岁,妹妹今年( )岁.6、甲数是x,比乙数少y,甲乙两数之和是( ),两数之差是( )7、平行四边形底长a米,高是底的1.8倍,面积是( )8、每个足球x元,买4个足球,付出200元,应找回( )元.9、三个连续自然数,已知中间一个数是m,那么前一个数是( ),后一个数是( ),三数之和是( )10、当x=5时,x2=( ),2x+8=( )11、一种商品降价a元后是80元,原价是( )元.12、说一说下头每个式子所表示的意义.(1)、一天中午的气温是32℃,午时比中午的气温降低了x℃.32-x表示:_____________(2)、五(2)班有40人订阅《少年文艺》杂志,每本单价b元.40b表示:__________(3)、一个足球单价a元,一个篮球b元.6a+4b表示:__________(4)、张师傅每小时加工x个零件,朱师傅每小时加工15个零件x-15表示:________________5x表示:_____________(x-15)×3表示:__________13、求下列各式的值.(1)、已知a=1.8 b=2.5求4a+2b的值(2)、已知x=0.5,y=1.3 求3y-4x的值(3)、已知m=0.6.n=0.4,求m2+n2的值二、应用题1、修路队第一天修了1.078千米,第二天比第一天多修0.456千米,修路队两天一共修了多少千米2、10千克油菜籽能够榨油3.8千克,照这样计算,1000千克油菜籽能够榨油多少千克?3、玩具商店上午卖出玩具汽车18辆,午时卖出同样的`玩具汽车32辆,午时比上午多卖128.8元.每辆玩具汽车多少元?4、化肥厂计划用30天生产化肥84吨,实际每一天比计划多生产0.2吨,实际比计划提前几天完成任务?5、一瓶油连瓶重3.4千克,用去一半后,连瓶还重1.9千克.原先有油多少千克瓶重多少千克6、甲乙两地相距66千米,一艘轮船从甲地到乙地用了1.2小时,回到时用了1小时,这艘轮船往返一次的平均速度是多少7、某机床厂计划全年生产机床480台,实际提前三个月完成全年计划的1.2倍.平均每个月生产多少台三、提高题(和倍问题)1、.甲乙两桶油共重176千克,如果从甲桶中倒入乙桶中30千克油,这时乙桶油的重量是甲桶重量的3倍,甲乙原先各有多少千克油?用字母表示数练习题(八):1.在一次数学测验中,30名男生平均得分为a,20名女生平均得分为b,这个班所有同学的平均得分是A.B.C.D.2.一种小麦磨成面粉后重量减轻15%,要得到m千克面粉,需要小麦千克.A.(1+15%)mB.(1-15%)mC.D.3.练习本每本定价0.6元,铅笔每支定价0.2元,买a本练习本,b支铅笔共需_______元.4.三个连续偶数中间的一个为2n,则这三个数的和表示为_________.5.用火柴棒按下头方式搭图形图形编号(1)(2)(3)(4)(5)…(n)(100)火柴棒根数参考答案1.B2.D3.(0.6a+0.2b)4.(2n-2)+2n+(2n+2)5.(1)10(2)17(3)24(4)31(5)38(n)3+7n(100)3+7×100=703。

【七年级数学】《字母表示数》应用题

【七年级数学】《字母表示数》应用题

《字母表示数》应用题1、某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元。

厂方在开展 促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款。

现某客户要到该服装厂购买西装20套,领带x 条(x >20)。

(1)若该客户按方案①购买,需付款 元(用含x 的代数式表示); 若该客户按方案②购买,需付款 元(用含x 的代数式表示)°(2)若x =30,通过计算说明此时按哪种方案购买较为合算?2、某人去水果批发市场采购苹果,他看中了A 、B 两家苹果。

这两家苹果品质一样,零售价都为6元/千克,批发价各不相同。

A 家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠。

B 家的规定如下表:【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则总费用=6×95%×500+6×85%×1000+6×75%×(2100-1500)】(1)如果他批发600千克苹果,则他在A 家批发需要_____________元,在B 家批发需要_________元;(2)如果他批发x 千克苹果(1500<x <2000),则他在A 家批发需要__________元,在B 家批发需要________元(用含x 的代数式表示);(3)现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由。

3、为了节约用水,某市决定调整居民用水收费方法,规定:如果每户每月用水不超过20吨,每吨水收费3元,如果每户每月用水超过20吨,则超过部分....每吨水收费3.8元;小红看到这种收费方法后,想算算她家每月的水费,但是她不清楚家里每月的用水是否超过20吨.⑴ 如果小红家每月用水15吨,水费是多少?如果每月用水35吨,水费是多少?⑵ 如果字母x 表示小红家每月用水的吨数,那么小红家每月的水费该如何用x 的代数式表示呢?4、已知:我市出租车收费标准如下:乘车路程不超过3km 的一律收费7元;超过3km 的部分按每千米加1.8元收费。

用字母表示数的练习题

用字母表示数的练习题

用字母表示数的练习题用字母表示数的练习题在数学中,我们通常使用数字来表示数量。

然而,在某些情况下,我们也可以使用字母来表示数。

这种方法可以帮助我们更好地理解数学问题,并提供一种抽象的方式来解决复杂的计算。

接下来,我们将通过一些练习题来探索如何用字母表示数。

练习题一:用字母表示一个未知数假设有一个未知数,我们可以用字母x来表示它。

那么,如果x加上5等于10,我们该如何计算x的值呢?我们可以用方程式来表示这个问题:x + 5 = 10。

为了求解x的值,我们需要将5从等式两边减去,得到x = 10 - 5,即x = 5。

所以,x的值为5。

练习题二:用字母表示多个未知数有时候,我们可能需要用多个字母来表示多个未知数。

让我们来看一个例子:假设有两个未知数x和y,它们的和等于10,而它们的差等于2。

我们该如何计算x和y的值呢?我们可以用以下方程组来表示这个问题:x + y = 10x - y = 2为了求解x和y的值,我们可以使用消元法或代入法。

这里我们使用代入法来解决。

首先,我们将第二个方程式中的x替换为10 - y,得到(10 - y) - y = 2。

然后,我们将这个方程式简化为10 - 2y = 2。

接下来,我们将-2y移到等式的另一边,得到10 - 2 = 2y,即8 = 2y。

最后,我们将等式两边除以2,得到y =4。

将y的值代入第一个方程式中,我们可以计算出x的值:x + 4 = 10,即x = 10 - 4,即x = 6。

所以,x的值为6,y的值为4。

练习题三:用字母表示系数和指数在代数中,我们经常使用字母来表示系数和指数。

让我们来看一个例子:假设有一个多项式2x^2 + 3x + 1,我们该如何计算它的值呢?在这个多项式中,2是x^2的系数,3是x的系数,1是常数项。

x^2表示x的指数为2。

为了计算多项式的值,我们可以将x的值代入并进行计算。

假设x = 2,那么我们可以计算出多项式的值:2(2)^2 + 3(2) + 1 = 2(4) + 6 + 1 = 8 + 6+ 1 = 15。

字母表示数练习题及答案全套

字母表示数练习题及答案全套

一、填空题1.商店运来一批梨,共9箱,每箱n 个,则共有_______个梨..小明x 岁,小华比小明的岁数大5岁,则小华_______岁.3.一个正方体边长为a ,则它的体积是_______.4.一个梯形,上底为3 cm,下底为5 cm,高为h cm,则它的面积是_______cm 2.5.一辆客车行驶在长240千米的公路,设它行驶完共用a 个小时,则它的速度是每小时_______千米.二、选择题1.原产量n 千克增产20%之后的产量应为A.1-20%n 千克B.1+20%n 千克 +20%千克 ×20%千克2.甲乙两人岁数的年龄和等于甲乙两人年龄差的3倍,甲x 岁,乙y 岁,则他们的年龄和如何用年龄差表示A.x +yB.x -y x -y x +y3.三角形一边为a +3,另一边为a +7,它的周长是2a +b +23,求第三边-13 B.2a +13 +13 +b -134.公路全长P 米,骑车n 小时可到,如想提前一小时到,则需每小时走_______米.A.nP+1 B.1-n P C.1+nP P D.1+n P三、根据题意列代数式1.平行四边形高a ,底b ,求面积.2.一个二位数十位为x ,个位为y ,求这个数.3.某工程甲独做需x 天,乙独做需y 天,求两人合作需几天完成4.甲乙两数和的2倍为n ,甲乙两数之和为多少 四、解答题小明坐计程车,发现: 路程x km 费用y 元2 5 5+13 5+25+3请用x 表示y .五、一根弹簧原来的长度是10厘米,当弹簧受到拉力F 千克F 在一定范围内时,弹簧的长度用l 表示,测得有关数据如下表:拉力F kg 弹簧长度l cm1 10+2 10+13 10+4 10+2思考:1写出当F =7 kg 时,弹簧的长度l 为多少厘米 2写出拉力为F 时,弹簧长度l 与F 的关系式. 3计算当拉力F =100 kg 时弹簧的长度l 为多少厘米一、填空题1.零乘任何数得零,用字母表示为_____.2.某汽车公司对所有车辆进行消毒处理,今将m 千克水中,加入n 千克消毒制剂,则消毒液的重量为__________.3.大量事实证明,治理垃圾污染刻不容缓,据统计,全球每分钟约有850万吨污水排入江河湖水,则t 分钟排污量为_____万吨.4.“龟兔赛跑”,龟兔每小时的行程分别为a 千米,b 千米,经过t 小时后,龟兔相距_____千米.5.某水果市场,苹果的零售价为每斤2元,一人要买x 斤苹果需付款__________,另一人付资y 元,需给苹果__________斤.6.一个有31排,每排29个座位的电影院,演a 场电影,每场座无虚席,共出售电影票______张,如果每张电影票售价b 元,则电影院收入__________元.7.某水果批发商,第一天以每斤3元的价格,出售西瓜m 斤,第二天又以每斤2元的价格出售西瓜n 斤,则该水果批发商,这两天卖出西瓜的平均售价为_____. 二、选择题8.用字母表示加法交换律,错误的是§3.1.2§3.1.1字母表示数+b=b+a +n=n+m·q=q·p+y=y+x9.如果m表示奇数,n表示偶数,则m+n表示A.奇数B.偶数C.合数D.质数10.如图1两同心圆,大圆半径为R,小圆半径为r,则阴影部分的面积为A.πR2B.πr2C.πR2+r2D.πR2-r211.数轴上点A位于原点的右侧,所对应的实数为aa<3,则位于原点左侧,与A点距离为3的点B所对应的实数为-a -3 C.a+3 D.-312.下列数值一定为正数的是A.|a|+|b|+b2C.|a|-|b|D.|a|+2113.比较a+b 与a-b的大小,叙述正确的是+b≥a-b +b>a-bC.由a的大小确定D.由b的大小确定三、解答题14. 方格中,除9和7外其余字母各表示一个数,已知方格中任何三个连续方格中的数之和为19,求A+H+M+O的值.15.一根木棍原长为m米,如果从第一天起每天折断它的一半.1请写出木棍第一天,第二天,第三天的长度分别是多少2试推断第n天木棍的长度是多少16.全国统一鞋号成年男鞋共有14种尺码,其中最小的尺码是2321厘米,各相邻的两个尺码都相差21厘米,如果从尺码最小的鞋开始标号所对应的尺码如下表所示.1标号为7的鞋的尺码为多少2标号为m的鞋的尺码用m如何表示1≤m≤14 情景再现:1小强从甲地到乙地,先步行,他步行的速度是每小时v千米,走了31小时,又改乘21小时汽车,汽车的速度是步行速度的4倍.则他步行了______千米,乘车走了_______千米,共行了_______千米.2如果他步行走了s千米,速度仍是每小时v千米,他走了______小时.若乘车走了m千米,速度为每小时n千米,则他乘了_______小时的车.步行与乘车共用_______小时.思考:像x,x+x,ab,2m+n,ts等式子都是代数式,单独的一个数或一个字母也是代数式.那么你能用代数式填写上面的空吗注意:a.当带分数与字母相乘时,应注意什么例如,121与t相乘,写成121t对吗应如何写_______.b.当用代数式表示商时,如a除以b的商,表示成a÷b对吗应如何表示___________________________________ ____________________________.一、填空题1.小丁期中考试考了a分,之后他继续努力,期末考试比期中考试提高了b%,小丁期末考试考了_______分.2.人的头发平均每月可长1厘米,如果小红现在的头发长a厘米,两个月不理发,她的头发长为_______厘米.3.妈妈买了一箱饮料共a瓶,小丁每天喝1瓶,_______天后喝完.4.代数式x+yx-y的意义是_____________________________________.5.小明有m张邮票,小亮有n张邮票,小亮过A 9 H M O X 7标号1 2 3 (14)尺码+1×212321+2×21…2321+14×21§字母表示数生日时,小明把自己的邮票的一半作为礼物送给小亮,现在小亮有_______张邮票. 6.用语言描述下列代数式的意义.1a +b 2可以解释为___ __. 23x +3可以解释为__ ___. 二、判断题+4-5是代数式. +2-3+4是代数式. 是代数式,999不是代数式. >y 是代数式 +1=2不是代数式. 三、选择题1.下列不是代数式的是A.x +yx -y =0 +n +99m 2.代数式a 2+b 2的意义是与b 的和的平方 +b 的平方 与b 的平方和 D.以上都不对 3.如果a 是整数,则下面永远有意义的是A.a1 B.221a 21 D.11-a 4.一个两位数,个位是a ,十位比个位大1,这个两位数是a +1 B.a +1a a +1a a +1+a 四、解答题1.小明今年x 岁,爸爸y 岁,3年后小明和爸爸的年龄之和是多少2.小丁和小亮一起去吃冰糕,小丁花了m 元,小亮花了n 元,已知每个冰糕元,小丁和小亮各吃了几个一、填空题1.一只小狗的奔跑速度为a 千米/时,从A 地到B 地的路程为b +15千米,则这只小狗从A 地到B 地所用的时间为_______;当a =21,b =12时,它所用的时间为_______.2.当x =1,y =32,z =34时,代数式yx -y +z 的值为_______.3.香蕉比桔子贵25%,若香蕉的价格是每千克m 元,则桔子的价格为每千克_______.4.爸爸的体重比妈妈的2倍少30 kg,若妈妈的体重为p kg,用代数式表示爸爸的体重为_______kg.当p=50时,爸爸的体重为_______kg. 二、判断题1.一项工程,甲单独做x 天完成,乙单独做y 天完成,两人合作需yx +1天完成. 2.当a=1,b=1时,a 2+b 2=4. 3.当m=11时,2m 为奇数.4.某车间一月份生产P 件产品,二月份增产9%,两月共生产P+1+9%P 件产品. 三、选择题1.正方形的边长为m ,当m =91时,它的面 A.181 B.271C.811D.312.蚯蚓每小时爬a 千米,b 小时爬了c 千米,则b 等于A.ca B.a c C.abc D.ba c+ 3.如果x =3y ,y =6z ,那么x +2y +3z 的值为4.若s =8,t =23,v =32,则代数式s +vt的值 41.9 C 94 四、解答题电话费与通话时间的关系如下表 通话时间a 分 电话费b 元1 +2 +3 +4 + … …1试用含a 的代数式表示b . 2计算当a =100时,b 的值.§3.3.1字母表示数五、根据给出的x、y 的值填表.x y x22xy y2x2-2xy+y2x-y20 1-1 -2-2 11 -3观察给予x、y不同的值,你都能计算x2-2xy+y2与x-y2的值吗______.当x=0,y=1时,x2-2xy+y2与x-y2的值相同吗__________.当x=-1,y=-2时,x2-2xy+y2与x-y2的值相同吗______.是否当无论x、y是什么值,计算x2-2xy+y2与x-y2所得结果都相同吗__________.由此你能推出x2-2xy+y2=x-y2吗__________.总结:①给出代数式中字母的值,就能计算代数式的值,并且根据所给值的不同,求出的代数式的值也不同.②根据所给数值还可以发现一些规律.一、填空题1.小明比小亮大3岁,小亮今年a岁,小明今年__________岁.2.三个连续的整数,最大的为x,则其余两个由小到大,依次为__________.3.所有不能被2整除的整数统称为奇数,设n 是整数,则所有的奇数可以表示为______.4.某商店购进一批茶杯,每个元,则购进n个茶杯需付款__________元,如果茶杯的零售价为每个2元,则售完茶杯得款_____元,当n=300时,该商店的利润为______元.5.培育水稻新品种,如果第1代得到120粒种子,并且从第一代起,以后各代的每一粒种子都得到下一代的120粒种子,到第n代可以得到这种新品种的种子__________粒.6.一个屋顶的某一斜面是等腰梯形,最上面一层铺了瓦片21块,往下每一层多铺一块,则第5层铺瓦__________块,第n层铺瓦__________块.7.某处细菌在培养过程中,每30分钟分裂一次一个分裂成两个,经过4小时,这种细菌由1个可繁殖成__________个.8.一个长、宽、高分别为a米、b米、c米的长方体的表面积为__________.9.某次考试全班参考人数n,考试及格人数为mm≤n,则这次考试的及格率为p=______,当n=50,m=30时,p=______.10.某种蔬菜今天的价格比昨天上涨了20%,如果昨天的价格为每千克a元,那么这种蔬菜今天的价格为每千克____元,当a=时,今天蔬菜的价格为____元.11.小明将“压岁钱”存入银行参加教育储蓄,如果存入350元,年利率为10%,则一年后本金和利息共__________元.12.“抗击非典”活动中,甲、乙、丙三家企业捐款,已知甲捐了a万元,乙比甲的2倍少5万元,丙比甲多6万元,则捐款总额为__________万元,当a=30时,捐款总额为__________万元.二、选择题13.baba+-2的意义是与b差的2倍除以a与b的和的2倍与b的差除以a与b和的商的2倍与b的差除a与b的和与b的2倍的差除以a与b和的商14.一个二位数,个位上的数字是a,十位上的数字为b,则这个两位数是C.10a+b +a15.用代数式表示a的5倍的平方与b的差正确的是A.5a2-bB.5a2-ba2-b a2-b16.当a=4,b=6,c=-5时,cba2)(21-的值为B.-21D.-117.下列说法正确的是A.一个代数式只有一个值B.代数式中的字母可以取任意的数值C.一个代数式的值与代数式中字母所取§3.3.2字母表示数的值无关D.一个代数式的值由代数式中字母所取的值确定 三、解答题18.某种水果第一天以2元的价格卖出a 斤,第二天以元的价格卖出b 斤,第三天以元的价格卖出c 斤,求:1三天共卖出水果多少斤 2这三天共得多少元3三天的平均售价是多少并计算当a =30,b =40,c =45时,平均售价的数值..情景再现:计算下列代数式的值: 5a +2b +3a +5b -2a -3b 1当a =5,b =4时2当a =31,b =21时 你能总结出规律吗像上面,5a ,3a ,-2a 这样所含字母相同并且相同字母的指数也完全相同的项叫同类项.将同类项合并成一项叫合并同类项.计算时,先合并同类项再求值.既节省时间,又容易算对. 一、选择题1.下列计算正确的是A.2a +b =2ab -x 2=2 -7nm =0 +a =a 22.当a =-5时,多项式a 2+2a -2a 2-a +a 2-1的值为B.-63.下列单项式中,与-3a 2b 为同类项的是A.-3ab 3B.-41ba 2D.3a 2b 24.下面各组式子中,是同类项的是A.2a 和a 2和4a和21 和6y 2x二、填空题1.合并同类项:-mn +mn =_______-m -m -m =_______.2.在多项式5m 2n 3-32m 2n 3中,5m 2n 3与-32m 2n 3都含有字母_______,并且_______都是二次,_______都是三次.因此5m 2n 3与-32m 2n 3是_______.3.合并同类项的法则是_______,所得结果作为_______、_______和_______不变.4.两个单项式-2a m 与3a n 的和是一个单项式,那么m 与n 的关系是_______. 三、根据题意列出代数式1.三个连续偶数中,中间一个是2n ,其余两个为_______,这三个数的和是_______.2.一个长方形宽为x cm,长比宽的2倍少1 cm,这个长方形的长是_______,周长是_______.3.一个圆柱形蓄水池,底面半径为r ,高为h ,如果这个蓄水池蓄满水,可蓄水_______. 四、解答题如果单项式2mx a y 与-5nx 2a -3y 是关于x 、y 的单项式,且它们是同类项.1.求4a -132003的值.2.若2mx a y +5nx 2a -3y =0,且xy ≠0,求2m +5n 2003的值.§字母表示数情景再现:观察下列①式与②式①8-4-1=8-3=5②8-4-1=8+-14-1=8+-1×4--1×1=8-4+1=5也就是说8-4-1=8-4+1 上式左边有括号,而右边去掉了括号,你能说出去掉括号后,括号内的各项发生了什么变化吗照上面的规律:你能去掉下式的括号吗a-b-c=__________.试着做一做:a-b+c=_________.c-b-a=_________.一、填空题+b-c+d=a+b-_______. +_______=x2-2x+1.3.-2a2+a-3=-_______.4.x-2y+zx+2y-z=x-____x+_____.5.不改变式子a-b-3c的值,把其中的括号前的符号变成相反的符号,结果是_______.二、下列等式是否一定成立.+b-c=a+b-c2.-m+n=-n+m-2x=-2x+34.-u-v=-u+vx-1=5x-1三、化简下列各式1.5a-a+3b. a+b-a+b-5a+b.3.-2pq+mn+2pq-mn.四、初一1班,男生有a人,女生比男生的2倍少25人,并知男生比女生的人数多,用代数式来表示,能化简的化简.1.女生有多少人2.男生比女生多多少人3.全班共有多少人一、填空题1.在合并同类项时,我们把同类项的____相加.2.合并同类项:12a-5a-7a=__________.22ab+3ab-6ab=__________.32a2b-4ab2+3b2a-5a2b=__________.45x3y-6x+7x3y+8x=__________.3.请写出3个与3x2y2z是同类项的代数式____.4.去括号12x-2-5x=__________.23x2y+2x-5x2y=__________.5.计算:a-2a-3b+3a-4b=__________.6.若x2y=x m y n,则m=______,n=______.7.化简x+{3y-2y-2x-3y}=__________. +n-p的相反数为__________.9.九个连续整数,中间的一个数为n,这九个整数的和为__________.10.某服装店打折出售服装,第一天卖出a件,第二天比第一天多12件,第三天是第一天的2倍,则该服装店这三天共卖出服装________件. 11.当k=__________时,多项式x2-3kxy-3y2-31xy-8中不含xy 项.12.在代数式6a2-7b2+2a2b-3ba2+6b2中没有同类项的是__________.二、选择题13.下列各组式子中是同类项的是§3.5.2字母表示数§3.5.1字母表示数A.-a 与a 2与-3a 2bC.-2ab 2与21b 2a 与2a 14.下列计算正确的是A.3a +2b =5abB.-2a 2b +3ab 2=a 2b 221-3a 2b =-25a 2b -4x 5=-x 315.当a =5,b =3时,a -b -2a -a -b 等于B.14C.-1016.如果3x 2-2-3x 2-y =-2,那么代数式x +y +3x -y -4x -y -2的值是B.20 D.-6 17.---a 2+b 2-a 2-+b 2等于A.2a 2 2.-2a 2 b 2-a 2 三、解答题 18.已知a =1,b =2,c =21, 计算2a -3b -3abc -2b -a +2abc 的值.19.已知2x m y 2与-3xy n 是同类项,计算m -m 2n +3m -4n +2nm 2-3n 的值.20.把a +b 当作一个整体化简,5a +b 2-a +b +2a +b 2+2a +b .一. 选择题;1. 观察一串数:3,5,7,9……第n 个数可表示为A. ()21n -B. 21n -C. ()21n +D.21n + 2、日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0、1,如二进制数1101记为1101)2(,1101)2(通过式子120212123+⨯+⨯+⨯可以转换为十进制数13,仿照上面的转换方法,将二进制数11101)2(转换为十进制数是 . A29 B25 C4 D333.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是A 、618B 、638C 、658D 、6784.下面一组按规律排列的数:1,2,4,8,16,……,第2002个数应是 . A 、20022B 、20022-1C 、20012D 、以上答案不对5.小亮从一列火车的第m 节车厢数起,一直数到第n 节车厢n >m,他数过的车厢节数是 .CAm +n Bn -m Cn -m -lDn -m +1 二、填空题: 1.已知:3223222⨯=+,8338332⨯=+,154415442⨯=+,…若ba b a ⨯=+21010a 、b为正整数,则a +b = ; 2.观察下列算式:1010122=+=-; 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-;……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来.你认为的正确答案是 . 3.观察下列各式:请你猜想到的规律用只含一个字母的式子表示出来: .4.下图是某同学在沙滩上用石于摆成的小房子.观察图形的变化规律,写出第n 个小房子用了 块石子.5.将一张长方形的纸对折,如图5所示可得到一条折痕图中虚线.续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕.如果对折n 次,可以得到输入 … 1 2 3 4 5…输出 … …§字母表示数条折痕. 三、解答题:1、用火柴棒按下图中的方式搭图形如图所示: 1按图式规律填空: 图形标号 ① ② ③ ④ ⑤ 火棒数2照这样的规律摆下去,搭第n 个图形需要多少根火柴棒一、填空题1.每包书有12册,m 包书有__________册.2.矩形的一边长为a -2b ,另一边比第一边大2a +b ,则矩形的周长为__________.3.若|x -2y |+y -12=0,则3x +4y =_____. +3a -b =a 2-_______.5.化简:a 2-3ab +4b 2-2b 2-3ab -3a 2=__________.6.若n 为整数,则2)1()1(1+-+-n n =______.7.当b a b a +-=2时,b a b a +-2-3·ba ba +-=______. 8.若3a 4b m +1=-54a 3n -2b 2是同类项,则m -n =__________.9.当a =-1,b =1时,3a 2-2ab +2b 2-2a 2-b 2-2ab =__________.10.某种酒精溶液里纯酒精与水的比为1∶2,现配制酒精溶液m 千克,需加水_____千克.11.一列火车保持一定的速度行驶,每小时行90千米,如果用t 表示火车行驶的小时数,那么火车在这段时间行驶的千米数是_____.12.产量由m 千克增长10%就达到____千克. 千克大米售价8元,1千克大米售价______元. 14.圆的周长为P ,则半径R =__________.15.某校男生人数为x ,女生人数为y ,教师与学生的比例为1∶12,则共有教师____人.16.某电影院座位的行数为m ,已知座位的行数是每行座位数的32,教室里共有座位__________.17.当x =7,y =4,z =0时,代数式x 2x -y +3z 的值为__________.18.某人骑自行车走了小时,然后乘汽车走了小时,最后步行a 千米,已知骑自行车与汽车的速度分别为v 1千米/秒和v 2千米/秒,则这个人所走的全部路程为______.19.教学楼大厅面积S m 2,如果矩形地毯的长为a 米,宽b 米,则大厅需铺这样的地毯________块.二、选择题20.长方体的周长为10,它的长是a ,那么它的宽是-2a -a -a -2a 21.下列说法正确的是 A.31πx 2的系数为31 21的系数为21x -x 2的系数为3π-x 2的系数为-3π22.若a 为负数,下列结论中不成立的是>0 <0C.|a |·a 2-a 3>0 <a 523.若M =-3-a 2b 3c 4,N =a 2-b 3-c 4,P =21a 3b 4c 3,Q =-31a 3b 2-c 4,则互为同类项的是 与N 与Q 与P 与Q24.下面合并同类项正确的是+2x 2=5x 3 B.2a 2b -a 2b =1 C.-ab -ab =0 D.-x 2y +x 2y =025.将m -{3n -4m +m -5m -n +m }化简结果正确的是A.8m +2nB.4m +nC.2m +8n m -n 、b 、c 、m 都是有理数,且a +2b +3c =m ,a +b +2c =m ,那么b 与c 的关系是单元测试 字母表示数A.互为相反数B.互为倒数C.相等D.无法确定27.水结成冰体积增大111,现有体积为 a 的水结成冰后体积为111 1112 1110 1211 28.你喜欢吃拉面吗拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸再捏合,再拉伸……反复几次,就把这根很粗的面条拉成了许多细的面条,这样捏合到第5次时可拉出细面条根 根 根 根 三、解答题29.某校举办跳绳比赛,第一组有男生m 人,女生n 人,男生平均每分钟跳105次,女生平均每分钟跳110次,一分钟第一组学生共跳绳多少次当m =5,n =5时,结果是多少30.今年初共青团中央发出了“保护母亲河的捐款活动”,某校初一两个班的115名学生积极参加,已知甲班31的学生每人捐款10元,乙班52的学生每人捐款10元,两班其余学生每人捐5元,设甲班有学生x 人,试用代数式表示两班捐款的总额,并化简.31.研究下列等式,你会发现什么规律1×3+1=4=22 2×4+1=9=32 3×5+1=16=42 4×6+1=25=52 …设n 为正整数,请用n 表示出规律性的公式来.32.已知a =3,b =2,计算 1a 2+2ab +b 2;2a +b 2,当a =2,b =1或a =4,b =-3时,分别计算两式的值,从中发现怎样的规律.33.化简12a 2-1+2a -3a -1+a 2 22x 2-xy -32x 2-3xy -2x 2-2x 2-xy +y 234.某同学计算一多项式加上xy -3yz -2xz 时误认为减去此式计算出错误结果为2xy -3yz +4xz ,试求出正确答案.35.已知:甲的年龄为m 岁,乙的年龄比甲的年龄的3倍少7岁,丙的年龄比乙的年龄的21还多3岁,求甲、乙、丙年龄之和. 、B 两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:A 公司年薪两万元,每年加工龄工资400元,B 公司半年薪一万元,每半年加工龄工资100元,求A 、B 两家公司,第n 年的年薪分别是多少,从经济角度考虑,选择哪家公司有利 3.1.1参考答案 一、 +5 5.a240二、 三、 +y ÷y x 11+ 4.2n 四、y =5+5.02-x 五、思考:110+7×=13.5 cm2l =10+0.5F .3l =10+×100 l =60 cm 3.1.2参考答案一、字母能表示什么一、·a =0 +n ·t 4.b -at2y6.899a 899ab7.3m +2n /m +n 二、 三、 15.12m ;4m ;8m 2n m 2 16.12321+6×21=2621 22321+m -1·21 参考答案情景再现:131v 21·4v =2v 31v +2v =37v 2v s nmv s +n m 注意:不对,应写成23t ba一、1.1+b %a +2 与y 的和乘以x 与y 的差 +2m6、1a +b 2可以解释为:a 与b 的和的平方,或a 、b 两数和的平方.23x +3可以解释为:x 的3倍与3的和,或者:小彬每分钟走x 米,小亮每分钟比小彬多走1米,那么3x +3表示小亮3分钟走的路程. 二、1.√ 2.√ 3.× 4.× 5.√ 三、 四、+y +6 2.小丁:5.0m 小亮:5.0n3.3.1参考答案 一、1.ab 15+ 211512+=792.321-32+34=32×35=910÷1+25% -30 70 二、1.× 2.× 3.× 4.√ 三、四、1b =+0.2a 2b =+×100 b = 五、表格横着依次为:,0,1,1,1,1,4,4,1,1,41,23,49,1,1,4,-4,1,9,9,1,-6,9,16,162.能 相同 相同 相同 能3.3.2答案一、+3 -2,x -1,x+1或2n -1 4.1.5n 2a 150 n21+n -1 ab +bc +ac9.nm×100% 60% 1+20% 1+20%1+10%12.4a +1 121 二、 三、18.1a +b +c22a ++1.2c32 1.5 1.2a b c a b c++++ 115174参考答案情景再现:1=6a +4b =30+16=462=6a +4b =2+2=4 3=6a +4b =1+1=2 一、二、1.3m 0 ,n m n 同类项 3.略 4.相等三、-2 2n +2 6n -1 22x -1+x r 2h 四、1.-1 3.5.1参考答案情景再现:去掉括号,括号里的各项要变号.a -b +c a -b -c c -b +a一、-d 2.-2x +1 3.2a 2-a +3 -z 2y -z +-b +3c二、1.√ 2.× 3.× 4.√ 5.× 三、1.4a -3b 2.-3a +b 3.-3mn 四、1.2a -25 -a 3.3a -25一、1.系数 2.1-10a 2-ab 3-3a 2b -ab 2412x 3y +2x3.-21x 2y 2z ;x 2y 2z ;2x 2y 2z 4.17x -2 2-2x 2y +2x 5.2a -b 6. 2 1 -2y -m -n 9. 9n 10.4a +12 11.-9112.6a 2 二、三、18.-2 19. 2 a +b 2+a +b 3.6答案:一、D ;B ;C ;C ;D ;二、1、109;2、n 2-n -12;3、nn+2=n+12-1;4、2n -n+12;5、2n -1 三、1、15,9,13,17,21;24n +1 单元测试答案: 一、 -6b -3a5.4a 2+2b 2 7.-2 8.-131 1+10% 13.a 8 14.π2P 15.12y x + 23 18.0.5v 1++a 19.abS 二、三、+110n 1075 30.310 x +52115-x ·10+32x +53115-x ×5=-3x +805 n +2+1=m +1232.a +b 2=a 2+2ab +b 233.1-a 2-a +22-2x 2+5xy +2y 2-9yz 35.211m -215 公司收入:20000+n -1400B 公司收入10000+200n -1+10000+200·n -1+100=20100+400n -1 显然选B 公司。

数学用字母表示数试题答案及解析

数学用字母表示数试题答案及解析

数学用字母表示数试题答案及解析1.小明今年A岁,爸爸今年35岁,5年后两人相差()岁.A.35﹣AB.40﹣AC.30﹣A【答案】A【解析】两人的年龄差是永远不变的,两人原来相差35﹣A岁,5年后仍然相差35﹣A岁.解:由“小明今年A岁,爸爸今年35岁”可知:爸爸与小明年龄相差35﹣A岁,且这个数值是不变的,所以说再过5年后,他俩仍然相差35﹣A岁;故选:A.点评:抓住年龄差不变是解答此题的关键.2.下面的式子与2a相等的是()A.a•aB.a+aC.2a+2a【答案】B【解析】2a=a+a;据此选择即可.解:与2a相等的式子是a+a;故选:B.点评:解答此题的关键:应明确2a是表示两个a相加,而不是相乘.3.小晴把4x﹣2错写成4(x﹣2),结果比原来()A.多8B.少6C.多6【答案】B【解析】要求结果比原来多或少了多少,就要求出两个数,再用后来的数减去开始的数即可求解.解:4(x﹣2)=4x﹣8;4x﹣8﹣(4x﹣2),=4x﹣8﹣4x+2,=﹣6;所以结果比原来少6;故选:B.点评:此题考查了用字母表示数的基本方法,要抓住题中给出的数量关系,代入数据解答.4.长方形的周长C厘米,长是α厘米,宽是()厘米.A.C﹣2αB.(C﹣α)÷2C.C÷2﹣α【答案】C【解析】由长方形的周长公式C=(长+宽)×2,得出宽是:C÷2﹣a.据此解答即可.解:由分析得出:C=(a+宽)×2,所以宽=C÷2﹣a.故选:C.点评:此题主要考查长方形周长公式的灵活运用.5.小明今年a岁,小东今年(a﹣4)岁,再过5年,他们相差()A.4岁B.( 5+4)岁C.( 5﹣4)岁【答案】A【解析】先求出小明和小东相差的年龄,由于年龄差不随时间的变化而改变,所以再过5年,他们相差的岁数不变.解:因为小明和小东相差:a﹣(a﹣4)=a﹣a+4=4(岁),所以再过5年,他们相差的岁数仍然是4岁;故选:A.点评:年龄差不随时间的变化而改变是解答此题的关键.6.下面两个式子相等的是()A.a+a和2aB.a×2和a2C.a+a和a2【答案】A【解析】选项A,a+a表示2个a相加,写成乘法算式是2×a,一般的2和a之间的乘号不写;选项B,a×2,如果省略乘号,2必须写在字母的前面;选项C,a+a表示2个a相加,写成乘法算式,如果省略乘号,2必须写在a的前面,由此即可作出选择.解:选项A,a+a表示2个a相加,写成乘法算式是2×a,一般的2和a之间的乘号不写,所以,A是正确的;选项B,a×2,如果省略乘号,2必须写在字母的前面,所以,选项B是错误的;选项C,a+a表示2个a相加,写成乘法算式,如果省略乘号,2必须写在a的前面,所以选项C是错误的;综合以上得出A是正确的;故选:A.点评:此题主要考查了2a表示的意义(2个a相加)及字母和整数相乘时的简便写法.7.图书馆有故事书m本,比科技书的2倍多n本,科技书有多少本.正确的算式是()A.m÷2﹣n B.(m﹣n)÷2C.(m+n)÷2D.m÷2+n【答案】B【解析】先根据“故事书m本,比科技书的2倍多n本”得出:故事书数量=科技书的数量×2+n,则故事书的数量﹣n本=科技书的2倍,即科技书数量=(m﹣n)÷2,代数计算即可.解:由分析得出:科技书的数量为:(m﹣n)÷2(本).故选:B.点评:解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.8.一个奇数用m表示,它后面一个相邻奇数用式子表示是()A.m﹣2B.m+2C.2m D.m÷2【答案】B【解析】根据相邻的两个奇数相差2,进行解答即可.解:m+2;故选:B.点评:明确相邻的两个奇数相差2,是解答此题的关键.9.随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费按原标准每分钟降低了a元后,再次下调了25%,现在的收费标准是每分钟b元,则原收费标准每分钟为()元.A.b﹣a B.b+a C.b+a D.b+a【答案】C【解析】设原收费标准每分钟为x元,则根据题意,以现在的收费标准为等量关系,列出等式,表示出原收费标准即可.解:设原收费标准每分钟为x元,由题意得,(x﹣a)(1﹣25%)=b,(x﹣a)×75%=b,x﹣a=b,x=b+a.故选:C.点评:解答本题的实质是实现从基本数量关系的语言表述到用字母表示一种转化,设出未知数,借助方程,列出等式,从而求出答案.10.甲数是m,比乙数的3倍多n.表示乙数的式子是()A.3m+n B.m÷3+n C.m÷3﹣n D.(m﹣n)÷3【答案】D【解析】根据“甲数是m,比乙数的3倍多n,”知道甲数=乙数×3+n,由此用甲数减n再除以3就是乙数.解:(m﹣n)÷3;故选:D.点评:此题属于典型的两步逆算的题目,解答时注意根据数量关系,列式解答.11.王大伯家养的母鸡只数是公鸡的8倍.如果养了x只公鸡,母鸡有只.【答案】8x【解析】由“母鸡只数是公鸡的8倍.”得出母鸡只数=公鸡的只数×8,而公鸡有x只,由此求出母鸡的只数.解:8×x=8x(只),答:母鸡有8x只;故答案为:8x.点评:关键是根据题意得出数量关系式:母鸡只数=公鸡的只数×8,由此解决问题.12. a与b平方和不大于它们和的平方.【答案】a2+b2≤(a+b)2【解析】根据“a与b平方和不大于它们和的平方,”得出a2+b2≤(a+b)2,利用完全平方和公式即可证明此不等式.解:因为(a+b)2=a2+b2+2ab,所以(a+b)2≥a2+b2,即a2+b2≤(a+b)2.点评:本题主要利用完全平方和公式((a+b)2=a2+b2+2ab)解决问题.13.(2011•弥渡县模拟)a2=2a..【答案】×【解析】根据平方的定义即可作出判断.解:a2=a•a,故原题错误.故答案为:×.点评:本题考查了平方的定义和用字母表示数,是基础题型.14. a2与2a一定不相等.(a≠0).(判断对错)【答案】×【解析】根据a2=a×a,2a=2×a,当a=2时,a2=22=4,2a=2×2=4,此时a2=2a;当a=1时,12=1,2×1=2,所以a2小于2a;当a>2时,a2>2a;据此解答即可.解:因为当a=2时,a2=22=4,2a=2×2=4,此时a2=2a;所以a2与2a一定不相等说法错误.故答案为:×.点评:引导学生举出反例,是判断此题最简单的方法.15.苹果有x千克,比梨的一半少8千克,梨有千克.【答案】2x+16【解析】由题意可知:梨的重量÷2﹣8=苹果的重量,进而得出:(苹果的重量+8)×2=梨的重量,代入数值,解答即可.解:(x+8)×2,=2x+16(千克);答:梨有2x+16千克.故答案为:2x+16.点评:解答此题的关键:根据已知条件,进行认真分析,找出数量间的关系,进而根据数量间的关系,进行解答得出结论.16.甲数是x,乙数比甲数多2倍,乙数是.【答案】3x【解析】根据题意可知:乙数比甲数多2倍,即乙数是甲数的(1+2)倍,根据求一个数的几倍是多少,用乘法解答即可.解:x×(1+2),=3x;故答案为:3x.点评:解答此题的关键:根据求一个数的几倍是多少,用乘法解答.17.一块长方形铁片,长l2.5cm,宽9.6cm,这块铁片的面积是多少?(先写出字母公式,再把数据代入公式求值)【答案】120平方厘米【解析】长方形的面积S=ab,据此代入数据即可求解.解:因为长方形的面积S=ab,a=12.5,b=9.6,所以S=12.5×9.6,=120(平方厘米);答:这块铁片的面积是120平方厘米.点评:此题主要考查长方形的面积的计算方法.18.x块,是面包块数的3倍,3x表示.【答案】蛋糕的块数【解析】由题意得:x表示面包的块数,则3x表示面包块数的3倍,即蛋糕的块数.据此解答即可.解:3x表示面包块数的3倍,即蛋糕的块数.故答案为:蛋糕的块数.点评:解决本题的关键是明确题中的数量关系和字母的意义.19.妈妈买5千克西红柿,每千克x元,付了20元,找回元.【答案】5(4﹣x)【解析】用总钱数减去5千克西红柿的钱数,就是应找回的钱数.解:20﹣x×5,=20﹣5x,=5(4﹣x)(元);答:应找回5(4﹣x)元.点评:本题运用“单价×数量=总价”进行解答即可.20.小明每小时行的路程是15千米,t小时行了千米.【答案】15t【解析】已知速度和时间,求路程,运用关系式:路程=速度×时间.解:15×t=15t(千米);答:t小时行了15t千米.故答案为:15t.点评:此题运用了关系式:路程=速度×时间.21.一本书有A页,3天读了B页,还剩下页,平均每天读,照这样计算,剩下的还要天才能读完.【答案】A﹣B;B÷3;(A﹣B)÷(B÷3)【解析】(1)剩下的页数=书的总页数﹣3天读的页数,即:A﹣B;(2)平均每天读的页数=3天读的总页数÷3,即:B÷3;(3)剩下页数需要的时间=剩下的页数÷每天读的页数,即(A﹣B)÷(B÷3).解:(1)还剩下的页数为:A﹣B(页).答:还剩下A﹣B页.(2)平均每天读的页数为:B÷3(页).答:平均每天读B÷3页.(3)剩下的页数为(A﹣B)页,平均每天读(B÷3)页,剩下的还需要的时间为:(A﹣B)÷(B÷3)天.答:剩下的还要(A﹣B)÷(B÷3)天才能读完.故答案为:A﹣B;B÷3;(A﹣B)÷(B÷3).点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数量用字母正确的表示出来,然后根据题意列式计算即可得解.22.水果店的苹果比梨的3倍还多16千克,如果梨有X千克,那么苹果有千克.【答案】3x+16【解析】要求苹果有多少千克,由题意可得:苹果的重量=梨的重量×3+16,因为梨有X千克,然后代入即可.解:3x+16(千克);答:苹果有3x+16千克点评:解答此题应找出苹果的重量和梨的重量之间的关系,然后根据其关系解答即可.23. x比一个数的4倍多3,这个数为4x+3..【答案】错误【解析】x比一个数的4倍多3,也就是一个数的4倍比x少3,要求这个数,先求出这个数的4倍,再除以4就是这个数.解:根据分析,这个数为:(x﹣3)÷4;故判断为:错误.点评:此题属于逆思考的应用题,要求这个数关键是先求出这个数的4倍,进而问题得解.24.一支铅笔的单价是a元,买了6支,应付元.【答案】6a【解析】根据:总价=单价×数量,代数计算即可.解:a×6=6a(元);答:应付6a元;故答案为:6a.点评:此题主要考查总价、单价、数量之间的关系,要灵活运用.25. 5x表示5个x相加..(判断对错)【答案】√【解析】5x=x+x+x+x+x,表示五个x相加,由此判断.解:5x=x+x+x+x+x,表示五个x相加,故答案为:√.点评:本题主要考查了乘法的意义:表示几个几相加是多少.26. 3x+4x=7x,3a+4b=7ab.【答案】×【解析】(1)根据乘法分配律合并即可作出判断,(2)3a+4b=7ab,所含字母不同因此不能合并.解:3x+4x=7x,3a与4b不能合并.故答案为:×.点评:考查了用字母表示数,注意对运算律的灵活运用.27.x•x=2x.(判断对错)【答案】×【解析】x•x表示两个x相乘,2x表示两个x相加;据此判断即可.解:由分析可知:x•x=2x,说法错误;故答案为:×.点评:明确x•x和2x分别表示的含义,是解答此题的关键.28.运用运算定律在横线上填上合适的数或字母.(1)24×45+24×55=×(+)(2)125×25×8×4=(×)×(×)(3)a×(73+6)=×+×.【答案】24、45、55,125、8、25、4,a、73、a、6【解析】(1)24×45+24×55,符合乘法分配律的逆运算;(2)125×25×8×4,利用乘法交换律和结合律;(3)a×(73+6),利用乘法分配律即可解答.解:(1)24×45+24×55=24×(45+55);(2)125×25×8×4=(125×8)×(25×4);(3)a×(73+6)=a×73+a×6.故答案为:24、45、55,125、8、25、4,a、73、a、6.点评:此题主要考查乘法运算定律的意义.29.苹果树有a棵,梨树是苹果树的3倍,苹果树和梨树一共有棵,梨树比苹果树多棵.【答案】4a;2a【解析】(1)根据“梨树是苹果树的3倍”得:梨树的棵数=苹果树的棵数×3,即3a棵,再加上苹果树的棵数a棵即可;(2)用梨树的棵数﹣苹果树的棵数即可.解:(1)苹果树和梨树共有:a+3a=4a(棵).答:苹果树和梨树一共有4a棵.(2)3a﹣a=2a(棵).答:梨树比苹果树多2a棵.故答案为:4a;2a.点评:解答此题的关键是,根据已知条件,把未知的数用字母正确的表示出来,再结合所求的问题,即可得出答案.30.三个连续自然数中间一个是n,这三个连续自然数的和.【答案】3n【解析】因为相邻的两个自然数相差1,中间的一个是n,由此表示出三个连续自然数为:n﹣1,n,n+1.然后求和.解:因为已知三个连续自然数且中间一个为n,所以另两个为:n﹣1,n+1.则三个连续自然数的和为:n﹣1+n+n+1=3n.故答案为:3n.点评:解答此题的关键是知道相邻的两个自然数相差1,由此即可得出答案.31.当a时,a的倒数一定大于a.当a时,a的倒数一定小于a.当a时,a的倒数一定等a.【答案】<1;>1;=1【解析】当一个数小于1时,它的倒数一定大于这个数;当一个数大于1时,这个数的倒数一定小于这个数;1的倒数是它本身.据此解答即可.解:由分析得出:当a<1时,a的倒数一定大于a.当a>1时,a的倒数一定小于a.当a=1时,a的倒数一定等a.故答案为:<1;>1;=1.点评:此题考查了倒数的意义.32.张老师买篮球.每个篮球a元,买5个篮球元,买x个篮球元.【答案】5a,ax【解析】根据单价×数量=总价,用乘法列式即可用字母表示出,买5个篮球的钱数及买x个篮球的钱数.解:(1)a×5=5a(元),(2)a×x=ax(元),答:买5个篮球5a元,买x个篮球ax元;故答案为:5a,ax.点评:本题主要考查了用字母表示数及单价、数量与总价之间的关系.33.小明买了α枝钢笔和b枝圆珠笔,圆珠笔每枝2.5元,钢笔每枝8.7元,小明一共花了元.【答案】8.7a+2.5b【解析】买钢笔a枝钢笔和圆珠笔b枝,钢笔每枝8.7元,圆珠笔每枝2.5元,用每枝圆珠笔和每枝钢笔的价格和数量相乘即可求出一共用了多少钱.解:8.7a+2.5b,答:小明一共花了8.7a+2.5b元.故答案为:8.7a+2.5b.点评:此题考查了用字母表示数的方法,根据单价×数量=总价即可解答.34.如果A÷B=54,则(A×2)÷(B÷2)=.【答案】216【解析】根据商不变的性质:被除数、除数同时扩大或同时缩小相同的倍数(0除外),商不变,所以被除数扩大2倍,除数缩小2倍,那么商就会扩大(2×2)倍,列式计算即可得到答案.解:如果A÷B=54,则(A×2)÷(B÷2)=54×4=216.故答案为:216.点评:此题主要考查的是商不变性质的灵活应用.35.小明每天看书a页,小青每天看书b页,10天共看书页.【答案】10a+10b【解析】先用“a+b”求出小明和小青每天看的页数,然后根据“每天看的页数×天数=总页数”求出10天看的页数”即可.解:(a+b)×10,=10a+10b(页);答:10天共看书10a+10b页;故答案为:10a+10b.点评:此题考查了用字母表示数,先求出小明和小青每天看的页数,进而根据每天看的页数、天数和所看总页数三者之间的关系解答即可.36.加法结合律用字母表示是(a+b)+c=.【答案】a+(b+c)【解析】根据加法结合律解答即可,即:三个数相加,先把前两个数相加,再与第三个数相加,或者是先把后两个数相加,再与第一个数相加,和不变解答即可.解:(a+b)+c=a+(b+c),故答案为:a+(b+c).点评:本题理解加法的结合律是解答的关键.37.一支钢笔的单价是7.8元,老师买了n支这样的钢笔,应付元,老师带50元买笔,还剩元.【答案】7.8n;50﹣7.8n【解析】(1)用:单价×数量=总价,即可计算出应该付的钱数;(2)用付的钱数减去应付的钱数就是剩下的钱数.解:(1)应该付出:7.8n元.答:应该付7.8n元.(2)还剩:50﹣7.8n元.答:还剩50﹣7.8n元.故答案为:7.8n;50﹣7.8n.点评:解决本题的关键是灵活根据单价、数量和总价之间的关系解答.38.小明今年x岁,爸爸今年的年龄是小明的3倍,爸爸今年有岁,小明和爸爸今年一共岁.【答案】3x,4x【解析】求爸爸今年多少岁,根据求一个数的几倍是多少,用乘法解答;求小明和爸爸今年一共多少岁,把小明的年龄和爸爸的年龄相加即可.解:小明今年x岁,爸爸今年的年龄是小明的3倍,爸爸今年有3x岁,小明和爸爸今年一共:x+3x=4x(岁);故答案为:3x,4x.点评:此题考查了用字母表示数,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.39.甲数是x,比乙数多8,乙数是x﹣8..【答案】√【解析】甲数是40,比乙数多8,即甲数=乙数+8,所以乙数等于x﹣8.解:乙数是:x﹣8,故答案为:√.点评:关键是根据题意得出数量关系式:甲数=乙数+8,由此求出乙数.40.吴婷去年重X千克,今年比去年重2.5千克,今年重千克.【答案】(X+2.5)【解析】题目中的字母X表示吴婷去年的重量,当做一个具体的数来看待即可,因为今年比去年重2.5千克,所以今年的重量就等于去年的重量加上2.5千克.解:今年的重量:X+2.5(千克),故答案为:(X+2.5).点评:本题考查了用字母表示数字,应让学生明白字母所表示的实际意义.另外,X+2.5作为一个整体来表示吴婷今年的重量,因而答案中加上括号较为规范.41.㎡=m+m=2m..【答案】×【解析】因为根据乘方的意义可得:m2=m×m;而m+m=2m,进而得出结论进行判断.解:因为m2=m×m;而m+m=2m,所以㎡=m+m=2m说法错误;故答案为:×.点评:解答此题应注意区别2m与m2的意义的不同.42.一辆公共汽车上原来有x人,到新街站下去5人.现在车上有人.【答案】x﹣5【解析】用原有人数减下车人数就是剩下的人数.解:由分析得出:现在车上有:x﹣5(人).答:现在车上有x﹣5人.故答案为:x﹣5.点评:解决本题的关键是找出数量关系,再列式解答.43.小东今年a岁,爸爸比小东大b岁,爷爷比爸爸大c岁,爷爷今年岁.【答案】a+b+c【解析】根据“小东今年a岁,爸爸比小东大b岁”求出爸爸的岁数,再根据“爷爷比爸爸大c岁”,即可求出爷爷的岁数.解:爸爸的岁数是,a+b岁,爷爷的岁数是:a+b+c岁,故答案为:a+b+c.点评:解答此题的关键是,把所给的字母看做已知数,再根据基本的数量关系解答即可.44.用字母表示乘法分配律:(a+b)×c﹦.【答案】ac+bc【解析】根据乘法分配律得:(a+b)×c﹦ac+bc,据此解答即可.解:用字母表示乘法分配律:(a+b)×c﹦ac+bc.故答案为:ac+bc.点评:此题主要考查用字母表示乘法分配律,要熟记.45.两个数的和与一个数相乘,可以先把它们与这个数相乘,再,这叫做律.用字母表示:.【答案】分别,相加,乘法分配,a×(b+c)=a×b+a×c【解析】根据乘法分配律的概念并掌握用字母表示的方法,进行解答.解:两个数的和与一个数相乘,可以先把它们与这个数(分别)相乘,再(相加),这叫做(乘法分配)律.用字母表示:a×(b+c)=a×b+a×c.故答案为:分别,相加,乘法分配,a×(b+c)=a×b+a×c.点评:此题考查了学生对乘法分配律的掌握情况.46.六年级张萌同学在教室的座位用(a,b)表示,那么张萌应坐在教室的第组,第排.【答案】a;b【解析】根据数对表示位置的方法可知:第一个数字表示列(组),第二个数字表示行(排),据此即可解答.解:张萌同学在教室的座位用(a,b)表示,那么张萌应坐在教室的第a组,第b排.故答案为:a;b.点评:此题考查了数对表示位置的方法.47. x2=x+x..【答案】错误【解析】根据x2表示的意义:表示2个x相乘;x+x表示两个x相加;据此判断.解:因为x2表示2个x相乘,所以本题x2=x+x说法错误;故答案为:错误.点评:解答此题应明确2个x相乘与2个x相加的不同,掌握算式表示的意义是解答此题的关键.48.爸爸比小明大28岁.若用x表示爸爸的年龄,小明的年龄是岁;如果小明的年龄用y表示,则爸爸的年龄是岁.【答案】x﹣28,y+28【解析】(1)求小明的年龄,根据“爸爸的年龄﹣比小明大的岁数=小明的年龄”进行解答即可;(2)求爸爸的年龄,根据“小明的年龄+比小明大的年龄=爸爸的年龄”进行解答即可.解:(1)x﹣28;(2)y+28;故答案为:x﹣28,y+28.点评:解答此题的关键:把字母看作数,根据题意,找出数量间的关系,进而解答即可.49.小青买了3个练习本,每个a元,营业员找给他b元,小青交给营业员元.【答案】3a+b【解析】先根据“单价×数量=总价”求出小青买练习本的总价,进而根据“买练习本的总价+找给小青的钱数=小青给营业元的钱数”进行解答即可.解:a×3+b=3a+b(元),故答案为:3a+b.点评:解答此题的关键是,根据已知条件,把未知的数用字母正确的表示出来,再结合所求的问题,即可得出答案.50.一枝钢笔a元,一枝铅笔b元,a÷b表示的意思是.【答案】一枝钢笔的价钱是一枝铅笔的多少倍【解析】一枝钢笔a元,a表示钢笔的单价,一枝铅笔b元,b表示铅笔的单价,a÷b表示的意思是一枝钢笔的价钱是一枝铅笔的多少倍.解:一枝钢笔a元,一枝铅笔b元,a÷b表示的意思是一枝钢笔的价钱是一枝铅笔的多少倍;故答案为:一枝钢笔的价钱是一枝铅笔的多少倍.点评:关键是根据给出的式子,找出式子中的数表示的意义,再结合式子中的运算方法,确定式子表示的意义.51. a与b的和的4倍,用字母表示可以写成4a+b..【答案】×【解析】由题意得出;先计算a与b的和,再乘4,要想先算和再算积,必须在加法算式上加上括号;据此解答即可.解:a与b的和的4倍,用字母表示可以写成:(a+b)×4;所以用字母表示可以写成4a+b说法错误.故答案为:×.点评:解决本题的关键是先根据题意明确运算顺序,再列式解答.52. m+n+m+n+m+n可以简写成或.【答案】3(m+n),3m+3n【解析】m+n+m+n+m+n表示3个m与3个n相加的和是多少,所以列式为3(m+n)或3m+3n.解:m+n+m+n+m+n=3(m+n)=3m+3n.故答案为:3(m+n),3m+3n.点评:此题考查用字母表示数,根据题中的数量关系列式解答,注意字母与数相乘时要简写,即省略乘号,把数写在字母的前面.53.苹果每千克8.5元.小明用x元可以买千克;小红买y千克要用元.【答案】x;8.5y【解析】(1)根据总价÷单价=数量,把字母与数分别代入关系式,即可得出答案;(2)根据单价×数量=总价,把字母与数分别代入关系式,即可求出小红买y千克要用的钱数.解:(1)x÷8.5=x(千克),(2)8.5×y=8.5y(元),故答案为:x;8.5y.点评:解答此题的关键是把给出的字母当做已知数,再根据单价、数量与总价三者之间的数量关系解决问题.54.因为a×100=b÷0.01,所a=b..【答案】√【解析】b÷0.01=b÷=b×100,即a×100=b×100,根据等式的性质,两边同时除以100,即可得出a=b,据此即可判断.解:因为b÷0.01=b÷=b×100,故a×100=b×100,a×100÷100=b×100÷100,所以a=b,故答案为:√.点评:解答此题的关键是把b÷0.01利用分数的除法,变形为b×100,从而得出a×100=b×100.55.元旦期间,五星电器商场销售空调χ台,销售冰箱的台数比空调台数的2倍多7台,这个电器商场销售冰箱台.【答案】2χ+7【解析】由“销售冰箱的台数比空调台数的2倍多7台”,得出这个电器商场销售冰箱的台数=空调台数×2+7,而空调χ台,由此列出含字母的式子即可.解;这个电器商场销售冰箱的台数:χ×2+7=2χ+7(台).故答案为:2χ+7.点评:解题关键是根据已知条件,得出数量关系,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.56.甲数为x,乙数比甲数的2.5倍少7,则乙数可表示为.【答案】2.5x﹣7【解析】由“乙数比甲数的2.5倍少7,”得出乙数=甲数×2.5﹣7,由此求出乙数.解:2.5x﹣7;故答案为:2.5x﹣7.点评:关键是根据题意得出:乙数=甲数×2.5﹣7,由此列式解答即可.57. 3a=a3.【答案】×【解析】本题根据乘方的意义和乘法的意义求解.解:因为3a=a+a+a;a3=a×a×a;所以它们不相等;故答案为:×.点评:乘方表示几个相同因数积的运算,而乘法表示几个相同加数和的运算.58. a2=a×2.【答案】错误【解析】根据a2=a×a,据此判断即可.解:a2=a×a,所以a2≠a×2.故答案为:错误.点评:本题主要考查了有理数的平方的意义,即a n表示n个a相乘.59.幸福小学共有m名学生,其中男生230名,女生名.【答案】m﹣230【解析】由题意得出等量关系式:女生人数=学生总数﹣男生人数,代数即可.解:女生:m﹣230(名),答:女生有m﹣230名.故答案为:m﹣230.点评:解决本题的关键是找出数量关系式,代数计算.60.比x的8倍少2的数是8x﹣2.【答案】√【解析】先用含字母x的式子表示出x的8倍,进而表示出比它少8的数即可判断.解:x×8﹣2=8x﹣2.故判定为:√.点评:关键是把给出的字母当做已知数,再根据基本的数量关系解决问题;注意字母与数相乘时要简写,即省略乘号,把数写在字母的前面.61.小兰家养了a只黑兔,养的白兔比黑兔只数的3倍还多2只,一共养了只兔子.【答案】4a+2【解析】要想求一共养了多少只兔子,就必须知道黑、白两种兔子各多少只.已知黑兔为a只,再根据两种兔子只数的倍数关系,求出白兔的只数,列式解答即可.解:a+(3a+2),=a+3a+2,=4a+2(只);答:一共养了4a+2只兔子.故答案为:4a+2.点评:解答此题的关键:根据两种兔子只数的倍数关系,求出白兔的只数.62.水果店运来15筐橘子,每筐x千克,运来香蕉200千克.那么15x表示,200+15x表示.【答案】运来的橘子的重量;运来的橘子和香蕉的总重量【解析】(1)15x表示橘子的单价乘每筐橘子的重量计算出来是橘子的总重量;(2)200+15x表示运来的橘子和香蕉的总重量.据此解答即可.解:(1)15x表示运来的橘子的重量;(2)200+15x表示运来的橘子和香蕉的总重量.故答案为:运来的橘子的重量;运来的橘子和香蕉的总重量.点评:解决本题的关键是明确每个数字或字母表示的意义.63.大客车每小时行a千米,小汽车每小时比大客车多行15千米,a+15表示,大客车5小时行的千米数.【答案】小汽车的速度,5a【解析】(1)“a+15”表示小汽车每小时行的路程,即小汽车的速度,据此解答;(2)求大客车5小时行多少千米,根据:速度×时间=路程,解答即可.解:(1)a+15表示小汽车每小时行的路程,即小汽车的速度;(2)5a(千米),故答案为:小汽车的速度,5a.点评:此题考查了用字母表示数,根据速度、时间和路程三者之间的关系进行解答.64.小刚家去年每个季度平均用水X吨,小刚家去年共用水吨.【答案】4X【解析】一年有4个季度,用季度数乘每季度的用水量就是全年的用水量.解:1年=4季度;全年的用水量是:4×X=4X(吨);答:小刚家去年共用水4X吨.故答案为:4X.点评:用乘法表示出来要求的数,然后再根据数字与字母相乘的简写形式化简.65.若x与y都是正数,则2+x一定小于4+y..【答案】×【解析】本题可以通过取特殊值代入计算,从而作出判断.解:当x=5,y=1时,2+x=7,4+y=5,此时2+x>4+y.故若x与y都是正数,则2+x一定小于4+y的说法是错误的.故答案为:×.点评:考查了用字母表示数的比较大小,赋值法是解题的关键.66. M+1是偶数,写出后两个偶数是.【答案】M+3;M+5【解析】因为每相邻的两个偶数相差2,所以M+1.后面的偶数分别是M+1再加2、加4即可.解:M+1+2=M+3,M+1+4=M+5;故答案为:M+3;M+5.。

数学用字母表示数试题

数学用字母表示数试题

数学用字母表示数试题1.一辆汽车9小时行驶X 千米,这辆汽车的速度是()千米/时.A.9÷xB.x÷9C.9x【答案】B【解析】根据速度=路程÷时间,代数解答即可.解:汽车的速度为:x÷9(千米/时).答:这辆汽车的速度是x÷9千米/时.故选:B.点评:此题主要考查速度、时间、路程之间的关系.2.妈妈今年a岁,比明明大25岁,过c年后,他们相差()岁.A.25B.c C.c+25D.c﹣25【答案】A【解析】根据题意知道今年妈妈比明明大25岁,由于年龄差不随时间的变化而改变,所以过c年后,他们相差的岁数不变.解:因为年龄差不随时间的变化而改变,今年妈妈比明明大25岁,所以过c年后,他们相差的岁数仍然是25岁,故选:A.点评:根据年龄差不随时间的变化而改变是解答本题的关键.3.下列计算半圆面积的算式正确的是()A.πr2÷2B.πd÷2C.πr+2r D.2πr【答案】A【解析】圆的面积S=πr2,所以半圆的面积=πr2÷2,据此解答即可.解:半圆的面积=πr2÷2,故选:A.点评:此题主要考查圆的面积的计算方法的灵活应用.4.小明今年A岁,他爸爸今年B岁,再过15年,他们父子俩相差()A.15岁B.(B﹣A)岁C.(15+A)岁【答案】B【解析】根据年龄差不变,无论过多少年,他们都相差(B﹣A)岁.解:根据分析可知:他们相差(B﹣A)岁,故选:B.点评:此题根据年龄差不变的特点进行解答即可.5.如果最简分数是真分数,是假分数,那么X=()A.8B.10C.9【答案】C【解析】要使是真分数,X只能是1、2、3、4、5、6、7、8、9共9个整数,要使是假分数,则X为等于或大于9的任意一个整数;由此根据题意解答问题.解:要使是真分数,X小于或等于9;要使是假分数,则X为等于或大于9;所以X只能等于9.故选:C.点评:此题主要利用真分数与假分数的意义进行解答即可.6.甲数是a,比乙数的4倍多b,表示乙数的式子是()A.a÷4﹣bB.(a﹣b)÷4C.(a+b)÷4【答案】B【解析】先用“a﹣b”求出乙数的4倍是多少,进而根据已知一个数的几倍是多少,求这个数,用除法解答即可.解:依题意有(a﹣b)÷4.故选:B.点评:解答此题用到的知识点:已知一个数的几倍是多少,求这个数,用除法解答.7.妈妈今年a岁,明明今年(a﹣28)岁,10年后,妈妈和明明相差()岁.A.38B.28C.18D.8【答案】B【解析】用妈妈的年龄减去明明的年龄求出妈妈与明明今年相差的年龄;根据年龄差不变,妈妈与明明今年相差的年龄就是10年后妈妈和明明相差的年龄.解:a﹣(a﹣28),=a﹣a+28,=28(岁);答:妈妈和明明相差28岁.故选:B.点评:解答此题的关键是,根据年龄差不会随时间变化,所以求出今年的年龄差就是要求的答案.8.五年级(1)班新买了8枝,每枝x元.又买了b瓶,每瓶y元.(1)8x表示(2)(8+b)表示(3)by表示(4)8x+by表示(5)x﹣y表示.【答案】8枝钢笔的钱数;钢笔和墨水的数量; b瓶墨水的钱数;8枝钢笔和b瓶墨水一共的钱数;一枝钢笔比一瓶墨水多多少元【解析】(1)根据总价=单价×数量即可求解;(2)根据钢笔的数量+墨水的数量即可求解;(3)根据总价=单价×数量即可求解;(4)根据钢笔的钱数+墨水的钱数即可求解;(5)根据钢笔的单价﹣墨水的单价即可求解.解:(1)8x表示 8枝钢笔的钱数;(2)(8+b)表示钢笔和墨水的数量;(3)by表示 b瓶墨水的钱数;(4)8x+by表示 8枝钢笔和b瓶墨水一共的钱数;(5)x﹣y表示一枝钢笔比一瓶墨水多多少元.故答案为:8枝钢笔的钱数;钢笔和墨水的数量; b瓶墨水的钱数;8枝钢笔和b瓶墨水一共的钱数;一枝钢笔比一瓶墨水多多少元.点评:解决本题主要根据总价、单价和数量之间的关系.9. a×12= b×b= a×b= x×y×7=5×x= 2×c×c= 7x×5= 2×a×b=【答案】12a,b2,ab ,7xy,5x,2c2,35x,2ab【解析】本题根据用字母表示数的简写方法求解.解:a×12=12a b×b=b2 a×b=ab x×y×7=7xy5×x=5x 2×c×c=2c2 7x×5=35x 2×a×b=2ab点评:数字和字母相乘时,一般把数字放在前边,乘号省略;字母和字母相乘把乘号省略,如果因数相同可以写成乘方的形式.10.一本数学辞典售价b元,利润是成本的25%,如果把利润提高到35%,那么应提高售价元.【答案】【解析】一本数学辞典售价b元,利润是成本的25%,这里是吧成本价看做单位“1”,单位“1”不知道用除法教学就是,求出单位“1”在,再求出利润提高到35%的售价减去原来的售价b就是应提高的售价.解:b÷(1+25%)×(1+35%)﹣b,=b××﹣b,=b﹣b,=b(元);故答案为:.点评:本题是一道百分数实际应用题,考查了学生分析,解决实际问题的能力.11.一个圆的半径是a,半圆的面积是.【答案】1.57a2平方厘米【解析】半圆的面积=πr2÷2;由此代入数据即可解答.解:3.14×a2÷2=1.57a2(平方厘米),答:半圆的面积是1.57a2平方厘米.故答案为:1.57a2平方厘米.点评:此题考查半圆的面积的计算方法.12.某超市卖出360箱某种品牌饮料,共收货款a元,这种饮料每箱元.【答案】a÷360【解析】求这种饮料每箱多少元,根据:单价=总价÷数量,进行解答即可.解:a÷360(元);答:这种饮料每箱a÷360元;故答案为:a÷360.点评:明确总价、数量和单价三者之间的关系,是解答此题的关键.13. 18比x的3倍多8,列方程式18+3x=8..【答案】错误【解析】根据题意,先根据求一个数的几倍,用乘法求出x的3倍,然后加上8等于18列出式子;据此判断即可.解:由题意得出:3x+8=18,故答案为:错误点评:解答此题的关键:根据题意,列出式子,然后判断即可;用到的知识点:求一个数的几倍,用乘法解答.14.学校体育组买了4只篮球,每只X元,付给营业员250元,4x表示,200﹣4x表示.【答案】买4只篮球的总价,还剩的钱数【解析】根据题意,可知4x表示买4只篮球的总价;200﹣4x表示还剩的钱数.解:4x表示买4只篮球的总价;200﹣4x表示还剩的钱数.故答案为:买4只篮球的总价,还剩的钱数.点评:此题考查根据给出的含字母的式子,说出式子表示的意义,根据题意解答即可.15. x的3倍的一半写成式子是3x÷2..【答案】√【解析】求x的3倍的一半,先用x乘3求得x的3倍,再除以2或乘,即可求出x的3倍的一半.解:x的3倍的一半写成式子是3x÷2或3x×;故判定为:√.点评:理解求一个数的一半就是把这个数平均分成2份,求其中的一份是多少;也可以根据分数乘法的意义,就是求这个数的是多少.16.小明买了α枝钢笔和b枝圆珠笔,圆珠笔每枝2.5元,钢笔每枝8.7元,小明一共花了元.【答案】8.7a+2.5b【解析】买钢笔a枝钢笔和圆珠笔b枝,钢笔每枝8.7元,圆珠笔每枝2.5元,用每枝圆珠笔和每枝钢笔的价格和数量相乘即可求出一共用了多少钱.解:8.7a+2.5b,答:小明一共花了8.7a+2.5b元.故答案为:8.7a+2.5b.点评:此题考查了用字母表示数的方法,根据单价×数量=总价即可解答.17.省略下面乘号2.3×a=;a×b=;b×v×2=;x×x=.【答案】2.3a,ab,2bv,x2【解析】字母和字母相乘时,中间的乘号可以省略;当字母和数相乘时,省略乘号,数要写在字母的前面;当两个相同的字母相乘时,可以写成平方的形式.解:2.3×a=2.3a;a×b=ab;b×v×2=2bv;x×x=x2.故答案为:2.3a,ab,2bv,x2.点评:本题主要考查了字母与字母相乘及字母和数相乘时的简便写法.18.小东走了3小时共走了S千米,他平均每小时走千米;他用a元钱买了5本科技书,每本科技书元.【答案】【解析】(1)根据速度=路程÷时间,代入字母表示即可;(2)根据单价=总价÷数量,代入字母表示即可.解:(1)他平均每小时走:s÷3=(千米);(2)每本科技书价格为:a÷5=(元).故答案为:.点评:解答此题的关键是,根据已知条件,写出等量关系式,再用字母表示计算,即可解决.19.字母式a×6省略乘号后表示为a6..【答案】×【解析】字母与数字相乘时,可以把乘号省略,要把数字放在前面,字母放在后面,据此即可判断.解:根据题干分析可得:字母式a×6省略乘号后表示为6a,原题说法错误.故答案为:×.点评:此题主要考查字母表示数在乘法算式里中的简便写法.20.两个数相乘,交换因数的位置,不变,这叫做,用字母表示为.【答案】它们的积不变,乘法交换律,a×b=b×a【解析】根据乘法交换律的意义:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法交换律.用字母表示为:a×b=b×a.解:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法交换律.用字母表示为:a×b=b×a.故答案为:它们的积不变,乘法交换律,a×b=b×a.点评:此题考查的目的是理解掌握乘法交换律的意义,并会用字母表示乘法交换律.21.因为2+2=4,2×2=4,所以a×a=a+a..【答案】错误【解析】因为a+a表示2个a相加的和是多少,a×a表示两个a相乘的积是多少;进而进行判断即可.解:因为2+2=4,2×2=4,所以a×a=a+a,说法错误;故答案为:错误.点评:本题主要考查a2与2a表示的意义.22.爸爸比小明大28岁.若用x表示爸爸的年龄,小明的年龄是岁;如果小明的年龄用y表示,则爸爸的年龄是岁.【答案】x﹣28,y+28【解析】(1)求小明的年龄,根据“爸爸的年龄﹣比小明大的岁数=小明的年龄”进行解答即可;(2)求爸爸的年龄,根据“小明的年龄+比小明大的年龄=爸爸的年龄”进行解答即可.解:(1)x﹣28;(2)y+28;故答案为:x﹣28,y+28.点评:解答此题的关键:把字母看作数,根据题意,找出数量间的关系,进而解答即可.23.鸡,兔共30只,如果鸡有a只,那么有只兔脚.【答案】120﹣4a【解析】因为有a只鸡,所以兔有:30﹣a只,每只兔有4只脚,则一共有:(30﹣a)×4,计算即可.解:由分析得出:兔脚一共有:(30﹣a)×4=120﹣4a(只).答:有120﹣4a只兔脚.故答案为:120﹣4a.点评:解决本题的关键是根据鸡的只数计算出兔的只数,再乘4即可.24.如果用字母a表示一个偶数,那么和它相邻的两个偶数分别是和.【答案】a+2;a﹣2【解析】因为相邻的偶数相差2,所以和a相邻的两个偶数分别是a+2和a﹣2,据此解答即可.解:由题意得:和a相邻的两个偶数分别是a+2和a﹣2.故答案为:a+2;a﹣2.点评:解答此题的关键是,相邻的偶数相差2,把未知的数用字母正确的表示出来,再结合所求的问题,即可得出答案.25. x的7.5倍与它的4.5倍的和是,差是.【答案】12x;3x【解析】先表示x的7.5倍是7.5x,它的4.5倍是4.x,再加起来即可求出和,相减即可求出差.解:根据题干分析可得:7.5x+4.5x=12x,7.5x﹣4.5x=3x,答:和是12x,差是3x.故答案为:12x;3x.点评:解答此题的关键是弄清数量间的关系,然后用字母表示数,进行解答即可.26.一条路长a米,小雪每分钟走x米,走了6分钟后,还剩米.【答案】a﹣6x【解析】要求还剩的米数,需先求出走了的米数,再用总米数﹣走了的米数=还剩的米数,列出含字母的式子即可.解:走了的米数:x×6=6x米,还剩的米数:a﹣6x米.故答案为:a﹣6x.点评:这类用字母表示数的题目,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.27.每个练习本x元,4个练习本元,小红拿20元买这些练习本,可以找回元.【答案】4x,20﹣4x【解析】(1)用单价×数量即可求出练习本的总价;(2)用带的钱数减去花的钱数就是剩下的钱数;据此列式解答即可.解:(1)x×4=4x(元);答:4个练习本4x元.(2)20﹣4×x=20﹣4x(元);答:可以找回20﹣4x元.故答案为:4x,20﹣4x.点评:解决本题主要依据单价、数量和总价之间的关系.28.李老师为学校买来了3个篮球和4个足球,篮球每个a元,足球每个b元.他付给营业员500元,李老师花了元.【答案】3a+4b【解析】根据单价×数量=总价,分别求出3个篮球和4个足球的钱数,再求出总价钱即可.解:3a+4b(元),答:李老师花了3a+4b元;故答案为:3a+4b.点评:得到共需钱数的等量关系是解决问题的关键;用到的知识点为:总价=单价×数量.29. a与b的和的4倍,用含有字母的式子表示为.【答案】4(a+b)【解析】由题意得先用加法计算出a与b的和,再乘4即可解答.解:a与b的和的4倍,用含有字母的式子表示为:(a+b)×4=4(a+b)故答案为:4(a+b).点评:解答此题的关键是,把给出的字母当做已知数,利用基本的数量关系解答.30.用字母表示出乘法交换律=.【答案】a×b,b×a【解析】根据乘法交换律的含义:两个数相乘,交换因数的位置,它们的积不变;进行解答即可.解:a×b=b×a,故答案为:a×b,b×a.点评:根据乘法交换律的含义进行解答即可.31.商店运来苹果X千克,运来的梨是苹果的1.8倍,运来的梨千克.运来的梨比苹果多千克.【答案】1.8x,0.8x【解析】根据运来的梨的质量=苹果的质量×1.8,运来的梨比苹果多的质量=运来的梨的质量﹣苹果的质量,列式计算即可.解:运来的梨1.8x千克,运来的梨比苹果多1.8x﹣x=0.8x(千克);答:运来的梨1.8x千克.运来的梨比苹果多0.8x千克.故答案为:1.8x,0.8x.点评:考查了用字母表示数,本题的关键是得到运来的梨与苹果之间的关系.32.甲数为x,乙数比甲数的2.5倍少7,则乙数可表示为.【答案】2.5x﹣7【解析】由“乙数比甲数的2.5倍少7,”得出乙数=甲数×2.5﹣7,由此求出乙数.解:2.5x﹣7;故答案为:2.5x﹣7.点评:关键是根据题意得出:乙数=甲数×2.5﹣7,由此列式解答即可.33.小巧有n个苹果,如果将小巧的苹果数增加2倍就是小亚的苹果数,小亚有个苹果.【答案】3n【解析】由题意可知,小亚的苹果数等于小巧的苹果数加上小巧增加的苹果数.因为小巧的苹果数为n,所以小巧的苹果数增加2倍就是增加了2n,由此可以计算小亚的苹果数.解:根据题意可知:小巧的苹果数是n个,小巧增加的苹果数是2n个,所以小亚的苹果数为:n+2n=3n(个);答:小亚有3n个苹果.故答案为:3n.点评:本题考查了用字母表示数,正确理解问题中的数量关系是解题的关键.34.某小学原有学生1560人,今年毕业了350人,又招收一年级新生a人,现有学生人.【答案】1210+a【解析】先根据剩余人数=总人数﹣毕业人数,求出毕业350人后剩余的人数,再加招收的新生人数即可解答.解:1560﹣350+a,=1210+a(人),答:现有1210+a人,故答案为:1210+a.点评:求出毕业350人后剩余的人数,是解答本题的关键.35. a÷b=.【答案】正确【解析】除法与分数之间是除号相当于分数线,除法中的被除数相当于分数的分子,除法中的除数相当于分数的分母,由此做出判断.解:因为除法与分数之间是除号相当于分数线,除法中的被除数相当于分数的分子,除法中的除数相当于分数的分母;所以a÷b=;故判断:正确.点评:本题主要考查了除法与分数之间的关系.36.小兰家养了a只黑兔,养的白兔比黑兔只数的3倍还多2只,一共养了只兔子.【答案】4a+2【解析】要想求一共养了多少只兔子,就必须知道黑、白两种兔子各多少只.已知黑兔为a只,再根据两种兔子只数的倍数关系,求出白兔的只数,列式解答即可.解:a+(3a+2),=a+3a+2,=4a+2(只);答:一共养了4a+2只兔子.故答案为:4a+2.点评:解答此题的关键:根据两种兔子只数的倍数关系,求出白兔的只数.37.每千克西红柿a元,8千克西红柿元.【答案】8a【解析】根据关系式:单价×数量=总价,本题中用西红柿的单价a乘数量8千克即可求解.解:8×a=8a(元);故答案为:8a.点评:此题考查了用字母表示数,要理解题意认真解答,掌握解答此类题目的基本方法.38.用含有字母的式子表示下面的数量关系.(1)30与2个a的和(2)两个b的积的一半(3)比x的5倍少9的数(4)x与12的差的5倍(5)m除15与n的和(6)a和b的和乘它的差.【答案】30+2a,b2,5x﹣9,5x﹣60,(15+n)÷m,a2﹣b2【解析】(1)2个a是2×a,再和30相加即可;(2)两个b的积即两个b相乘,再除以2即可;(3)用x×5再减去9,就是要求的答案;(4)先求x与12的差,再乘5,即可;(5)先求15与n的和,再用和除以m即可;(6)先求a与b的和,再求a与b的差,最后将和与差相乘即可.解:(1)30+2×a=30+2a,(2)b×b÷2,=b2,(3)x×5﹣9,=5x﹣9,(4)(x﹣12)×5,=5x﹣12×5,=5x﹣60,(5)(15+n)÷m,(6)(a+b)×(a﹣b),=a×a﹣a×b+a×b﹣b×b,=a2﹣b2,故答案为:30+2a,b2,5x﹣9,5x﹣60,(15+n)÷m,a2﹣b2.点评:解答此题的关键是,根据各个题的特点,把给出的字母当做已知数,再根据基本的数量关系解答.39.边长为b厘米的正方形,它的周长是厘米,面积是厘米.【答案】4b;b2【解析】正方形的周长=边长×4,面积=边长×边长,据此即可解答.解:正方形的周长是b×4=4b(厘米);面积是:b×b=b2(平方厘米),故答案为:4b;b2.点评:此题主要考查正方形的周长和面积公式的计算应用.40. A+A+A+A可以简写成.B×B可以简写成.【答案】4A,B2【解析】4个相同的加数的和还可以写成这个数的4倍,即4A,两个相同因数的乘积是这个数的平方,即B2;解:A+A+A+A可以简写成4A.B×B可以简写成B2.故答案为:4A,B2.点评:解决本题的关键是明确字母表示数的简便方法.41.黑兔只数白兔只数不但可以表示白兔的只数,还可以表示.【答案】白兔是黑兔的3倍【解析】因为3a=3×a,而a是黑兔的只数,所以3a还可以表示白兔是黑兔的3倍.解:因为3a=3×a,而a是黑兔的只数,所以3a还可以表示白兔是黑兔的3倍,故答案为:白兔是黑兔的3倍.点评:本题主要是考查了乘法的意义与式子中字母的意义.42.三个连续的自然数,中间的数是b,则相邻的两个数分别是.【答案】b﹣1,b+1【解析】分析题意可以知道这三个自然数是连续的,而每相邻的两个自然数之间相差1,因此,前一个数就比中间的数少1,后一个就比中间的数多1,明白这些后进一步用算式算出即可.解:因为这三个自然数是连续的,中间的一个是b,所以和它相邻的前一个是b﹣1,后一个是b+1.故答案为:b﹣1,b+1.点评:做这道题的关键是明确每相邻的两个自然数之间相差1.43.商场有电风扇t台,每台进价为80元,售价105元,全部售出.请用含有字母的式子表示商场获得的利润:元.【答案】25t【解析】先求出售出一台获得利润的钱数,进而根据求几个相同加数的和是多少,用乘法解答即可.解:(105﹣80)t=25t(元);答:商场获得的利润是25t元;故答案为:25t.点评:解答此题还可以先求出总售价和总进价,进而用总售价减去总进价即可求出商场获得的利润.44.学校买了12篮球,每个a元,买了b个排球,每个30元.买篮球元,12a+30b表示.【答案】12a,买篮球和足球一共花了多少元【解析】(1)求买篮球的总价,根据:单价×数量=总价,解答即可;(2)12a+30b表示买篮球和足球一共花了多少元;据此解答.解:买了12篮球,每个a元,买了b个排球,每个30元.买篮球12a元,12a+30b表示买篮球和足球一共花了多少元;故答案为:12a,买篮球和足球一共花了多少元.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,根据数量关系,把未知的数用字母正确的表示出来.45.妈妈买来a千克大米,吃了6天,还剩下b千克,平均每天吃千克.【答案】(a﹣b)÷6【解析】由题意,用妈妈买来大米的总量减去剩下的大米数量就是6天吃的大米的数量,再除以6即可求得平均每天吃多少千克.解:6天吃的大米的数量a﹣b千克,平均每天吃(a﹣b)÷6千克.答:平均每天吃(a﹣b)÷6千克.点评:解决此题的关键是找到关系式:买来大米的总量﹣剩下的数量=用的数量.46.把5吨白糖平均分装在m只袋子里,每袋重吨,每袋占总量的.【答案】,【解析】(1)根据除法的意义,用总重量除以分的份数就是平均每袋的重量;(2)把白糖的总重量看作单位“1”,根据分数的意义求出每份是总数量的几分之几.解:(1)把5吨白糖平均分装在m只袋子里,每袋重:5÷m=(吨),(2)把5吨白糖平均分装在m只袋子里,每袋占总量的:1÷m=,答:每袋重吨,每袋占总量的;故答案为:,.点评:本题重在区分每份占总数的几分之几和每份的重量是多少,做到正确区分,选择合适的解题方法.47.(2007•盱眙县模拟)已知是假分数,是真分数,x可取和.【答案】5,6【解析】根据假分数、真分数的意义解答,假分数是分子大于或等于分母的分数,真分数是分子小于分母的分数.解:是假分数则x为大于等于5的数,为真分数则x为小于7的数,大于等于5而小于7的数有5,6,所以x为5,6;故答案为:5,6.点评:本题主要考查假分数和真分数的意义.48.(2011•北海模拟)一本《哈利•波特》共a页,小明已经看了的页数是余下的4倍,已经看了页,还剩页.【答案】a,a【解析】将《哈利•波特》的页数看作“单位1”,得到已经看了的页数和还剩的页数的分率,再根据分数乘法的意义即可求解.解:已经看了的页数为:a×=a(页);还剩的页数为:a×=a(页);答:已经看了a页,还剩a页.故答案为:a,a.点评:考查了用字母表示数和分数乘法的意义,得到已经看了的和还剩的页数占总页数的分率是解题的关键.49.(2011•合川区模拟)a﹣b﹣c=a﹣(b+c).【答案】正确【解析】根据减法的性质:从一个数里连续减去两个数,可以减去这两个数的和,也可以先减去第二个数,再减去第三个数;用字母表示为:a﹣b﹣c=a﹣(b+c)=a﹣c﹣b;进而判断即可.解:根据减法的性质可知:a﹣b﹣c=a﹣(b+c);故答案为:正确.点评:此题考查了减法的性质.50.(2011•济源模拟)三个连续的偶数,中间一个是m,前面一个是,后面一个是.【答案】m﹣2,m+2【解析】由所给条件可知:m是三个连续偶数中间的一个数,根据相邻的偶数相差2可知:m前面的数可用字母表示为:m﹣2,m后面的数就是:m+2.解:由题意可知:m是三个连续偶数中间的一个数,因为相邻的偶数相差2,所以:m前面的数可用字母表示为:m﹣2;m后面的数就是:m+2;故答案为:m﹣2,m+2.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.51.若n表示一个三位数,若将两个1分别放在n的左、右两边,则得到的新的五位数可以表示为.【答案】10001+10n【解析】因为n表示一个三位数,所以最高位是百位,如果把两个1分别放在n的左、右两边,得到新的五位数最高位为万位,此数位上的数字是1,个位上的数字也是1,所以新的五位数可以表示为10001+10n.解:由分析得出:新的五位数可以表示为10001+10n;故答案为:10001+10n.点评:主要考查了五位数的表示方法,该题的易错点是把两个1直接放在三位数n的两边,搞不清他们之间的关系,把1放在n的右边相当于n扩大了10倍,把1放在n的左边,说明个位上的数字也是1,所以可求出该五位数为10001+10n.52.某小学在“向四川地震灾区献爱心”活动中,低年级同学捐款a元,比高年级捐款的3倍少b 元.高年级捐款数用式子表示是.【答案】(a+b)【解析】本题是一个用字母表示数的题,根据低年级比高年级捐款的3倍少b元,可知高年级捐款的3倍比低年级多b元,先求出高年级捐款的3倍,进一步求出高年级捐款数.解:高年级捐款数:(a+b)÷3=(a+b).故答案为:(a+b).点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.53.甲比乙的3倍多m,甲为n,乙为.【答案】(n﹣m)÷3【解析】根据“甲数是n,比乙数的3倍多m,”知道甲数=乙数×3+m,由此用甲数减m再除以3就是乙数.解:(n﹣m)÷3;故乙数为:(n﹣m)÷3.点评:此题属于典型的两步逆算的题目,解答时注意根据数量关系,列式解答.54.一根a米长的铁丝,如果用去米,还剩米;如果用去这根铁丝的,还剩米.【答案】a﹣;a【解析】(1)是具体的米数,从a米里去掉米就是剩下的米数;(2)的单位“1”是这根铁丝的总长度,用去这根铁丝的,剩下这根铁丝的(1﹣),由此根据分数乘法的意义,列式解决问题.解:(1)a﹣(米);答:还剩a﹣米;(2)a×(1﹣),=a×,=a(米),答:还剩a米;故答案为:a﹣;a.点评:解答此题的关键是,弄清两个的意义不同,再把所给出的字母当做已知数,根据基本的数量关系解决问题.55.李老师买篮球和排球各20个,篮球每个a元,排球每个b元.李老师买篮球用了元;20a﹣20b表示.【答案】20a,买篮球比买排球多花多少元【解析】分析“李老师买篮球和排球各20个”这个条件可知,买篮球20个,买排球20个,又知道篮球每个a元,排球每个b元,根据这些就能算出买篮球和排球各花多少钱,进而可知20a﹣20b表示的意义.解:因为李老师买篮球和排球各20个,篮球每个a元,排球每个b元.所以,买篮球用的钱数是:a×20=20a买排球用的钱数是:b×20=20b则:20a﹣20b表示买篮球比买排球多花多少元.故填20a,买篮球比买排球多花多少元.点评:做对这道题的关键是会运用“总价=单价×数量”这个等量关系式.56.一张桌子的价格是a元,一把椅子的价格是b元,买20套桌椅应付多少元?()A.20a+20bB.20a+bC.20+a+b【答案】A【解析】用单价×数量分别求出桌子和椅子的总价,再相加即可.解:买20套桌椅应付:20×a+20×b=20a+20b(元).答:买20套桌椅应付20a+20b元.故选:A.点评:解决本题的关键是灵活利用单价、数量和总价之间的关系解决实际问题.57. a除150的商再减去20的差,列式为()A.a÷150﹣20B.150÷a﹣20C.a÷(150﹣20)D.150÷(a﹣20)【答案】B【解析】先求出a除150的商,即150÷a,再减去20,就是要求的答案.解:150÷a﹣20,故选:B.点评:解答此题的关键是,搞清楚除和除以的不同,再根据基本的数量关系,列式解答即可.58.小明把5X﹣8错写成5(X﹣8),结果比原来()A.多8B.少8C.少40D.少32【答案】D【解析】把5(X﹣8),用乘法的分配律将此式化简,即5(X﹣8)=5X﹣40,由此即可得出答案.解:因为5(X﹣8)=5X﹣40,所以5X﹣40比5X﹣8多减去了32,所以5X﹣40比5X﹣8少32;故选:D.点评:此题主要考查了乘法的分配律a(b+c)=ab+ac的实际应用.59.比X多12,再扩大4倍是多少?用式子表示是()A.X+12×4B.(X+12)×4C.4X+12【答案】B【解析】本题是一个用字母表示数的题.先用含字母的式子表示出比X多12的数是多少,进而表示出此数的4倍是多少.注意:列综合算式时加法先算要加上括号.解:比X多12,再扩大4倍是多少?用式子表示是:(X+12)×4.故选:B.点评:解决此题关键是先用含字母的式子表示出比X多12的数,进而表示出它的4倍即可.60.欣欣家里养了a只黑兔,养的白兔只数比黑兔的4倍少3只,表示白兔只数正确的算式是()A.4a+3B.(4+3)a C.4a﹣3D.(4﹣3)a【答案】C【解析】根据“养了a只黑兔,养的白兔只数比黑兔的4倍少3只”知,白兔的只数=黑兔的只数×4﹣3,依此即可列出算式.解:由题意可得:。

数学用字母表示数试题答案及解析

数学用字母表示数试题答案及解析

数学用字母表示数试题答案及解析1.一个三位数的百位是4,十位上是A,个位上是6.式子()可以表示这个三位数.A.4+A+6B.400+A+6C.400+10A+6D.400A+6【答案】C【解析】百位上的数字乘100,10位上的数字乘10,个位上数字乘1,然后把得到的数加起来,即为所表示的是三位数.解:因为一个三位数的百位是4,十位上是A,个位上是6;所以这个三位数为:100×4+10A+6×1,=400+10A+6.故选:C.点评:关键是明白百位上的数是几表示几个百,十位上的数是几表示几个十,个位上的数是几表示几个一.2.一辆汽车9小时行驶X 千米,这辆汽车的速度是()千米/时.A.9÷xB.x÷9C.9x【答案】B【解析】根据速度=路程÷时间,代数解答即可.解:汽车的速度为:x÷9(千米/时).答:这辆汽车的速度是x÷9千米/时.故选:B.点评:此题主要考查速度、时间、路程之间的关系.3.小强有m元钱,买同样的3本书后还剩n元,每本书的单价是()元.A.m÷3B.m﹣n÷3C.(m﹣n)÷3【答案】C【解析】先用总钱数减去剩的钱数,求出买3本书共花了多少钱,然后用花的钱数除以3就是每本书的单价.解:每本书的单价可以表示为:(m﹣n)÷3;故选:C.点评:解答此题的关键是,根据已知条件,找出数量关系,把未知的数用字母正确的列式表示出来.4.在a÷0.1,a×0.1,a×2.5,a÷2.5四个算式中(a均不为0),得数最大的一个算式是()A.a÷0.1B.a×0.1C.a×2.5D.a÷2.5【答案】C【解析】分别求出四个选项中算式的值,比较大小解答.解:A、a÷0.1=10a,B、a×0.1=0.1a,C、a×2.5=2.5a,D、a÷2.5=0.4a,故选:C.点评:此题除了计算数值比较外,还可以用商的变化规律以及积的变化规律解答.5.小明今年b﹣1 岁,明年()岁.A.b+1B.bC.b+2【答案】B【解析】根据常识,明年比今年增长1岁,即:b﹣1+1;据此解答即可.解:明年:b﹣1+1=b﹣(1﹣1)=b(岁).答:明年b岁.故选:B.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.6.小明买了6斤苹果,每斤a元,口袋里还剩b元.小明原有()元.A.6a+bB.6a﹣bC.b﹣6a【答案】A【解析】先根据“单价×数量=总价”求出小明买苹果的总花费,然后加上剩下的钱数即可.解:6a+b(元);故选:A.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.7.(2012•华亭县模拟)一个数被a除,商6余5,这个数是()A.(a﹣5 )÷6B.6a+5C.6a﹣5D.(a+5)÷6【答案】B【解析】由题意得:一个数被a除,就是a除一个数,即一个数除以a,所以一个数÷a=商…余数,得出:一个数=a×商+余数,代入字母计算即可.解:由题意得:这个数为:6a+5.故选:B.点评:解答此题的关键是,根据已知条件,把未知的数用字母正确的表示出来,再结合所求的问题,即可得出答案.解决此类题目时,注意“除”和“除以”的区别.8.一种电器,进价a元,提高20%定零售价,进入淡季后又降价1/5,降价后的价格与价格比()A.相等B.降低了C.提高了【答案】B【解析】将原价当作单位“1”,则提高20%后的零售价是原价的1+20%,又降价,则降价后的价格是降价前的1﹣,即是原价的(1+20%)×(1﹣).解:a(1+20%)×(1﹣)=a120%×,=96%a.即现价是原价的96%,比原价降低了.故选:B.点评:完成本题要注意前后两个分率的单位“1”是不同的.9.(2012•中山模拟)已知浓度为24%的盐水m公斤,则式子m﹣24%×m表示的是()A.盐水的重量B.m公斤盐水中含纯水的重量C.m公斤盐水中纯盐的重量D.m公斤盐水与其中纯水重量的差【答案】B【解析】根据浓度为24%的盐水m公斤,24%×m表示m公斤盐水中纯盐的重量,则m﹣24%×m表示的是m公斤盐水中纯水的重量.解:24%×m表示m公斤盐水中纯盐的重量,则m﹣24%×m表示的是m公斤盐水中纯水的重量;故选:B.点评:关键是理解式子表示从m公斤盐水里减去纯盐的重量,就是纯水的重量.10.甲、乙分别从A、B两地同时相向出发.相遇时,甲、乙行的路程比是a:b.从相遇起,甲到达B地与乙到达A地所用的时间比是()A.a:bB.b:aC.a2:b2D.b2:a2【答案】D【解析】假设他们相遇的时候的时间是h,AB两地总距离:(a+b)h.甲乙所行的路程比等于速度比是a:b,就是甲行了ah,乙行了bh,接下来,甲要走乙已走的路程,乙要走甲已走的路程,甲用的时间:,乙用的时间:,进而根据题意,进行比即可.解:假设他们相遇的时候的时间是h,AB两地总距离:(a+b)h.甲乙所行的路程比等于速度比是a:b,就是甲行了ah,乙行了bh,:,=(×ab):(×ab),=b2h:a2h,=b2:a2;故选:D.点评:解答此题的关键:理解相遇时,甲乙所行路程的比,即速度比;明确相遇后甲要走乙已走的路程,乙要走甲已走的路程;用到的知识点:路程、速度和时间三者之间的关系.11.前山小学前年植树a棵,去年比前年多植90棵,今年植树棵数是去年的2倍.表示今年植树棵数的式子是()A.2a+90B.a+90×2C.(a﹣90)×2D.(a+90)×2 ⑤2a ﹣90【答案】D【解析】要求今年植树棵数,必须先求去年植树棵数,去年植树棵数=前年植树棵数+90,则今年植树棵数=去年植树棵数×2,即:(a+90)×2.解:今年植树棵数:(a+90×2).故选:D.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.12.用含有字母的式子表示:a的平方的2倍与b的2倍的平方的和,答案是()A.(2a)2+(2b)2B.2a+2b C.(2a+2b)2D.2a2+(2b)2【答案】D【解析】a的平方的2倍,即a2×2=2a2,b的2倍的平方,即(2b)2,然后相加即可.解:a2×2+(b×2)2,=2a2+(2b)2,故选:D.点评:解答此题的关键:根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可.13.(2012•滁州模拟)甲数为x,乙数是甲数的3倍多6,求乙数的算式是()A.x÷3+6B.(x+6)÷3C.(x﹣6)÷3D.3 x+6【答案】D【解析】由题意得:乙数=甲数×3+6,代数计算即可.解:乙数为:3x+6.故选:D.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.14.若两个相同的自然数的和与积相等,求这个自然数.【答案】0或2【解析】可以设这个自然数为a,由题意列出等式a+a=a×a,解答即可.解:设这个自然数为a,由题意得:a+a=a×a,a×a﹣2a=0,a×(a﹣2)=0,a=0或a=2;答:这个自然数为0或2.点评:此题重点考查学生对自然数的认识,特别应注意0也是自然数.15.明明和娟娟同时从自家走向学校(如下图),明明每分走a米,娟娟每分走b米,经过4分,他们在校门口相遇.(1)相遇时,明明、娟娟各走了多少米?(2)明明和娟娟每分一共走了多少米?(3)他们两家相距多少米?【答案】(1)明明:4a米,娟娟:4b米;(2)(a+b)米;(3)(4a+4b)米【解析】明明行驶的路程,用明明的速度乘以相遇的时间即可,娟娟行驶的路程用乙的速度乘以娟娟行驶的时间即可,他们两家相距的总路程就用明明行驶的路程就是娟娟行驶的路程即可.解:(1)相遇时,明明走的路程:4a米;娟娟走了:4b米.(2)明明和娟娟每分一共走的路程:(a+b)米;答:明明和娟娟每分一共走了(a+b)米.(3)他们两家相距的路程:(4a+4b)米;答:他们两家相距(4a+4b)米.故答案为:4a,4b,(a+b),(4a+4b).点评:本题运用速度,时间,路程之间的数量关系进行解答即可.16. x3表示x+x+x..【答案】错误【解析】根据乘方的意义可知:x3表示3个x的连乘积的形式;而x+x+x表示3个x的和,写成乘法算式是3x,由此即可判断.解:x3表示3个x的连乘积的形式;而x+x+x表示3个x的和,写成乘法算式是3x,所以原题说法错误.故答案为:错误.点评:此题考查乘法的意义与乘方的意义.17.王老师共买 a 本数学书,每本3.5元,共要花费元,他付给营业员50元,需找回.【答案】3.5a;50﹣3.5a元【解析】(1)要求共花费的钱数,也就是a个3.5元是多少,由此用乘法列式解答即可;(2)从付给营业员的钱数里面去掉共要花费的钱数,就是需要找回的钱数.解:(1)3.5×a=3.5a(元);(2)50﹣3.5×a=50﹣3.5a(元);故答案为:3.5a;50﹣3.5a元.点评:把所给出的字母当做已知数,再根据基本的数量关系解决问题.18. a2=a+a..【答案】错误【解析】因为a+a=2a;而根据乘方的意义可得:a2=a×a;进而得出结论进行判断.解:因为a+a=2a;a2=a×a;所以a2=a+a,说法错误;故答案为:错误.点评:解答此题应注意区别2a与a2的意义的不同.19.小明有a支铅笔,小亮比小明多5支,小亮有支铅笔,两人一共有支铅笔.【答案】a+5,2a+5【解析】根据“小亮比小明多5支”,得出小亮铅笔的支数=小明铅笔的支数+5,而小明有a支铅笔,由此求出小亮铅笔的支数,进而求出两人一共有铅笔的支数.解:a+5(支),a+5+a=2a+5(支),答:小亮有a+5支铅笔,两人一共有2a+5支铅笔;故答案为:a+5,2a+5.点评:关键是根据题意得出数量关系:小亮铅笔的支数=小明铅笔的支数+5,由此解决问题.20.一只长颈鹿约高3.8米,一头大象约高b米,长颈鹿的高度是大象的倍.【答案】3.8÷b【解析】要求长颈鹿的高度是大象的多少倍,就是求3.8里面有多少个b,用除法计算即可.解:3.8÷b,答:长颈鹿的高度是大象的3.8÷b倍,故答案为:3.8÷b.点评:此题考查了“求一个数是另一个数的几倍,用除法解答”.21.张老师带100元,买字典用去a元,剩下元.【答案】100﹣a【解析】求剩下多少元,根据:剩下的钱数=总钱数﹣买字典用去的钱数,据此解答即可.解:100﹣a(元);答:剩下100﹣a元;故答案为:100﹣a.点评:明确总钱数、用去的钱数、剩下的钱数三者之间的关系,是解答此题的关键.22.学校买来a个足球,每个b元;又买来8个篮球,每个120元.ab表示;ab+8×120表示.【答案】a个足球的价钱;a个足球和8个篮球一共的价钱【解析】根据单价×数量=总价,可知ab,ab+8×120表示的意义.解:ab表示a个足球的价钱,8×120表示8个篮球的价钱,ab+8×120表示a个足球和8个篮球一共的价钱.故答案为:a个足球的价钱;a个足球和8个篮球一共的价钱.点评:考查了用字母表示数.本题关键是熟悉单价,数量和总价之间的关系.23.某公司有职员120人,男职员有(120﹣a)人,这里的a表示.【答案】女职工人数【解析】因为120是公司总人数,公司总人数﹣女职工人数=男职工人数,男职工人数为(120﹣a)人,则女职工人数则为a人;据此解答.解:某公司有职员120人,男职员有(120﹣a)人,这里的a表示女职工人数;故答案为:女职工人数.点评:明确女职工人数、男职工人数和公司总人数三者之间的关系,是解答此题的关键.24. b×b=2b.(判断对错)【答案】×【解析】b×b表示两个b相乘,可以写成b2;而2b表示两个b相加;所以它们不一定相等,故判定为错误.解:b×b表示两个b相乘,而2b表示两个b相加;所以它们的意义不同,据此可知它们也不一定相等;故答案为:×.点评:此题考查两个相同的数相乘和两个相同的数相加的意义,两个相同的数相乘写成这个数的平方;而两个相同的数相加写成这个数的2倍.25.在里填上适当的数.(1)比X的3倍少y的数(2)M比N的一半多多少(3)A与d的和的一半是多少(4)C与d的和减去它们的差.【答案】(1)3x﹣y;(2)M﹣N;(3)(A+d);(4)2d【解析】(1)先求出x的3倍是3x,再减y即可;(2)N的一半是N,M比N的一半多M﹣N;(3)先求出A与d的和,再乘即可;(4)C与d和为:C+d,差为:C﹣d,二者相减即可.解:(1)比X的3倍少y的数是3x﹣y;(2)M比N的一半多:M﹣N;(3)A与d的和的一半是:(A+d);(4)C与d的和减去它们的差为:C+d﹣(C﹣d)=C+d﹣C+d=2d.故答案为:(1)3x﹣y;(2)M﹣N;(3)(A+d);(4)2d.点评:解答此题的关键是,根据已知条件,把未知的数用字母正确的表示出来,再结合所求的问题,即可得出答案.26.李师傅每小时生产x个零件,生产m个零件需要小时.【答案】m÷x【解析】根据“工作总量÷工作效率=工作时间”解答即可.解:m÷x(小时),故答案为:m÷x.点评:此题考查了工作总量、工作效率、工作时间三者之间的关系.27.货车每小时行S千米,客车每小时行m千米,客车3小时和货车5小时一共行驶了千米.【答案】5s+3m【解析】根据“速度×时间=路程”分别计算出客车行驶的路程和货车行驶的路程,然后相加即可.解:s×5+m×3=5s+3m(千米);故答案为:5s+3m.点评:解答此类题目的关键是把字母看作一个数,代入式子中,进行解答即可.28.小华5分钟走了s米,他平均每分钟走米.【答案】s÷5【解析】此题根据“路程÷时间=速度”,解答即可.解:s÷5(米),答:他平均每分钟走s÷5米,故答案为:s÷5.点评:此题考查了路程、时间、速度三者之间的关系.29.小明、小军、小刚三人进行百米赛跑,小明用去X秒,小军比小明多用去2秒,小刚比小明少用0.2秒,是冠军.【答案】小刚【解析】根据题意先分别用含有字母的式子表示出三人用的时间,再根据谁用的时间最少,谁就是冠军.解:小明用去:X秒,小军用去:X+2秒,小刚用去:X﹣0.2秒,小刚用的时间最少,所以小刚是冠军.故答案为:小刚.点评:此题考查用字母表示数,解决关键是根据三人的所用的时间,谁用的时间最少,谁就是冠军.30.美术小组有a人,合唱组的人数比美术组的2倍还多12人,合唱组有人.【答案】2a+12【解析】根据题干分析可得:合唱组的人数=美术组的人数×2+12人,据此即可解答.解:根据题干分析可得:合唱组有2a+12人.故答案为:2a+12.点评:关键是把给出的字母当做已知数,再根据基本的数量关系列式即可.31. h÷b 中,h、b可以是任何数..【答案】错误【解析】在除法算式里,除数不能为0,因为除数为0无意义,据此进行判断.解:h÷b中,被除数h可以是任何数,除数b不能为0,因为除数为0无意义;故判断为:错误.点评:此题考查在除法算式里,被除数可以是任何数,但除数不能为0.32.长方形周长计算公式用字母表示是.【答案】c=2(a+b)【解析】本题是一个用字母表示数的题.用c表示长方形的周长,用a表示长,用b表示宽,则长方形周长计算公式用字母表示是:c=(a+b)×2.解:长方形周长计算公式用字母表示是:c=2(a+b).故答案为:c=2(a+b).点评:此题考查用字母表示计算公式.33.(1)127加上a的5倍和是(2)学校买来a个足球,每个m元,又买来b个排球,每个n元,一共用去元,足球比排球多用元.(3)姐姐今年a岁,比妹妹大b岁,5年后姐姐比妹妹大岁.【答案】127+5a,am+bn,am﹣bn,b【解析】(1)先求a的5倍,即a×5,再和127相加,即可;(2)先求出a个足球的价钱,再求出b个排球的价钱,两个数相加,就是一个用去的钱数;两个数相减,就是足球比排球多用的钱数;(3)今年姐姐比妹妹大b岁,不管过多少年,姐姐比妹妹都大b岁.解:(1)127+a×5=127+5a,(2)a×m+b×n=am+bn(元);a×m﹣b×n=am﹣bn(元),(3)b岁,故答案依次为:127+5a,am+bn,am﹣bn,b.点评:解答此题的关键是,根据各题的特点,分别找出它们的数量关系,把字母当成已知数,解答即可.34.一种商品降价a元后是80元,原价是元.【答案】80+a【解析】用降价后的钱数加上降价的钱数,就是原价.解:80+a元,答:原价是80+a元,故答案为:80+a.点评:解答此题的关键是,根据题意,把字母当成已知数,再根据基本的数量关系,列式解答即可.35. a除8的商用字母表示是a÷8.(判断对错)【答案】×【解析】a除8的列式为:8÷a;据此计算即可.解:a除8的表示为:8÷a=.所以题干说法错误.故答案为:×.点评:解决本题的关键是区分“除”和“除以”,除是除字后面的数是被除数,除以是字前面的数作被除数.36.一辆汽车每小时行m千米,行了n小时,共行千米.【答案】mn【解析】求共行了多少千米,根据路程=速度×时间,代入字母计算即可;解:m×n=mn(千米);答:共行了mn千米;故答案为:mn.点评:本题关键是根据时间、路程和速度三者之间的关系进行解答.37.乘法结合律用字母表示是;长方形的周长用字母表示是.【答案】(a×b)×c=a×(b×c);C=2(a+b)【解析】乘法结合律为:(a×b)×c=a×(b×c);长方形的周长用C表示,长用a表示,宽用b 表示,周长公式是:C=2(a+b);进而解答即可.解:乘法结合律用字母表示是:(a×b)×c=a×(b×c);长方形的周长用字母表示是C=2(a+b);故答案为:(a×b)×c=a×(b×c);C=2(a+b).点评:此题考查了对乘法结合律和长方形周长计算公式的理解.38.小英每天读书 a页,小华每天读书b页,(a+b)×4表示.【答案】小英和小华两人4天一共读多少页【解析】由题意可知:(a+b)表示小英和小华一天共读书多少页,(a+b)×4表示小英和小华两人4天一共读多少页;据此解答.解:小英每天读书 a页,小华每天读书b页,(a+b)×4表示:小英和小华两人4天一共读多少页;故答案为:小英和小华两人4天一共读多少页.点评:解答此题的关键:根据两人每天读的页数、天数和两人一共读的页数三者之间的关系进行解答.39.每千克苹果m元,每千克梨n元,4m表示,6n表示,4m+6n表示.【答案】4千克苹果的价钱,6千克梨的价钱,4千克苹果和6千克梨一共的价钱【解析】根据单价×数量=总价,可知4m,6n,4m+6n表示的意义.解:4m表示4千克苹果的价钱,6n表示6千克梨的价钱,4m+6n表示4千克苹果和6千克梨一共的价钱.故答案为:4千克苹果的价钱,6千克梨的价钱,4千克苹果和6千克梨一共的价钱.点评:考查了用字母表示数.本题关键是熟悉单价,数量和总价之间的关系.40.一条水渠长480米,每天修x米,修了5天,还剩290米.(1)=290(2)=480.【答案】480﹣5x;5x+290【解析】(1)先求出5天修路的米数,再根据水渠的总长度﹣修了的米数=剩下的米数,即480﹣5x=290;(2)因为修了的米数+剩下的米数=水渠的总长度,所以5x+290=480.解:(1)因为水渠的总长度﹣修了的米数=剩下的米数,所以480﹣5x=290;(2)因为修了的米数+剩下的米数=水渠的总长度,所以5x+290=480.故答案为:480﹣5x;5x+290.点评:关键是根据乘法的意义,先求出修的米数,再根据修水渠的米数和剩下的米数及水渠总长度三者之间的关系解决问题.41. a的5.6倍是,比x的3倍多1.5的数是.【答案】5.6a,3x+1.5【解析】求a的5.6倍,用a乘5.6即可;求比x的3倍多1.5的数,用x×3+1.5即可.解:a的5.6倍是5.6a,比x的3倍多1.5的数是3x+1.5;故答案为:5.6a,3x+1.5.点评:解答此题用到的知识点:求一个数的几倍是多少,用乘法解答.42. 5套桌椅共a元,已知每把椅子b元,每张桌子元.【答案】a÷5﹣b【解析】先根据“总价÷数量=总价”求出一套桌椅的总价钱,然后减去椅子的单价,即可求出桌子的单价.解:a÷5﹣b(元);答:每张桌子a÷5﹣b元.故答案为:a÷5﹣b.点评:根据总价、数量和单价三者之间的关系求出一套桌椅的总价钱,是解答此题的关键.43. 48×99=48×100﹣48=4800﹣48,这是运用了律,用字母表示是.【答案】乘法分配,a×(b+c)=a×b+a×c【解析】根据题意,由乘法分配律进行解答即可.解:48×99=48×100﹣48=4800﹣48,这是运用了乘法分配律;用字母表示是:a×(b+c)=a×b+a×c.故答案为:乘法分配,a×(b+c)=a×b+a×c.点评:本题主要考查乘法分配律的运用,然后再进一步解答即可.44.用乘法算式表示:.【答案】a×100【解析】根据乘法的意义,求几个相同加数和的简便.解:根据乘法的意义,列式a×100,故答案为:a×100.点评:考查了乘法的意义及运用.45.一堆煤有a吨.已经烧了3天,烧了b吨.平均每天烧吨煤,还剩吨煤.(用含有字母的式子表示)【答案】,a﹣b【解析】(1)根据“烧了的重量÷烧的天数=平均每天烧的吨数”进行解答即可;(2)要求还剩多少吨,根据“煤的总吨数﹣已烧的吨数=剩下的吨数”进行解答即可.解:(1)b÷3=(吨);(2)a﹣b;故答案为:,a﹣b.点评:解答此题的关键是弄清数量间的关系,然后用字母表示数,进行解答即可.46.六(1)班有x名学生,若从六(2)班调1名学生到六(1),则六(2)班还比六(1)班多1人,六(2)班有名学生.【答案】x+3【解析】由题意可知:从六(2)班调1名学生到六(1),则六(2)班还比六(1)班多1人,则原来六(2)班的人数比六(1)班人数多:1×2+1=3人,因为六(1)班有x名学生,用x+3即可求出六(2)班人数.解:x+(1×2+1),=x+3(名);答:六(2)班有x+3名学生.故答案为:x+3.点评:明确六(2)班比六(1)班多3人,是解答此题的关键.47.小红每天做a个零件,小强每天比小红多做8个,a+8表示,5a表示,5(a+8)表示.【答案】小强每天做的零件个数,小红5天做的零件个数,小强5天做的零件个数【解析】小红每天做a个零件,小强每天比小红多做8个,则a+8表示小强每天做的零件个数;a是小红每天做的零件个数,则5a表示小红5天做的零件个数;a+8表示小强每天做的零件个数,5(a+8)表示小强5天做的零件个数;据此解答.解:a+8表示小强每天做的零件个数,5a表示小红5天做的零件个数,5(a+8)表示小强5天做的零件个数;故答案为:小强每天做的零件个数,小红5天做的零件个数,小强5天做的零件个数.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意解答即可.48.一辆公交车出发时共有乘客25人,到红星路站下去了x人,又上来了y人.现在这辆车一共有乘客人.【答案】25﹣x+y【解析】用车上原有的人数减去下车的人数再加上上车的人数就是现在这辆车一共有乘客的人数.解:25﹣x+y,答:现在这辆车一共有乘客25﹣x+y人.故答案为:25﹣x+y.点评:解答本题要把未知的量当作已知的量,根据“车上原有的人数﹣下车的人数+上车的人数=现在有乘客的人数”去解答.49. x2=x+x..【答案】错误【解析】根据x2表示的意义:表示2个x相乘;x+x表示两个x相加;据此判断.解:因为x2表示2个x相乘,所以本题x2=x+x说法错误;故答案为:错误.点评:解答此题应明确2个x相乘与2个x相加的不同,掌握算式表示的意义是解答此题的关键.50.汽车甲每小时行驶x千米,汽车乙每小时行驶的路程比甲车的1.5倍多3千米,乙车每小时行千米.【答案】1.5x+3【解析】由题意得出等量关系式:乙车的速度=甲车的速度×1.5+3,据此代数计算即可.解:乙车的速度为:1.5x+3(千米),答:乙车每小时行1.5x+3千米.故答案为:1.5x+3.点评:解决本题的关键是找出等量关系式,再解答.51.春晖旅行社买了a本《厦门旅游指南》用去b元,每本单价为元.【答案】b÷a【解析】要求每本《厦门旅游指南》的单价,就用总价除以购买的数量即可.解:每本单价:b÷a元;故答案为:b÷a.点评:此题考查用字母表示数,用到的关系式为:总价÷数量=单价.52.小华有x枝铅笔,小丽比小华少4枝,小丽有枝铅笔,小丽和小华共有铅笔枝.【答案】(x﹣4);(2x﹣4)【解析】利用小丽铅笔枝数=小华铅笔枝数﹣4;小丽和小华铅笔枝数相加可得小丽和小华共有铅笔枝数解答即可.解:小丽有(x﹣4)枝铅笔,小丽和小华共有铅笔x+(x﹣4)=2x﹣4枝.故答案为:(x﹣4);(2x﹣4).点评:本题考查了用字母表示数,得到小华铅笔枝数和小丽铅笔枝数之间的关系是解题的关键.53.父亲今年a岁,儿子今年(a﹣b)岁,再过c年以后,父子年龄相差(b+c)岁.【答案】错误【解析】因为年龄差始终不变,所以今年两个人的年龄差就是c年后两个人的年龄差,据此解答即可.解:a﹣(a﹣b)=a﹣a+b=b(岁).答:再过c年以后,父子年龄相差b岁.所以再过c年以后,父子年龄相差(b+c)岁说法错误.故答案为:错误.点评:解决本题的关键是明确两个人的年龄差始终不变.54.用字母a、b、c表示加法结合律是.【答案】(a+b)+c=a+(b+c)【解析】根据加法结合律的含义:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,但和不变;进行解答即可.解:用字母a、b、c表示加法结合律是(a+b)+c=a+(b+c);故答案为:(a+b)+c=a+(b+c);点评:此题考查对加法结合律的定义的理解,根据加法结合律的定义进行解答.55.有三个鱼缸,每个鱼缸里有a条鱼,一共有条鱼.【答案】3a【解析】根据乘法的意义:鱼的总数量=每个鱼缸里鱼的数量×鱼缸的数量.解:一共有鱼:3×a=3a(条).答:一共有3a条鱼.故答案为:3a.点评:解决本题主要依据乘法的意义解答.56.自然数a和b,当a b时,是真分数,当a b时,是假分数,当a b时,=1.【答案】>,≤,=【解析】在分数中,分子小于分母的分数叫真分数,真分数小于1;分子大于或等于分母的分数叫假分数,假分数大于或等于1.据此解答即可.解:根据真分数与假分数的意义可知,如果a、b是不为0的自然数,那么当a>b时,是真分数;如果a、b是不为0的自然数,那么当a≤b时,是假分数;如果a、b是不为0的自然数,那么当a=b时,=1;故答案为:>,≤,=.点评:本题主要考查了学生对于真分数与假分数定义的理解.57.芍药有x朵,玫瑰花比芍药的3倍少2朵,玫瑰花有朵.【答案】3x﹣2【解析】根据题干,先求出芍药花的3倍是3x,再减去2朵,就是玫瑰花的朵数,据此即可解答.解:根据题干分析可得:玫瑰花有:3x﹣2朵.故答案为:3x﹣2.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.58.一个两位数,十位上的数字是a,个位上的数字是b,这个两位数是10a+b.….【答案】√【解析】两位数=十位数字×10+个位数字.据此写数判断即可.解:由题意得:这个两位数是:10a+b;题干说法正确.故答案为:√.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.59. B的3倍与A的和可以表示为.【答案】3B+A【解析】和等于B的3倍加A,把相关数值代入即可.解:因为B的3倍为3B,所以B的3倍与A的和为:3B+A.故答案为:3B+A.点评:关键是明白最后求的是两个加数的和.60. a×4×b用简便写法表示是,t×t用简便写法表示是.【答案】4ab,t2【解析】因为a×4×b=4ab,所以a×4×b用简便写法表示是4ab;t×t=t2,所以t×t用简便写法表示是t2.解:因为a×4×b=4ab,所以a×4×b用简便写法表示是4ab;t×t=t2,所以t×t用简便写法表示是t2.故答案为:4ab,t2,点评:注意字母与数相乘时要简写,即省略乘号,把数写在字母的前面.61. 2a和a2可能相等.….【答案】正确【解析】把字母赋值,然后代入含有字母的式子进行求值是比较基础的题目,方法是用数字代替字母进行求值,a2和2a所表示的意思,a2表示两个a相乘2a表示2个a相加.即:2×2=2×2相等,题目是正确的.解:a=2时,a2=2×2=4,2a=2×2=4,所以a2和2a相等.故答案为:正确.点评:本道题目考查a2和2a所表示的意思,a2表示两个a相乘,2a表示2个a相加.考虑特殊值代入的方法进行判断.62.小巧有n个苹果,如果将小巧的苹果数增加2倍就是小亚的苹果数,小亚有个苹果.【答案】3n【解析】由题意可知,小亚的苹果数等于小巧的苹果数加上小巧增加的苹果数.因为小巧的苹果数为n,所以小巧的苹果数增加2倍就是增加了2n,由此可以计算小亚的苹果数.解:根据题意可知:小巧的苹果数是n个,小巧增加的苹果数是2n个,所以小亚的苹果数为:n+2n=3n(个);答:小亚有3n个苹果.故答案为:3n.点评:本题考查了用字母表示数,正确理解问题中的数量关系是解题的关键.。

数学用字母表示数试题答案及解析

数学用字母表示数试题答案及解析

数学用字母表示数试题答案及解析1.要使a2>2a,那么a应是()A.大于2B.小于2C.任意的自然数]【答案】A【解析】当a=0、1、2时,a2≤2a,只有当a>2时,a2>2a,由此进行选择.解:要使a2>2a,那么a应是大于2的数.故选:A.点评:此题考查只有当一个数大于2时,此数的平方才大于此数的2倍.2. 4x+8错写成4(x﹣8),结果比原来()A.多4B.少40C.多24D.少6【答案】B【解析】因为4(x﹣8)=4x﹣4×8=4x﹣32,用原数减去4x﹣32即可解答.解;4x+8﹣4(x﹣8),=4x+8﹣4x+32,=40.所以结果比原来少40.故选:B.点评:解决本题的关键是将4(x﹣8)用乘法分配律解答出来,再计算.3.一辆汽车9小时行驶X 千米,这辆汽车的速度是()千米/时.A.9÷xB.x÷9C.9x【答案】B【解析】根据速度=路程÷时间,代数解答即可.解:汽车的速度为:x÷9(千米/时).答:这辆汽车的速度是x÷9千米/时.故选:B.点评:此题主要考查速度、时间、路程之间的关系.4.小晴把4x﹣2错写成4(x﹣2),结果比原来()A.多8B.少6C.多6【答案】B【解析】要求结果比原来多或少了多少,就要求出两个数,再用后来的数减去开始的数即可求解.解:4(x﹣2)=4x﹣8;4x﹣8﹣(4x﹣2),=4x﹣8﹣4x+2,=﹣6;所以结果比原来少6;故选:B.点评:此题考查了用字母表示数的基本方法,要抓住题中给出的数量关系,代入数据解答.5. X×=y×=m×=n÷4,已知x、y、m、n不是0,那么()A.x>y>m>n B.n>y>x>m C.n>x>y>m D.m>x>y>n【答案】B【解析】先令X×=y×=m×=n÷4=1,分别求出x、y、m、n的值,即可比较它们的大小.解:令X×=y×=m×=n÷4=1,则x×=1,x=2,y×=1,y=3,m×=1,m=,n÷4=1,n=4,所以n>y>x>m;故选:B.点评:解答此题的关键是:利用赋值法,求出几个数的值,即可得解.6.小明在一次计算中把4(a+6)错写成了4(a+9),则计算的结果比原来()A.增加了3B.减少了3C.增加了12D.减少了12【答案】C【解析】利用乘法的分配律a(b+c)=ab+bc,分别求出4(a+6)与4(a+9)的值,再比较它们的大小即可.解:因为4(a+6)=4a+24;4(a+9)=4a+36,4a+36﹣(4a+24),=4a+36﹣4a﹣24,=12,所以计算的结果比原来增加了12,故选:C.点评:本题主要应用了乘法的分配律将给出的式子正确算出得数,再求出两数的差.7.如果a×b=0,那么()A.a一定等于0B.b一定等于0C.a和b中至少有一个是0【答案】C【解析】因数是0乘法运算:任何数乘0都得0,两个因数中有一个是0,还可以都是0,那么就是说a和b至少有一个为0,或者都为0.解:如果a×b=0,那么ab中至少有一个是0.故应选:C.点评:有关0的计算情况要会:一个数加上0,或减去0都得它本身;任何数乘0都得0,0除以任何数都得0,0不能做除数.8.一个奇数用m表示,它后面一个相邻奇数用式子表示是()A.m﹣2B.m+2C.2m D.m÷2【答案】B【解析】根据相邻的两个奇数相差2,进行解答即可.解:m+2;故选:B.点评:明确相邻的两个奇数相差2,是解答此题的关键.9.下面4组中,()组的两个式子的结果是相同的.A.72和7×2B.b×b和2b C.a×a和a2D.C+C和C2【答案】C【解析】根据平方的含义以及用有字母时乘法的表示方法逐个选项判断.解:A,72=7×7,与7×2不同;B,b×b=b2,与2b不同;C,a×a=a2,与a2相同;D,c+c=2c,与c2不同.故答案选:C.点评:平方表示两个相同因数的积,乘法表示几个相同加数的和.10.在有余数的整数除法算式中,除数和商分别是m,n(m,n均不为0),被除数最大为()A.mn+m B.mn﹣1C.mn+m﹣1D.mn﹣m+1【答案】C【解析】在有余数的除法中,余数小于除数,所以除数是m,余数最大是m﹣1,然后再根据公式被除数=商×除数+余数进行计算即可得到被除数.解:除数为m,商为n,余数为m﹣1,被除数=商×除数+余数,=nm+m﹣1.故选:C.点评:解答此题的关键是确定余数的大小,然后再根据公式进行计算即可.11.有一个两位数,它的十位数字是a,个位数字是b,则这个两位数的大小是()A.a+bB.10(a+b)C.10a+b【答案】C【解析】用十位上的数字乘以10,加上个位上的数字,即可列出这个两位数.解:因为十位数字为a,个位数字为b,所以这个两位数可以表示为10a+b.故选:C.点评:此题主要考查了两位数的表示方法,数字的表示方法要牢记.两位数字的表示方法:十位数字×10+个位数字.12.请你用方程表示下面的数量关系.(1)小丽体重x千克,妈妈体重54千克,比小丽重48千克.(2)刘军骑自行车每分钟行x千米,他l5分钟共行4.8千米.(3)有a个苹果,平均分给20个小朋友,每个小朋友分2个,正好分完.【答案】(1)54﹣x=48;(2)54﹣x=48;(3)a÷20=2【解析】(1)妈妈的体重﹣小丽的体重=48,即54﹣x=48;(2)根据速度×时间=路程解答即可;(3)根据总量÷平均分成的份数=每一份的个数.据此解答即可.解:(1)由题意列方程为:54﹣x=48;(2)由题意列方程为:15x=4.8;(3)由题意列方程为:a÷20=2;故答案为:(1)54﹣x=48;(2)54﹣x=48;(3)a÷20=2.点评:解决本题的关键是找出正确的数量关系,再列方程.13. 25×4= 0.2×3.4= 4.8÷0.8= 2÷5=60÷1.2= 61×4= 7a+0.2a﹣a= 64÷16=2.5+1.37= 7.6×2.5×4=【答案】100,0.68,6,0.4,50,244,6.2a,4,3.87,76【解析】根据整数、小数乘除法的计算方法进行解答即可;7.6×2.5×4可以根据乘法结合律进行简算.解:25×4=100, 0.2×3.4=0.68, 4.8÷0.8=6, 2÷5=0.4,60÷1.2=50, 61×4=244, 7a+0.2a﹣a=6.2a, 64÷16=4,2.5+1.37=3.87, 7.6×2.5×4=76.点评:乘除法的口算,要看清数和运算符号,再进行计算;能简算的要简算;注意含有字母的式子的计算.14. A+C=14B+C=13A+B=15A=B=C=.【答案】8;7;6【解析】由于A+C=14①,B+C=13②,A+B=15③,将(①+②﹣③)÷2先可求得C,从而求得A,B.解:C=(14+13﹣15)÷2,=12÷2,=6;A=14﹣6=8;B=13﹣6=7.故答案为:8;7;6.点评:考查了根据等量关系求字母值的问题,本题的关键是求得C.15.甲数是a,比乙数的4倍少b,求乙数的式子是4a﹣b..【答案】错误【解析】本题是一个用字母表示数的题,由甲数是a,比乙数的4倍少b,可得出乙数的4倍比甲数多b,要求乙数,先求得乙数的4倍,进而除以4即可得乙数.据此分析列式再判断.解:乙数是:(a+b)÷4;故答案为:错误.点评:此题属于考查用字母表示数,是需要逆思考的问题,解决此题关键是先根据题意求得乙数的4倍,进而求得乙数.16.已知和都是真分数,又+的和约是1.38,求=().【答案】【解析】因为和都是真分数,所以a<3,b<3,又+的和约是1.38,所以a=1.38×3﹣<3,同理,b=1.38×7﹣,所以1.14<a<3,2.66<b<7,所以当a=2时,b≈5,由此求出的值.解:因为和都是真分数,所以a<3,b<3,又+的和约是1.38,所以a=1.38×3﹣<3,同理,b=1.38×7﹣,所以1.14<a<3,2.66<b<7,所以当a=2时,b≈5,=;故答案为:.点评:关键是根据题意得出a与b的取值范围,从而确定a和b的值.17.若a个人b天砌c块砖,则b个人用相同的速度砌a块砖需要的天数是.【答案】a2÷c天【解析】根据“a个人b天砌c块砖”,可求出1个人1天砌砖的块数,再求出b个人1天砌砖的块数,进而求出b个人砌a块砖需要的天数,列式计算即可.解:1个人1天砌砖的块数:c÷a÷b块,b个人1天砌砖的块数:(c÷a÷b)×b,=c÷a÷b×b,=c÷a(块),b个人砌a块砖需要的天数:a÷(c÷a),=a÷c×a,=a2÷c(天).故答案为:a2÷c天.点评:此题考查用字母表示数,解决此题关键是先求出1个人1天砌砖的块数,再求出b个人1天砌砖的块数,最后求得b个人砌a块砖需要的天数.18.如果a,b是非零的自然数,并且a>b,把ab,a2,b2这三个数按照从小到大排列是<<.【答案】b2,ab,b2【解析】本题可以特值代入得到ab,a2,b2的大小比较.解:令a=2,b=1,则ab=2×1=2,a2=2×2=4,b2=1×1=1,则ab,a2,b2这三个数按照从小到大排列是b2<ab<b2.故答案为:b2,ab,b2.点评:考查了用字母表示数及大小的比较,本题可以取适当的值计算后进行比较.19.甲数是x,乙数比甲数多2倍,乙数是.【答案】3x【解析】根据题意可知:乙数比甲数多2倍,即乙数是甲数的(1+2)倍,根据求一个数的几倍是多少,用乘法解答即可.解:x×(1+2),=3x;故答案为:3x.点评:解答此题的关键:根据求一个数的几倍是多少,用乘法解答.20.电脑专卖店,上午卖出电脑6台,下午卖出10台,每台电脑a元.全天一共收货款元,上午比下午少收入元.【答案】16a;4a【解析】先求出上午和下午一共卖出电视机的台数,再根据“数量×单价=总价”,求出全天共卖电视机的收入;先求出上午比下午多卖电视机的台数,再用乘法列式求出少收入的钱数.解:(1)(10+6)×a=16a(元),答:全天共卖电视机一共收入16a元;(2)(10﹣6)×a=4a,答:上午比下午卖电视机多收入4a;故答案为:16a;4a.点评:把给出的字母当做已知数,再根据基本的数量关系列式解答.21.师傅做了a个机器零件,是徒弟的1.2倍,徒弟做了个零件,师傅两人共做个零件.【答案】a÷1.2;a+a÷1.2【解析】由题意得:徒弟做的数量=师傅做的数量÷1.2,代数计算即可;用徒弟做的数量加上师傅做的数量就是总数量.解:徒弟做了:a÷1.2(个);两人一共做了:a+a÷1.2(个);答:徒弟做了a÷1.2个,师徒两人一共做了a+a÷1.2个零件.故答案为:a÷1.2;a+a÷1.2.点评:解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.22. 7a+8a﹣a+1=15a+1(判断对错)改正:.【答案】×;7a+8a﹣a+1=14a+1【解析】因为7a+8a﹣a+1=(7+8﹣1)a+1=14a﹣1,据此解答即可.解:7a+8a﹣a+1,=(7+8﹣1)a+1,=14a+1;所以题干说法错误.故答案为:×;7a+8a﹣a+1=14a+1.点评:解决本题要用乘法分配律计算含有字母的算式.23.如果a+b=c,那么a=,b=.【答案】c﹣b,c﹣a【解析】本题已知加数+加数=和,从而得出:一个加数=和﹣另一个加数.解:a=c﹣b,b=c﹣a;故答案为:c﹣b,c﹣a.点评:本题根据加数、加数与和之间的关系即可解决.24.五(1)班有学生X人,其中女生25人,男生有人,男生比女生少人.【答案】x﹣25,50﹣x【解析】用总人数x减去女生的人数就是男生的人数,即(x﹣25)人,再运用女生的人数减去男生的人数就是男生比女生少的人数.解:(1)x﹣25=(x﹣25)人;(2)25﹣(x﹣25),=25﹣x+25,=(50﹣x)(人);故答案为:x﹣25,50﹣x.点评:做用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.25.(1)小花今年12岁,比小兰大a岁,小兰今年岁.(2)一件上衣54元,一件裤子48元,买b套这样的衣服,要用元.(3)一本故事书有a页,小明每天看x页,看了y天,看了页,还剩页没看.(4)王阿姨买了m千克香蕉和n千克苹果,香蕉每千克4.8元,苹果每千克5.4元,一共花了元.【答案】12﹣a,102b,xy,a﹣xy,4.8m+5.4n【解析】(1)求小兰今年的岁数,就是求比12岁小a岁,用字母表示出来即可;(2)求买b套这样的衣服用的钱数,先求出买一套衣服用的钱数,进而用字母表示出来即可;(3)用每天看的页数乘看的天数,得出看了的页数;再用总页数减去看了的页数等于还剩的页数;(4)用含字母的式子分别表示出m千克香蕉花的钱数和n千克苹果花的钱数,进而表示出一共花的钱数.解:(1)小兰今年:12﹣a岁;(2)要用的钱数:(54+48)×b=102b元;(3)看了的页数:xy页,还剩的页数:a﹣xy页;(4)一共花了:4.8m+5.4n元.故答案为:12﹣a,102b,xy,a﹣xy,4.8m+5.4n.点评:解决此题关键是根据已知条件,用含有字母的式子正确的表示出问题的结果即可.26.小华5分钟走了s米,他平均每分钟走米.【答案】s÷5【解析】此题根据“路程÷时间=速度”,解答即可.解:s÷5(米),答:他平均每分钟走s÷5米,故答案为:s÷5.点评:此题考查了路程、时间、速度三者之间的关系.27.用含有字母的式子表示.(1)比y的5倍少8(2)a的4倍加b的6倍.【答案】5y﹣8;4a+6b【解析】(1)先用乘法计算出y的5倍,再减8;(2)用乘法计算出a的4倍,b的6倍,再把两个积相加.据此解答即可.解:(1)比y的5倍少8列式为:5y﹣8;(2)a的4倍加b的6倍列式为:4a+6b.故答案为:5y﹣8;4a+6b.点评:解决本题的关键是根据题意找出关系式,再解答.28. x的3倍与3x相等..【答案】正确【解析】先表示出x的3倍为3x,依此即可作出判断.解:因为x的3倍为3x,所以x的3倍与3x相等.故答案为:正确.点评:考查了用字母表示数,正确的表示出x的3倍是解题的关键.29.一本书a页,每天看8页,看了b天,看了页,还有页没有看.【答案】8b,a﹣8b【解析】此题根据:每天看的页数×看的天数=一共看的页数,总页数﹣看的页数=剩下的页数,即可写出含字母的式子.解:看的页数:8×b=8b(页);剩下的页数:(a﹣8b)页;故答案为:8b,a﹣8b.点评:此题主要考查用字母表示数,根据数量关系式即可写出.30. 5x表示5个x相加..(判断对错)【答案】√【解析】5x=x+x+x+x+x,表示五个x相加,由此判断.解:5x=x+x+x+x+x,表示五个x相加,故答案为:√.点评:本题主要考查了乘法的意义:表示几个几相加是多少.31.长方形的周长为C米,长为а米,米,它的宽ь=米.【答案】【解析】根据长方形的周长公式,周长=(长+宽)×2,得出,宽═,将字母代入,即可求出b的值.解:因为,长方形的周长=(长+宽)×2,所以,宽=,=(米),故答案为:.点评:此题主要考查了长方形的周长公式的变形.32.每公顷水稻的产量是x千克,а公顷水稻的产量是千克.【答案】ax【解析】根据单产量×数量=总产量,将字母代入,即可求出总产量.解:x×a=ax(千克);答:а公顷水稻的产量是ax千克,故答案为:ax.点评:解答此题的关键是,把所给出的字母当做已知数,再根据单产量、数量和总产量三者之间的关系解决问题.33.儿子今年a岁,爸爸今年35岁,5年后爸爸比儿子大岁.【答案】35﹣a【解析】因为不管经过多长时间,爸爸与儿子的年龄差是不变的,今年相差35﹣a(岁),所以5年后爸爸和小红仍相差(35﹣a)岁.解:35﹣a(岁);答:5年后,爸爸比儿子大35﹣a岁;故答案为:35﹣a.点评:此题应抓住年龄差不变来求解,因为不管经过多长时间,二人增长的时间是一样的,故差不变.34. a×5×b可以简写为.【答案】5ab【解析】含有字母和数字的乘法算式,省略乘号时,要把数字写在字母的前面,据此解答.解:根据分析可得,a×5×b=5ab,故答案为:5ab.点评:本题考查了含有字母和数字的乘法算式的简写,要注意把数字写在字母的前面.35.王叔叔1小时内生产a 个零件,6 小时内一共生产个零件.【答案】6a【解析】要求6小时内一共生产多少个零件,首先要找清这道题里数量关系:工作效率×工作时间=工作总量,进行解答即可.解:a×6=6a(个);故答案为:6a.点评:解答这道题的关键是分析工作时间、工作效率和工作总量这三者之间的关系.36.用含有字母的式子表示.(1)五年级数学课本的单价是4.66元,买a本的总价是元.(2)学校有a个足球,篮球个数是足球的1.8倍,学校有足球和篮球共个,足球比蓝球少个.【答案】4.66a,2.8a,0.8a【解析】(1)根据“单价×数量=总价”代入数值,解答即可;(2)先根据求一个数的几倍是多少,用乘法解答求出篮球的个数,进而把篮球和足球的个数相加,求出学校足球和篮球的总个数,然后用“篮球的个数﹣足球的个数”求出足球比蓝球少的个数.解:(1)4.66×a=4.66a(个);答:买a本的总价是4.66a元;(2)a+1.8a=2.8a(个),1.8a﹣a=0.8a(个);答:学校有足球和篮球共 2.8a个,足球比蓝球少0.8a个.故答案为:4.66a,2.8a,0.8a.点评:此题考查是用字母表示数,做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数当做已知的数,用字母正确的表示出来,然后根据题意列式计算即可得解.37.学校准备购买4个篮球、5个足球.已知篮球每个a元,足球每个b元.一共要准备元.【答案】4a+5b【解析】要求一共要用多少元钱,先根据“单价×数量=总价”分别求出买足球的总价和买篮球的总价,进而相加即可;解:4a+5b(元);故答案为:4a+5b.点评:此题考查了用字母表示数,用到的知识点:单价、数量和总价之间的关系.38.甲数是x,比乙数多8,乙数是x﹣8..【答案】√【解析】甲数是40,比乙数多8,即甲数=乙数+8,所以乙数等于x﹣8.解:乙数是:x﹣8,故答案为:√.点评:关键是根据题意得出数量关系式:甲数=乙数+8,由此求出乙数.39.一辆公共汽车上原来有40人,下去a人,还剩人.【答案】40﹣a【解析】根据“车上原有的人数﹣下去的人数=还剩下的人数”进行解答即可.解:40﹣a;答:还剩40﹣a人;故答案为:40﹣a.点评:此题应根据车上原有的人数、下去的人数和还剩下的人数三个量之间的关系进行解答即可.40.在解决生活中的实际问题时,我们经常会遇到用字母表示数量的现象.例如“路程=速度×时间”,用S表示路程,v表示速度,t表示时间,那么S=,v=,t=.【答案】vt,S÷t,S÷v【解析】根据路程、速度和时间三者之间的关系,可知路程=速度×时间,速度=路程÷时间,时间=路程÷速度,进而把字母代入关系式即可得解.解:S=v×t=vt;v=S÷t,t=S÷v,故答案为:vt,S÷t,S÷v.点评:此考查用字母表示数量关系,明确路程、速度与时间的关系,进而把字母代入关系式即可.41.妹妹今年a岁,姐姐比妹妹年龄的2倍少2岁,姐姐今年岁.【答案】2a﹣2【解析】根据“姐姐比妹妹年龄的2倍少2岁,”得出姐姐的年龄=妹妹年龄×2﹣2,而妹妹今年a 岁,由此求出姐姐的.解:2a﹣2(岁),答:姐姐今年2a﹣2岁,故答案为:2a﹣2.点评:根据是根据题意找出数量关系的等式:姐姐的年龄=妹妹年龄×2﹣2,列式解答即可.42.如果用a、b、c分别表示三个数,那么加法结合律表示为.【答案】(a+b)+c=a+(b+c)【解析】加法结合律:三个数相加,可以先把前两个数相加,再与第三个数相加,也可以先把后两个数相加,再与第一个数相加,它们的结果不变;根据乘法结合律的内容,用字母表示即可.解:(a+b)+c=a+(b+c);故答案为:(a+b)+c=a+(b+c).点评:此题考查用字母表示加法结合律,熟知加法结合律的内容是解决此题的关键.43.超市运来苹果X千克,是运来香蕉的3倍,运来香蕉千克;运来的梨比苹果的少20千克,运来梨千克.【答案】X÷3或,x﹣20【解析】由所给条件可知:香蕉的3倍是苹果的X千克,求香蕉的质量,用除法计算;梨比苹果的少20千克,求梨的质量,就是求比x的少20千克的数是多少.解:香蕉:x÷3或;梨:x×﹣20=x﹣20.故答案为:X÷3或,x﹣20.点评:此题考查用字母表示数,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.44.省略x×2.5+1×a中的乘号应为.【答案】2.5x+a【解析】当字母和字母相乘时,中间的乘号可以省略,当字母和数相乘时,省略乘号,数要写在字母的前面.解:x×2.5+1×a=2.5x+a,故答案为:2.5x+a.点评:本题主要考查了字母与字母相乘及字母和数相乘时的简便写法.45. a×18可以简写成a18.【答案】错误【解析】字母与数字的乘积,简写方法是:省略乘号,把数字放在前面,字母放在后面,由此即可判断.解:a×18可以简写成18a,原题说法错误.故答案为:错误.点评:此题考查了字母表示数在乘法中的简写方法.46.在横线里填上适当的数或字母.50×(2.49×0.2)=×(×)4.3×2.4+2.4×5.7=×(+)(a﹣b)×c=×﹣×.【答案】2.49,50,2;2.4,4.3,5.7;a,c,b,c【解析】(1)根据乘法交换律和结合律进行解答即可;(2)根据乘法分配律进行解答;(3)根据乘法分配律进行解答.解:(1)50×(2.49×0.2)=2.49×(50×2)(2)4.3×2.4+2.4×5.7=2.4×(4.3+5.7)(3)(a﹣b)×c=a×c﹣b×c.点评:根据题意,主要是考查运算定律的运用,然后再进一步解答即可.47.三个连续的自然数,中间一个是a,这三个数的和是三个连续的奇数和是45,这三个数分别为.【答案】3a;13,15,17【解析】①由已知,三个连续自然数之间的关系是依次大1,由此表示出三个连续自然数为:a﹣1,a,a+1.然后求和;②三个连续奇数的和是45,用45÷3求出中间的一个,根据相邻奇数之间相差2,分别用减2和加2求出另外两个数,据此解答.解:①三个连续自然数的和为:a﹣1+a+a+1=3a.②45÷3=15,15﹣2=13,15+2=17,所以三个连续奇数的和是45,这三个奇数分别是13、15和 17;故答案为:3a;13,15,17.点评:连续的自然数的关系及对奇数的认识是解答此题的关键.48.比x的多4的数用式子表示是.【答案】【解析】先用乘法计算出x的,再加4即可.解:比x的多4的数用式子表示是:x×+4=x+4.故答案为:.点评:此题考查了用字母表示数的方法,要根据题意,将字母看作已知数,一步步求出要求的数.49.东方小学六年级有4个班,每班a人,五年级有b个班,每班45人.(1)4a+45b表示(2)a﹣45表示(3)4a÷45b表示.【答案】六年级和五年级共有的人数,六年级比五年级每班多的人数,六年级的人数是五年级的几分之几【解析】本题是一个用字母表示数的题目,根据题中的已知条件进而确定含字母的式子表示的意义即可.解:(1)4a+45b表示六年级和五年级共有的人数;(2)a﹣45表示六年级比五年级每班多的人数;(3)4a÷45b表示六年级的人数是五年级的几分之几.故答案为:六年级和五年级共有的人数,六年级比五年级每班多的人数,六年级的人数是五年级的几分之几.点评:解答此题关键是根据题意和所列的式子,进一步确定式子表示的意义.50.小青买了3个练习本,每个a元,营业员找给他b元,小青交给营业员元.【答案】3a+b【解析】先根据“单价×数量=总价”求出小青买练习本的总价,进而根据“买练习本的总价+找给小青的钱数=小青给营业元的钱数”进行解答即可.解:a×3+b=3a+b(元),故答案为:3a+b.点评:解答此题的关键是,根据已知条件,把未知的数用字母正确的表示出来,再结合所求的问题,即可得出答案.51.三个连续自然数,第一个是a,第十个是.【答案】a+9【解析】根据相邻的两个自然数相差1,第一个数是a,第二个数是a+1,第三个数是a+2,第四个数是a+3,…;第n个数为a+(n﹣1)(n>1),代入数值,解答即可.解:a+(10﹣1),=a+9;答:第十个是a+9;故答案为:a+9.点评:解答此题的关键:通过列举,找出计算规律,进而根据规律,解答即可.52.用线段分别把下面左右两边相等的式子连起来.比a少4的数 x÷125个b连加 20÷a把x平均分成12份 a﹣4a除20 5b.【答案】【解析】根据题意,对各题进行依次分析:比a少4的数,用a﹣4;5个b连加,根据整数乘法的意义,用b乘5,即5b;把x平均分成12份,用x除以12即可;a除20,即20除以a;据此连线即可.解:由分析可得:点评:此题考查了用字母表示数,比较简单,只要认真,容易完成,注意平时基础知识的积累.53. x2一定比2x大..【答案】×【解析】因为x2=x×x,所以X2表示2个x的乘积,2X=x×2,表示x的2倍,当x=2时,x2和2x一样大;据此判断.解:x2一定比2x大,说法错误,因为当x=2时,x2=4,2x=4,x2和2x一样大;故答案为:×.点评:此题考查了用字母表示数,用赋值法是解答此题的关键.54.在横线里填上用字母表示的式子.(1)小兰家养公鸡x只,母鸡的只数是公鸡的4倍,公鸡和母鸡共有只.(2)培英小学五年级的人数是四年级的1.2倍,四年级有x人,五年级比四年级多人.【答案】5x,0.2x【解析】(1)要求公鸡和母鸡共有多少只,根据题意,先求出母鸡的只数,再加上公鸡的只数即可;(2)要求五年级比四年级多多少人,根据题意,先求出五年级的人数,再减去四年级的人数即可.解:(1)4x+x=5x(只);(2)1.2x﹣x=0.2x(人).故答案为:5x,0.2x.点评:此题考查用字母表示数,确定好先算什么,再算什么,再根据基本数量关系列式解答即可.55.刘师傅每天可加工m个零件,比马师傅少加工n个零件.马师傅每天加工个零件,4m表示,2m+n表示.【答案】m+n;刘师傅4天加工的零件数;刘师傅和马师傅每天加工的零件总数【解析】(1)由题意知:马师傅比刘师傅每天多加工n个零件,则马师傅每天加工m+n个零件;(2)4m=m×4,m是刘师傅每天可加工的零件数,则4m就是刘师傅4天加工的零件数;(3)2m+n=m+(m+n),m是刘师傅每天可加工的零件数,m+n是马师傅每天可加工的零件数,则加起来就是刘师傅和马师傅每天加工的零件总数.解:马师傅每天加工m+n个零件,4m表示刘师傅4天加工的零件数,2m+n表示刘师傅和马师傅每天加工的零件总数.故答案为:m+n;刘师傅4天加工的零件数;刘师傅和马师傅每天加工的零件总数.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意解答即可.56.一本书a页,已经看了b天,每天看15页,看了页,还有页没有看.【答案】15b,a﹣15b【解析】根据“每天看到页数×看的天数=看了的页数”求出看了的页数,进而根据“这本书的总页数﹣看了的页数=剩下的页数”进行解答即可.解:看了:b×15=15b(页);还剩:a﹣15b(页);故答案为:15b,a﹣15b.点评:解答此题应根据题意,根据每天看到页数、看的天数和看了的页数三者之间的关系,求出看了的页数;进而根据这本书的总页数、看了的页数和剩下的页数三者之间的关系解答即可.57.某次运动会开幕式门票最高价是a元,闭幕式门票的最高价是开幕式的,闭幕式门票的最高价是元.【答案】a【解析】由闭幕式门票的最高价是开幕式的,是把开幕式的价格看作单位“1”,则闭幕式的最高价=开幕式的价格×,据此解答即可.解:闭幕式的最高价是:a×=a(元).答:闭幕式的最高价是a元.故答案为:a.点评:解决本题找出正确的等量关系式和单位“1”的量.58.分数,当a=时,它的分数值是b,当b=时,它的分数值是这个分数的分数单位.【答案】1、1【解析】当a=1时,==b,所以的分数值是b;当b=1时,=,所以的分数值是这个分数的分数单位.解:(1)当a=1时,==b,所以的分数值是b;(2)当b=1时,=,所以的分数值是这个分数的分数单位.故答案为:1、1.点评:本题主要考查了根据题目要求赋予字母一定的数值的方法,一般是从特殊的数字考虑,比如1、0等数字.59.小强今年a岁,小红比小强大2岁,再过3年后小红比小强大岁.【答案】2【解析】因为不管经过多长时间,小红与小强的年龄差是不变的,今年相差2岁,所以3年后小红与小强仍相差2岁.解:因为今年小红比小强大2岁,所以再过3年后小红比小强仍大2岁.故答案为:2.点评:此题应抓住年龄差不变来求解,因为不管经过多长时间,二人增长的时间是一样的,故差不变.60.如果用N表示任意的自然数,那么偶数可以用2N表示,奇数可以有表示.【答案】2N+1【解析】根据偶数和奇数的意义:整数中,是2的倍数的数是偶数,不是2的倍数的数是奇数,偶数可用2表示,奇数可用2N+1表示,这里N是任意的自然数;进而得出结论.解:由分析知:如果用N表示任意一个自然数,偶数可用2N表示,那么奇数可以表示为2N+1;故答案为:2N+1.点评:解答此题的关键:应明确偶数和奇数的含义.61.李老师为学校买来了3个篮球和4个足球,篮球每个a元,足球每个b元.他付给营业员500元,李老师花了元.【答案】3a+4b【解析】根据单价×数量=总价,分别求出3个篮球和4个足球的钱数,再求出总价钱即可.解:3a+4b(元),答:李老师花了3a+4b元;故答案为:3a+4b.点评:得到共需钱数的等量关系是解决问题的关键;用到的知识点为:总价=单价×数量.62.鼓楼小学跳绳队有男生X人,女生是男生的4倍多2人,女生人,男生和女生一共人.【答案】4X+2,5X+2【解析】女生是男生的4倍多2人,那么用男生的人数乘上2,然后再加上2人就是女生的人数,把男女生的人数加在一起就是男女生一共有多少人.解:女生人数是:4X+2(人);男女生一共有:4X+2+X=5X+2(人);故答案为:4X+2,5X+2.点评:解答此题的关键是,根据已知条件,把未知的数用字母正确的表示出来,再结合所求的问题,即可得出答案.。

七年级数学《字母表示数》典型例题

七年级数学《字母表示数》典型例题

七年级数学 《字母表示数》典型例题例 1 举出三个小学已学过的用字母表示数的例子,并说明其中字母的含义。

例2 用字母表示下面实际问题。

(1)行驶中的火车的速度为v 米 / 秒,汽车行驶的速度是火车速度的31,用v 表示汽车速度;(2)如图,表示圆环的面积;(3)如图,是用火柴摆出的三角形的图案,当摆n 个三角形时,需火柴多少根。

例3 观察等式1+2+1=41+2+3+2+1=91+2+3+4+3+2+1=161+2+3+4+5+4+3+2+1=25(1)写出和上面等式具有同样结构,等号左边最大数是10的式子.(2)写出一个等式,要求它能代表所有类似的等式,清楚地反映出这类等式的特点.例4 选择题(1)如图是L 形钢条截面,它的面积为( )A .lt cl +B .lt t t c +-)(C .t t l t t c )()(-+-D .)()(2t l t c t c l -+-+++(2)一个到火星旅行的计划,来回的行程需要三个地球年(包括在火星上停留a 个地球天),已知火星和地球之间的距离为34000000千米.那么,这个旅行的平均速度是每小时多少千米?(说明:地球年、地球天,是指在地球上一年或一天,即一年=365天,一天=24小时)A .3400000012)3653(⨯-⨯a B .24)3653(34000000⨯-⨯a C .24)3653(340000002⨯-⨯⨯a D .)3653(22434000000a -⨯⨯⨯参考答案例1 解 (1)加法结合律:)(c b a c b a ++=++;其中a 、b 、c 分别表示三个加数。

(2)长方形面积=b a ⨯,其中a 、b 分别表示长方形的长和宽。

(3)圆的面积=2r π,其中π表示圆周率,r 表示圆的半径。

说明:π的值是固定不变的。

例2 分析 (1)如果v 是一个数,该题就是求v 的31是多少,可表示为v 31; (2)分别用R 、r 把大圆和小圆的面积表示出来,用大圆面积减去小圆的面积就是圆环的面积;(3)由图可以发现,当第一个三角形摆完之后,每增加一个三角形就要增加2根火柴,所以摆n 个三角形需)]1(23[-+n 根火柴。

数学用字母表示数试题答案及解析

数学用字母表示数试题答案及解析

数学用字母表示数试题答案及解析1. 13除a与b的和,商是多少?列式为()A.13÷a+bB.13÷(a+b)C.(a+b)÷13【答案】C【解析】先求出a与b的和,再用和除以13即可.解:(a+b)÷13;故选:C.点评:本题主要考查了“除”和“除以”的区分,注意说“除”时,是说除数除被除数.2. a的3倍减去b的一半的差是.A.3a+b÷2B.3a﹣2bC.3a﹣b÷2【答案】C【解析】a的3倍是3a,b的一半是b÷2,再相减即可.解:a的3倍减去b的一半的差是:3a﹣b÷2.故选:C.点评:此题主要考查用字母表示数,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.3.小明今年x岁,小聪的岁数比小明岁数的2倍小1岁.那么,用下面()式子既可以表示小聪的岁数,又能看出他们之间岁数的关系.A.yB.2x﹣1C.2x+1【答案】B【解析】根据小聪的岁数比小明岁数的2倍小1岁,即可得到小聪的岁数为小明岁数×2倍﹣1.解:由题意可得小聪的岁数为:2x﹣1.故选:B.点评:考查了用字母表示数,本题关键是得到小聪的岁数与小明岁数之间的关系.4.小明今年b﹣1 岁,明年()岁.A.b+1B.bC.b+2【答案】B【解析】根据常识,明年比今年增长1岁,即:b﹣1+1;据此解答即可.解:明年:b﹣1+1=b﹣(1﹣1)=b(岁).答:明年b岁.故选:B.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.5.一个正方形的边长为a 分米,如果它的边长增加2分米,那么所得的大正方形的面积比原来这个正方形的面积多()平方分米.A.(a+2)2B.4a+4C.2×2D.无选项【答案】B【解析】根据正方形的面积公式S=a×a,分别求出所得的大正方形的面积与原来这个正方形的面积面积,再相减即可.解:(a+2)×(a+2)﹣a×a,=a×a+4a+4﹣a×a,=4a+4(平方分米),故选:B.点评:本题主要应用正方形的面积公式S=a×a解决问题.6.在有余数的整数除法算式a÷b=c中(b不等于0),a最大可取()A.bc+b﹣1B.bcC.bc+1【答案】A【解析】根据有余数的整数除法的规定:余数<除数,可知余数最大可取b﹣1,再根据被除数=除数×商+余数,即可求解.解:根据规定可知余数最大可取b﹣1,则a最大可取bc+b﹣1.故选A.点评:考查了有余数的除法,关键是熟悉有余数的除法各部分间的关系及有余数的整数除法的规定:余数<除数,有一定的难度.7.如果C表示圆的周长,那么算式()可以求出圆的半径.A. B.π C.×【答案】C【解析】根据圆的周长公式C=2πr,知道r=C÷π÷2=×,由此做出选择.解:因为C=2πr,所以r=C÷π÷2=×,故选:C.点评:本题主要是灵活利用圆的周长公式C=2πr解决问题.8.如果用v表示速度,t表示时间,s表示路程,那么()A.v+t=s B.v一t=s C.v•t=s D.v÷t=s【答案】C【解析】根据速度×时间=路程,把字母代入,即可做出选择.解:因为速度×时间=路程,所以v•t=s,故选:C.点评:本题主要考查了速度、时间与路程的关系;注意字母与字母相乘时,可以省略乘号,中间写一个小点.9.(2012•中山模拟)m表示一个三位数,n表示一个两位数,把n接在m的右边组成一个五位数,则此五位数应表示成()A.m+n B.m:n C.1000×m+n D.100×m+n【答案】D【解析】由于m表示一个三位数,把一个表示两位数的n接在m的右边,相当于把m扩大了100倍,据此表示出五位数即可.解:把一个表示两位数的n接在一个表示三位数的m的右边,相当于把m扩大了100倍,因此此五位数应表示成100×m+n;故选:D.点评:关键是理解把n接在m的右边组成一个五位数,相当于把m扩大了100倍.10.求a大于0而小于1.那么把a、a2、从小到大排列正确的是()A.a2<a<B.<a<a2C.a<a2<D.a<<a2【答案】A【解析】根据乘法的意义可知,一个数乘以一个小于1的数,则积就于于这个数;根据分数的意义可知,如果分母小于分子,则这个分数就大于1.由于0<a<a,则a2<a,>1,即a2<a<.故选:A.解:由于0<a<1,根据乘法及分数的意义可知,a2<a,>1,即a2<a<.故选:A.点评:抓住a<1这特点根据乘法及分数的意义进行分析是完成本题的关键.11.不计算,把每组方程中代表数值最小的字母填在括号里.【答案】b,n,a,a【解析】(1)根据“和”相同,一个加数最大,另一个加数就最小得解;(2)根据“差”相同,减数最小,被减数就最小得解;(3)根据“积”相同,一个因数最大,另一个因数就最小得解;(4)根据“商”相同,一个除数最小,被除数就最小得解.解:见下图:点评:此题要明确是在什么量相等的情况下,进而根据规律确定即可.12.口算:6x﹣2x= 3.5x﹣1.3x= 36a﹣l0a= 6y﹣2.5y=x×x= 9x﹣3.5x﹣4.5x= 9m﹣3m+2m= 16x2﹣8x2=【答案】4x,2.2x,26a,3.5y,x2,x,8m,8x2【解析】x×x,表示两个x相乘,得x2;其它试题按照逆用乘法分配律,计算得解.解:6x﹣2x=4x, 3.5x﹣1.3x=2.2x, 36a﹣l0a=26a, 6y﹣2.5y=3.5y,x×x=x2, 9x﹣3.5x﹣4.5x=x, 9m﹣3m+2m=8m, 16x2﹣8x2=8x2.点评:解决此题逆用乘法分配律即可得解;明确两个同数相乘,可以写成这个数的平方.13.用简便方法计算下面各题,再用字母表示出来.(1)15.6﹣9.2﹣0.8a﹣b﹣c=(2)390÷15÷2a÷b÷c=(3)38×75﹣38×55a×b﹣a×c=【答案】(1)5.6,a﹣b﹣c=a﹣(b+c);(2)13,a÷b÷c=a÷(b×c);(3)760,a×b﹣a×c=a×(b﹣c)【解析】(1)根据连减的性质进行计算;(2)根据连除的性质进行计算;(3)根据乘法分配律进行计算.解:(1)15.6﹣9.2﹣0.8,=15.6﹣(9.2+0.8),=15.6﹣10,=5.6;a﹣b﹣c=a﹣(b+c);(2)390÷15÷2,=390÷(15×2),=390÷30,=13;a÷b÷c=a÷(b×c);(3)38×75﹣38×55,=38×(75﹣55),=38×20,=760;a×b﹣a×c=a×(b﹣c).点评:完成本题要注意分析式中数据,运用合适的简便方法计算.14. a×12= b×b= a×b= x×y×7=5×x= 2×c×c= 7x×5= 2×a×b=【答案】12a,b2,ab ,7xy,5x,2c2,35x,2ab【解析】本题根据用字母表示数的简写方法求解.解:a×12=12a b×b=b2 a×b=ab x×y×7=7xy5×x=5x 2×c×c=2c2 7x×5=35x 2×a×b=2ab点评:数字和字母相乘时,一般把数字放在前边,乘号省略;字母和字母相乘把乘号省略,如果因数相同可以写成乘方的形式.15.王强设计的猜年龄的程序如下:输入你的年龄→乘2→减去2→→输出结果.(1)小丽输入的年龄为a,请用含有a的式子表示输出的结果.(2)奶奶输入自己的年龄,输出的结果是118,请你根据王强设计的猜年龄的程序计算出奶奶的年龄.【答案】(1)2a﹣2,(2)60岁【解析】(1)根据设计的猜年龄的程序,把小丽的输入的年龄a,乘2再减去2即可;(2)利用逆推的方法,根据输出的结果是118,用118加2再除以2即可.解:(1)a×2﹣2=2a﹣2,(2)(118+2)÷2,=120÷2,=60(岁);答:小丽年龄的输出结果是2a﹣2,奶奶的年龄是60岁.点评:解答此题的关键是,根据设计的猜年龄的程序,把所给出的数当做已知数,列式解答即可.16. c+c=2c,a×a=2a..【答案】错误【解析】因为a×a=a2,所以a×a=2a是错误的,2c表示两个c相加,进而得出结论.解:c+c=2c,a×a=a2;故答案为:错误.点评:解答此题,应根据题意进行计算,得出正确结论,进而进行判断即可.17.每两棵树之间的距离是5米.已知每5米种2棵树,每10米种3棵树,每15米种4棵树,每20米种5棵树,…,则M米可种多少棵树?【答案】[]+1【解析】根据题目意思可看出树的间距为5米,另外最开始头上有1棵;所以M米种树的棵数为:M÷5+1(M为5的倍数);如果M不是5的倍数,则取M÷5的整数部分,再加1.解:M米种树的棵数为:M÷5+1(M为5的倍数);如果M不是5的倍数,则取M÷5的整数部分,再加1;答:M米可种[]+1棵树.点评:解答本题的关键是不要忘记加上开始的1棵树.18.省略乘号,写出下面的式子.a×x= b×50= t×t= 1×m=.【答案】ax,50b,t2,m【解析】在含有字母的式子里,乘号可以省略,但要把数字提在字母的前面;据此简写得解.解:(1)a×x=ax;(2)b×50=50b;(3)t×t=t2;(4)1×m=m.故答案为:ax,50b,t2,m.点评:解决此题要注意字母与数相乘时可简写,即省略乘号,把数字提在字母的前面.19.用a表示第一个数,b表示第二个数,请用含有字母的式子表示“第二个数与第一个数的差除8.【答案】8÷(b﹣a)【解析】先写出第二个数与第一个数的差,再用此差除8,也即8除以此差即可.解:8÷(b﹣a);故答案为:8÷(b﹣a).点评:解决此题关键是理解“除”和“除以”的区别,进而把字母当做已知数解答即可.20.一辆汽车每次运煤x吨,10次可运煤吨.【答案】10x【解析】用每次运煤的吨数×运煤的次数=运煤的总吨数,由此用x乘10即可.解:x×10=10x(吨),答:10次可运煤10x吨;故答案为:10x.点评:注意字母与数相乘时要简写,即省略乘号,把数写在字母的前面.21.一本数学辞典售价b元,利润是成本的25%,如果把利润提高到35%,那么应提高售价元.【答案】【解析】一本数学辞典售价b元,利润是成本的25%,这里是吧成本价看做单位“1”,单位“1”不知道用除法教学就是,求出单位“1”在,再求出利润提高到35%的售价减去原来的售价b就是应提高的售价.解:b÷(1+25%)×(1+35%)﹣b,=b××﹣b,=b﹣b,=b(元);故答案为:.点评:本题是一道百分数实际应用题,考查了学生分析,解决实际问题的能力.22.省略乘号,写出下面各式.b×x=a×b=a×a×a=(a+b)×c=a×b+c=a×b×c=.【答案】bx,ab,a3,ac+bc,ab+c,abc【解析】a×a×a,表示3个a相乘,可表示为a3;(a+b)×c,运用乘法分配律改写;a×b+c,只能省略乘号,不能省略加号;其它式子直接省略乘号即可.解:省略乘号,写出下面各式.b×x=bx;a×b=ab;a×a×a=a3;(a+b)×c=ac+bc;a×b+c=ab+c;a×b×c=abc.故答案为:bx,ab,a3,ac+bc,ab+c,abc.点评:此题考查用字母表示数,注意:在含有字母的式子里,如果是字母和字母相乘,中间的乘号可以直接省略;但如果是字母和数相乘时中间的乘号也可以省略,但要把数字写在字母的前面.23.说说下面每个算式所表示的意义.(1)小华义务植树20棵,比小刚少x棵.20+x表示;20+x+20表示.(2)王师傅每小时加工a个零件,他第一天加工6小时,第二天加工7小时.6a表示;7a表示:(6+7)a表示;(7﹣6)a表示.【答案】小刚植树多少棵;他们两人一共植树多少棵;第一天加工了多少个零件,第二天加工了多少个零件,第一天和第二天一共加工了多少个零件,第二天比第一天多加工多少个零件【解析】(1)20+x,20表示小华植树棵数,加上比小刚少的x棵,表示小刚植树多少棵;20+x+20,20+x是小刚植树的棵数,再加上小华植树的20棵,表示他们两人一共植树多少棵;(2)6a,第一天加工的时间乘每小时加工a个零件,表示第一天加工了多少个零件;7a,第二天加工的时间乘每小时加工a个零件,表示第二天加工了多少个零件;(6+7)a,两天的加工时间和乘每小时加工a个零件,表示两天一共加工了多少个零件;(7+6)a,两天的加工时间差乘每小时加工a个零件,表示第二天比第一天多加工多少个零件.解:(1)20+x表示小刚植树多少棵;20+x+20表示他们两人一共植树多少棵.(2)6a表示第一天加工了多少个零件;7a表示第二天加工了多少个零件:(6+7)a表示第一天和第二天一共加工了多少个零件;(7﹣6)a表示第二天比第一天多加工多少个零件.故答案为:小刚植树多少棵,他们两人一共植树多少棵;第一天加工了多少个零件,第二天加工了多少个零件,第一天和第二天一共加工了多少个零件,第二天比第一天多加工多少个零件.点评:做这类用字母表示数的题目时,把字母看成一个具体的数,然后再进一步解答.24.小明每小时行的路程是15千米,t小时行了千米.【答案】15t【解析】已知速度和时间,求路程,运用关系式:路程=速度×时间.解:15×t=15t(千米);答:t小时行了15t千米.故答案为:15t.点评:此题运用了关系式:路程=速度×时间.25.一个正方形花坛的边长是a米,它的面积是平方米,周长是米.【答案】a2;4a【解析】正方形的面积=边长×边长,周长=边长×4,据此即可解答.解:a×a=a2(平方米),a×4=4a(米),故答案为:a2;4a.点评:此题考查了正方形的周长和面积公式.26.买一根跳绳要付2.5元,买x根这样的跳绳需要元,用b元钱可以买同样的跳绳根.【答案】2.5x,b÷2.5【解析】(1)根据单价×数量=总价,求出买x根这样的跳绳需要的钱数;(2)用总价÷单价=数量,求出用b元钱可以买同样的跳绳的根数.解:(1)2.5x(元),(2)b÷2.5(根),故答案为:2.5x,b÷2.5.点评:本题主要是根据单价,数量与总价之间的关系解决问题.27.长方形周长计算公式用字母表示是.【答案】c=2(a+b)【解析】本题是一个用字母表示数的题.用c表示长方形的周长,用a表示长,用b表示宽,则长方形周长计算公式用字母表示是:c=(a+b)×2.解:长方形周长计算公式用字母表示是:c=2(a+b).故答案为:c=2(a+b).点评:此题考查用字母表示计算公式.28. x与y的差的6倍,用式子表示为:6x﹣y.【答案】错误【解析】先求出x与y的差,再用求出的差乘6就是x与y的差的6倍.解:(x﹣y)×6,=6x﹣6y,故答案为:错误.点评:解答此题的关键是,根据题意,判断运算顺序,即先算x与y的差,由此得出答案.29.如果苹果每千克a元,雪梨每千克b元,那么:①4a表示②2b表示③a﹣b表示④5(a+b)表示.【答案】4千克苹果多少钱,2千克雪梨多少钱,每千克苹果比雪梨贵多少钱,5千克苹果和5千克雪梨一共多少钱【解析】4a就是4乘a,a是苹果的单价,4a就是4千克苹果的总价;同理2b表示2千克雪梨的总价;5(a+b)就是5千克苹果和5千克雪梨的总价;a﹣b是苹果的单价比雪梨的单价多多少钱.解:①4a表示4千克苹果多少钱;②2b表示2千克雪梨多少钱;③a﹣b表示每千克苹果比雪梨贵多少钱;④5(a+b)表示5千克苹果和5千克雪梨一共多少钱.故答案为:4千克苹果多少钱,2千克雪梨多少钱,每千克苹果比雪梨贵多少钱,5千克苹果和5千克雪梨一共多少钱.点评:本题首先要理解同时有字母和数字时表示的什么,它是数字和字母相乘的简写形式,再根据字母表示的含义求解.30.用a表示长方形的长,b表示宽、S表示面积,C表示周长,那么面积的字母公式是;周长公式是.【答案】S=ab;C=2(a+b)【解析】(1)根据长方形的面积公式,即长方形的面积=长×宽,将字母代入,即可得出答案;(2)根据长方形的周长公式,即长方形的周长=(长+宽)×2,将字母代入,即可得出答案.解:(1)因为,长方形的面积=长×宽,所以,S=a×b=ab,(2)因为,长方形的周长=(长+宽)×2,C=(a+b)×2,=2(a+b),故答案为:S=ab;C=2(a+b).点评:此题主要考查了用字母表示长方形的面积公式和周长公式,即根据公式,分别将字母代入即可.31.+85=+a,这里运用了律,用字母表示为.【答案】a、85,交换律,a+b=b+a【解析】根据加法交换律的意义:两个数相加,交换加数的位置和不变,这叫做加法交换律.据此解答.解:a+85=85+a,这里运用了加法交换律,用字母表示为:a+b=b+a.故答案为:a、85,交换律,a+b=b+a点评:此题考查的目的是理解掌握加法交换律的意义,并且能够灵活运用加法交换律进行简便计算.32.用字母a、b、c表示如下运算定律:加法交换律;加法结合律;乘法交换律;乘法结合律;乘法分配律.【答案】a+b=b+a;(a+b)+c=a+(b+c);a×b=b×a;(a×b)×c=a×(b×c);a×(b+c)=a×b+a×c【解析】加法交换律:两个数相加,交换加数的位置,和不变.加法结合律:三个数相加,先把前两个数相加,再与第三个数相加,或者是先把后两个数相加,再与第一个数相加,和不变.乘法交换律:两个数相乘,交换因数的位置,积不变.乘法结合律:三个数相乘,先把前两个数相乘,再与第三个数相乘,或者是先把后两个数相乘,再与第一个数相乘,积不变.乘法分配律:一个数乘两个数的和,等于这个数分别乘这两个加数,然后把乘得的积相加.解:例如:加法交换律:2+3=5,3+2=5,a+b=b+a;加法结合律:1+2+3,=(1+2)+3,=3+3,=6,1+2+3,=1+(2+3),=1+5,=6,(a+b)+c=a+(b+c);乘法交换律:2×3=6,3×2=6,a×b=b×a;乘法结合律:2×3×5,=(2×3)×5=6×5=30,2×3×5,=2×(3×5),=2×5,=30,(a×b)×c=a×(b×c);乘法分配律:5×(2+4),=5×6,=30,5×(2+4),=5×2+5×4,=10+20,=30,a×(b+c)=a×b+a×c;故答案为:a+b=b+a;(a+b)+c=a+(b+c);a×b=b×a;(a×b)×c=a×(b×c);a×(b+c)=a×b+a×c.点评:此题考查了加法的交换律和结合律的字母表示形式,乘法的交换律、结合律、分配律的字母表示形式.33.当a时,a的倒数一定大于a.当a时,a的倒数一定小于a.当a时,a 的倒数一定等a.【答案】<1;>1;=1【解析】当一个数小于1时,它的倒数一定大于这个数;当一个数大于1时,这个数的倒数一定小于这个数;1的倒数是它本身.据此解答即可.解:由分析得出:当a<1时,a的倒数一定大于a.当a>1时,a的倒数一定小于a.当a=1时,a的倒数一定等a.故答案为:<1;>1;=1.点评:此题考查了倒数的意义.34. a台织布机b小时织布c米,则每台织布机每小时织布c÷a÷b米.【答案】√【解析】可以先求a台每小时织布多少米,再求每台每小时织布多少米;也可以先求每台b小时织布多少米,再求每台每小时织布多少米;由此解答即可.解:方法一:c÷b÷a(米),方法二:c÷a÷b(米),答:每台织布机每小时织布c÷a÷b米.故判断:√.点评:此类题都有两种解法,解答时要弄清题意,确定先求什么,再求什么,然后列式解答.35.圆的面积公式是,你们是如何得到这个公式的?请你简要写出过程如果把一条长为12.56cm的铁丝围成一个圆形,那么它的面积是.【答案】s=πr2;把圆平均分成若干份,沿半径剪开再拼成一个近似长方形,这个长方形的长等于圆周长的一半,宽等于圆的半径,根据长方形的面积公式推导出圆的面积公式;12.56平方厘米【解析】圆的面积公式是:s=πr2,把圆平均分成若干份,沿半径剪开再拼成一个近似长方形,根据长方形的面积公式推导出圆的面积公式.如果把一条长为12.56cm的铁丝围成一个圆形,也就是圆的周长是12.56厘米,首先根据c=2πr,求出半径,再把数据代入圆的面积公式解答.解:圆的面积公式是:s=πr2,把圆平均分成若干份,沿半径剪开再拼成一个近似长方形,这个长方形的长等于圆周长的一半,宽等于圆的半径,因为长方形的面积=长×宽,所以圆的面积=圆周长的一半()×半径(r)=πr2.3.14×()2,=3.14×22,=3.14×4,=12.56(平方厘米);故答案为:s=πr2,把圆平均分成若干份,沿半径剪开再拼成一个近似长方形,这个长方形的长等于圆周长的一半,宽等于圆的半径,根据长方形的面积公式推导出圆的面积公式.12.56平方厘米.点评:此题考查的目的是理解掌握圆的面积公式的推导过程,并且能够根据公式计算圆的面积.36.小明今年A岁,他父亲的年龄是他的2倍还多3岁,他父亲今年岁.【答案】2A+3【解析】由题意得出等量关系式:父亲今年年龄=小明今年年龄×2+3,代数计算即可.解:由题意得:父亲今年的年龄为:2A+3岁.答:他父亲今年2A+3岁.故答案为:2A+3.点评:解决本题的关键是根据题意找出等量关系式.37.小明每天看书a页,小青每天看书b页,10天共看书页.【答案】10a+10b【解析】先用“a+b”求出小明和小青每天看的页数,然后根据“每天看的页数×天数=总页数”求出10天看的页数”即可.解:(a+b)×10,=10a+10b(页);答:10天共看书10a+10b页;故答案为:10a+10b.点评:此题考查了用字母表示数,先求出小明和小青每天看的页数,进而根据每天看的页数、天数和所看总页数三者之间的关系解答即可.38.超市运来50袋大米,每袋x千克,卖了1300千克,还剩下千克.【答案】50x﹣1300【解析】用50乘x先求出运进大米的总重量,再根据“大米的总重量﹣卖了的重量=剩下的重量”进行解答..解:50x﹣1300(千克);答:还剩下50x﹣1300千克;故答案为:50x﹣1300.点评:把给出的字母当做已知数,再根据基本的数量关系,列式解答即可.39.如果a÷b=,那么a就是b的..【答案】√【解析】根据除法各部分间的关系:a=b×,所以a就是b的.据此判断即可.解:由分析得出:如果a÷b=,那么a就是b的.题干说法正确.故答案为:√.点评:解决本题要熟练利用除法各部分间的关系,根据题意先写出乘法算式,再解答.40.小明今年x岁,爸爸今年的年龄是小明的3倍,爸爸今年有岁,小明和爸爸今年一共岁.【答案】3x,4x【解析】求爸爸今年多少岁,根据求一个数的几倍是多少,用乘法解答;求小明和爸爸今年一共多少岁,把小明的年龄和爸爸的年龄相加即可.解:小明今年x岁,爸爸今年的年龄是小明的3倍,爸爸今年有3x岁,小明和爸爸今年一共:x+3x=4x(岁);故答案为:3x,4x.点评:此题考查了用字母表示数,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.41.用字母表示乘法交换律是ab=ba.【答案】正确【解析】依据乘法交换律意义:两个数相乘,并换因数的位置,它们的积不变解答.解:乘法交换律:ab=ba,故答案为:正确.点评:此题主要了用字母表示运算定律,注意字母和字母相乘时,可以省略乘号.42.甲数是a+b的和,乙数是a﹣b的差,则甲数和乙数相差.【答案】2b【解析】根据题干,用甲数﹣乙数,即(a+b)﹣(a﹣b),据此去掉括号即可求出它们的差.解:(a+b)﹣(a﹣b),=a+b﹣a+b,=2b,答:甲乙两个数的差是2b.故答案为:2b.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,根据题意列式计算即可得解.43.一个自然数n(n>1),与它相邻的两个自然数是和.【答案】n﹣1,n+1【解析】因为相邻的两个自然数相差1,则与n相邻的两个自然数为:n﹣1,n+1;据此解答即可.解:n是一个自然数,与n相邻的两个自然数分别n﹣1和n+1;故答案为:n﹣1,n+1.点评:解答此题的关键是知道每相邻的两个自然数之间相差1.44.如果用v表示速度,t表示时间,S表示路程,那么S=.【答案】vt【解析】因为路程=速度×时间,所以s=vt,据此解答即可.解:由题意得:S=vt.故答案为:vt.点评:此题主要考查路程=速度×时间,要熟记三者之间的关系.45.(a+b)+c=a+(b+c)表示的运算定律是;乘法的交换律用字母写出来是,乘法的分配律用字母写出来是.【答案】加法结合律,a×b=b×a,(a+b)×c=a×c+b×c【解析】加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变;用字母表示为(a+b)+c=a+(b+c);乘法交换律:交换两个因数的位置,积不变;用字母:a×b=b×a;乘法分配律:两个数相加,再同第三个数相乘,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变;用字母表示为:(a+b)×c=a×c+b×c;解答即可.解:(a+b)+c=a+(b+c)表示的运算定律是加法结合律;乘法的交换律用字母写出来是:a×b=b×a,乘法的分配律用字母写出来是:(a+b)×c=a×c+b×c;故答案为:加法结合律,a×b=b×a,(a+b)×c=a×c+b×c.点评:此题考查了加法和乘法中的一些运算定律.46.写出含有字母的式子.(1)花店里有黄花a朵,红花的朵数比黄花的3倍少18朵,红花有朵.(2)学校食堂十月份计划烧煤x吨,实际比计划节约了,实际烧煤吨.(3)李明看一本书,已经看了x页,剩下的页数是已看页数的,这本书有页.【答案】(1)3a﹣18;(2)x;(3)x【解析】(1)由题意得出等量关系式:红花数量=黄花的数量×3﹣18,即3a﹣18;(2)由题意得出:把计划烧煤两看作单位“1”,实际烧煤量=计划烧煤量×(1﹣),即(1﹣)x;(3)由题意得出等量关系式:总页数=已经看的页数+剩下的页数=已经看的页数+已经看的页数×,代数计算即可.解;(1)红花有:3a﹣18(朵);答:红花有3a﹣18朵.(2)实际烧煤:(1﹣)x=x(吨);答:实际烧煤x吨.(3)x+x=x(页),答:这本书有x页.故答案为:(1)3a﹣18;(2)x;(3)x.点评:解决本题的关键是找出正确的等量关系式,再代数解答.47.省略乘号写出下列各式.m×2×n= a×7+b=.【答案】2mn,7a+b【解析】当字母和字母相乘时,中间的乘号可以省略,当字母和数相乘时,省略乘号,数要写在字母的前面.解:m×2×n=2mn,a×7+b=7a+b;故答案为:2mn,7a+b.点评:本题主要考查了字母与字母相乘及字母和数相乘时的简便写法.48.学校餐厅有大米x千克,每天吃15千克,吃了6天后,还剩下千克.【答案】x﹣90【解析】已知每天吃15千克,吃了6天,求减少了多少,用乘法;又已知共有大米x千克,求还剩多少,用减法;即可得解.解:吃了:15×6=90(千克),还剩下:x﹣90千克,故答案为:x﹣90.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.49.王老师买足球和排球各X只,足球每个35.8元,排球每个23.5元.王老师一共用了元,买足球比买排球多用元.【答案】59.3x,12.3x【解析】(1)要求王老师买足球和排球一共用了的钱数,因为买足球和排球各X只,就用足球和排球的单价和乘数量即可;(2)要求买足球比买排球多用的钱数,因为买足球和排球各X只,就用足球和排球的单价差乘数量即可.解:(1)(35.8+23.5)×x=59.3x(元);答:王老师一共用了59.3x元.(2)(35.8﹣23.5)×x=12.3x(元);答:买足球比买排球多用12.3x元.故答案为:59.3x,12.3x.点评:解决此题也可以先求出买x个足球用的钱数和买x个排球用的钱数,进而相加就是一共用的钱数;相减就是买足球比买排球多用的钱数.50. x的2倍加上6,可以写成2x+6,这个式子不是方程.()【答案】√【解析】根据方程的意义:含有未知数的等式叫做方程.据此分析判断即可.解:2x+6,只是一个含有未知数式子,而不是等式,所以:2x+6,这个式子不是方程.故答案为:√点评:此题主要考查方程的意义,含有未知数的等式叫做方程.方程具备两个条件:一含有未知数,二需要是等式;因此解答即可.51.一个等腰三角形的周长是y厘米,底边是x厘米,那么一条腰长厘米.【答案】【解析】等腰三角形的两腰长相等,用三角形的周长减去底边长,就是两条腰的长,求一条腰长除以2即可解决问题.解:(y﹣x)÷2=;故答案为:.点评:解答此题要明确三角形的周长是指三条边的长度和以及等腰三角形的两腰相等这一性质.52. a与b的3倍的和是;a与b的和的3倍是.【答案】a+3b,3a+3b【解析】(1)a与b的3倍的和,是先求出b的3倍,即3b,然后再用a加上3b即可;(2)a与b和的3倍,是先求和,然后用和乘上3,即用a加上b求出和,再用得到的和乘上3.解:a与b的3倍的和是 a+3b;a与b和的3倍是(a+b)×3=3a+3b.故答案为:a+3b,3a+3b.点评:解决本题要注意运算的顺序,看清是和的3倍,还是与3倍的和.53.分数,当a=时,它的分数值是b,当b=时,它的分数值是这个分数的分数单位.【答案】1、1【解析】当a=1时,==b,所以的分数值是b;当b=1时,=,所以的分数值是这个分数的分数单位.解:(1)当a=1时,==b,所以的分数值是b;(2)当b=1时,=,所以的分数值是这个分数的分数单位.故答案为:1、1.点评:本题主要考查了根据题目要求赋予字母一定的数值的方法,一般是从特殊的数字考虑,比如1、0等数字.。

用字母表示数

用字母表示数
A.原价减去10元后再打8折
B.原价打8折后再减去10元
C.原价减去10元后再打2折
D.原价打2折后再减去10元
【练习】我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是( )
A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额
B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长
(2)当数与字母相乘时,数字因数写在字母的前面,如 应写作 ;
(3)当数字因数是1或—1时,“1”常省略不写;
(4)当带分数与字母相乘时,应把带分数化成假分数;
(5)含有字母的除法通常写成分数的形式;
(6)当式子后面有单位且式子是和或差的形式时,应把式子用括号括起来.
【例】在式子 , , , , 中,符合代数式书写要求的有( )
【练习】为庆祝“六 一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:
按照上面的规律,摆 个“金鱼”需用火柴棒的根数为………()
A. B. C. D.
【练习】找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第 幅图中共有个.
【练习】把正整数1,2,3,4,5,……,按如下规律排列:
【练习】由两种本.一种单价是0.3元,另一种单价是0.5元,买这两种本的本数分别是a和b,问供别是.
【练习】若练习本每本a元,铅笔每支b元,那么代数式 表示的意义是.
【练习】实验中学初三年级12个班中共有团员a人,则 表示的实际意义是.
题型三:用字母表示规律问题
用字母表示数
【要点梳理】
要点一:用字母表示数
★用字母表示数的意义:用字母表示数,能简明地把数、数量关系、法则和变化规律表达出来.例如:某商品的售价为a元,为了促销打七折,现在的价格是0.7a元

数学用字母表示数试题答案及解析

数学用字母表示数试题答案及解析

数学用字母表示数试题答案及解析1.下面的式子表示乘法分配律的是()A.a•b=b•aB.(2+b)•c=2c+bcC.a•b•c=a•(b•c)【答案】B【解析】依据乘法分配律意义:两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,结果不变,以及字母表达式:a×(b+c)=a×b+a×c与选项比较,即可解答.解:依据乘法分配律意义以及字母表达式可得:B.(2+b)•c=2c+bc运用了乘法分配律.故选:B.点评:本题主要考查学生对于乘法分配律意义,以及字母表达式的掌握情况.2. a是不等于0的数,a×0.5与下面哪道算式的得数相等?()A.a÷0.5B.a×2C.a÷2【答案】C【解析】因为a×0.5=a×,所以B是错误的;再根据除以一个数等于乘这个数的倒数,对A和C 进行解答,做出选择.解:A、a÷0.5=a÷=a×2,所以A是错误的;B、因为a×0.5=a×,所以B是错误的;C、a÷2=a×=a×0.5,所以a×0.5与a÷2的得数相等;故选:C.点评:本题主要利用了分数与小数的互化及分数除法的计算方法解决问题.3.如果a×b=0,那么()A.a一定是0B.b一定是0C.a和b至少有一个是0D.a和b都是0【答案】C【解析】两个因数的积等于0,则这两个因数中必定至少有一个数是0,据此即可选择.解:根据题干分析可得,若a×b=0,则a和b至少有一个是0,故选:C.点评:根据0的运算性质即可选择.4.甲数是a,比乙数的3倍还多0.2,求乙数是多少?正确算式是()A.a÷3+0.2B.a÷3﹣0.2C.(a﹣0.2)÷3D.(a+0.2)÷3【答案】C【解析】此题可逆推思考,即乙的3倍多0.2是甲数a,也就是说从甲数里去掉多的0.2就正好是乙的3倍了,根据已知一个数的几倍是几求这个数,用除法可列式解答.解:因为:甲数比乙数的3倍还多0.2,即乙的3倍多0.2是甲,所以:从甲里去掉多的0.2就正好是乙的3倍,所以乙数是:(a﹣0.2)÷3,故选:C.点评:此题重在理解题意,甲如果不多0.2,就正好是乙的3倍,用除法解答.5.在a÷0.1,a×0.1,a×2.5,a÷2.5四个算式中(a均不为0),得数最大的一个算式是()A.a÷0.1B.a×0.1C.a×2.5D.a÷2.5【答案】C【解析】分别求出四个选项中算式的值,比较大小解答.解:A、a÷0.1=10a,B、a×0.1=0.1a,C、a×2.5=2.5a,D、a÷2.5=0.4a,故选:C.点评:此题除了计算数值比较外,还可以用商的变化规律以及积的变化规律解答.6.钢笔x元一枝,比笔记本的5倍少a元,笔记本的价钱是()A.5x﹣a B.(x+a)÷5C.(x﹣a)÷6D.x÷5﹣a【答案】B【解析】由“比笔记本的5倍少a元,”得出钢笔的钱数=笔记本的钱数×5倍﹣a,由此用钢笔的钱数加上a求出笔记本的钱数的5倍,再除以5求出笔记本的价钱.解:(x+a)÷5(元),答:笔记本的价钱是(x+a)÷5元;故选:B.点评:关键是根据题意得出数量关系:钢笔的钱数=笔记本的钱数×5倍﹣a,先求出笔记本的钱数的5倍,进而求出笔记本的价钱.7.小军今年a岁,小华今年(a﹣3 )岁,再过 x 年后,他俩相差()岁.A.A﹣3B.3C.x【答案】B【解析】两人的年龄差是永远不变的,两人原来相差3岁,若干年后仍然相差3岁.解:由“小军今年a岁,小华今年(a﹣3 )岁”可知:小军与小华年龄相差3岁,且这个数值是不变的,所以说再过x年后,他俩仍然相差3岁.故选:B.点评:抓住年龄差不变是解答此题的关键.8.如果用v表示速度,t表示时间,s表示路程,那么()A.v+t=s B.v一t=s C.v•t=s D.v÷t=s【答案】C【解析】根据速度×时间=路程,把字母代入,即可做出选择.解:因为速度×时间=路程,所以v•t=s,故选:C.点评:本题主要考查了速度、时间与路程的关系;注意字母与字母相乘时,可以省略乘号,中间写一个小点.9.如果m是一个大于1的数,则m+与m×相比较()A.m大B.m×大C.无法比较【答案】A【解析】因为m是一个大于1的数,所以m乘一个小于1的数,积一定小于m;m加上一个小于1的数,和一定大于m.据此即可进行选择.解:由分析得出:m+>m×.故选:A.点评:本题不必计算,只要根据积与和的规律即可正确选择.10.一个半圆形,半径是R,它的周长是()A.2π×B.πr+r C.r×(2+π)D.πr×r×【答案】C【解析】半圆形的周长=整圆的周长÷2+直径=2π×半径÷2+2×半径,当半径用r表示时,列式计算即可得解.解:半圆形的周长:C=2π×r÷2+2×r,=πr+2r,=r(2+π);故选:C.点评:此题考查用字母表示计算公式,解决此题关键是明确半圆的周长是圆周长的一半再加上一条直径的长度.11.随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费按原标准每分钟降低了a元后,再次下调了25%,现在的收费标准是每分钟b元,则原收费标准每分钟为()元.A.b﹣a B.b+a C.b+a D.b+a【答案】C【解析】设原收费标准每分钟为x元,则根据题意,以现在的收费标准为等量关系,列出等式,表示出原收费标准即可.解:设原收费标准每分钟为x元,由题意得,(x﹣a)(1﹣25%)=b,(x﹣a)×75%=b,x﹣a=b,x=b+a.故选:C.点评:解答本题的实质是实现从基本数量关系的语言表述到用字母表示一种转化,设出未知数,借助方程,列出等式,从而求出答案.12.某校初一(1)班有女生b,男生比女生的2倍少3人.男生有()人.A.2b+3B.(b+3)÷2C.2b﹣3D.D、【答案】C【解析】根据“男生比女生的2倍少3人”,可知男生人数=女生人数×2﹣3,把女生人数b代入关系式即可.解:男生有:b×2﹣3=2b﹣3(人);故选:C.点评:关键是找出数量关系式,根据数量关系式列式;注意字母与数相乘时可简写,即省略乘号,把数写在字母的前面.13.某同学X分钟可以制作b朵小花,以同样的速度2分钟可以做出()朵这样的小花.A.B.C.D.【答案】B【解析】先求出一分钟做几多小花;再乘2就是2分钟可以做出这样的小花的朵数.解:b÷X×2=(朵);故选:B.点评:解答此题的关键是把给出的字母当做已知数,再根据工作效率、工作时间与工作量的关系列式解答即可.14.一个数比a的3倍多5,这个数与a的和是()A.a+3a+5B.a+3a﹣5C.3a+5【答案】A【解析】由“一个数比a的3倍多5,”得出一个数=a×3+5,由此求出一个数,再加上a即可.解:a+a×3+5,=a+3a+5,故选:A.点评:关键是把给出的字母当做已知数,再根据基本的数量关系解决问题.15.用含有字母的式子表示下面各题中的数量关系.(1)56的x倍与8的和.(2)56与x的8倍的和.(3)56的8倍与x的和.(4)56与x的和的8倍..【答案】56x+8,56+8x,56×8+x,(56+x)×8【解析】(1)先用乘法求出56的x倍,然后加上8即可;(2)先用乘法求出x的8倍,然后加上56即可;(3)先用乘法求出56的8倍,然后加上x即可;(4)先用加法求出56与x的和,然后根据求一个数的几倍,用乘法解答即可.解:(1)56的x倍与8的和:56x+8;(2)56与x的8倍的和:56+8x;(3)56的8倍与x的和:56×8+x;(4)56与x的和的8倍:(56+x)×8;故答案为:56x+8,56+8x,56×8+x,(56+x)×8.点评:解答此题的关键是,根据各个题的特点,把给出的字母当做已知数,再根据基本的数量关系解答.16.连一连.【答案】【解析】(1)根据乘法的意义,x+x=2x;(2)根据乘方的意义:x•x=x2;(3)根据字母表示数的方法得出:3.2m=3.2×m;(4)根据乘法的意义得出:2a=a+a;(5)根据乘方的意义:a2=a×a;(6)根据乘方的意义:32=3×3;据此连线即可.解:如图所示:.点评:此题主要考查字母表示数的简便写法.17.直接写出计算结果.8x+6x= 6b﹣1.5b= 7.5y﹣2.6y= 3a+2a=6x+3x﹣4x= 3.6a+5.4a+a= 4m+8m﹣5m= 8a﹣6a+4a=【答案】14x,4.5b,4.9y,5a,5x,10a,7m,6a【解析】根据乘法分配律:ac±bc=(a±b)×c,据此解答即可.解:8x+6x=14x 6b﹣1.56b=4.5b 7.5y﹣2.6y=4.9y 3a+2a=5a6x+3x﹣4x=5x 3.6a+5.4a+a=10a 4m+8m﹣5m=7m 8a﹣6a+4a=6a点评:解答此题的关键是:把字母表示数,应用乘法分配律进行解答即可.18. b×9可以写成9b..【答案】√【解析】b×9,这个乘法算式里含有字母,可以省略乘号,但是必须把数字提到字母的前面,可以写成9b;据此判断.解:b×9可以写成9b.故判断为:√.点评:注意:字母与数相乘时可以简写,即省略乘号,把数字提到字母的前面.19.假设某人的年龄是a岁,请你用最简单的式子表示输出结果.【答案】a﹣1【解析】根据题意,先输出年龄数a,然后用a乘2得2a,再用2a减去2,进而用差乘0.5即为输出结果.解:(a×2﹣2)×0.5,=(2a﹣2)×0.5,=2a×0.5﹣2×0.5,=a﹣1;答:输出结果是a﹣1.点评:此题考查用字母表示数,关键是按照给出的步骤列式即可,要注意在列综合算式时,遇到加减法先算时要加上括号.20.(2012•民乐县模拟)两堆货物原来相差a吨,如果两堆货物各自运走10%以后,剩下的仍相差a吨..【答案】错误【解析】两堆货物原来相差a吨,如果两堆货物各自运走10%以后,则剩下的相差0.9a吨;可以假设第一堆货物的重量是1吨,则第二堆就为(1+a)吨,通过计算验证以上结论即可.解:假设第一堆货物的重量是1吨,则第二堆就为(1+a)吨,则第一堆剩下:1×(1﹣10%)=1×0.9=0.9(吨),第二堆剩下:(1+a)×(1﹣10%)=(1+a)×0.9=0.9+0.9a(吨),两堆剩下的相差:0.9+0.9a﹣0.9=0.9a(吨),剩下的相差0.9a吨,所以两堆货物原来相差a吨,如果两堆货物各自运走10%以后,剩下的相差0.9a吨;故判断为:错误.点评:此题考查百分数的实际应用,解决关键是假设第一堆货物的重量是1吨,则第二堆就为(1+a)吨,进而计算出两堆货物各自运走10%后,剩下的相差0.9a吨即可.21. a2与2a一定不相等.(a≠0).(判断对错)【答案】×【解析】根据a2=a×a,2a=2×a,当a=2时,a2=22=4,2a=2×2=4,此时a2=2a;当a=1时,12=1,2×1=2,所以a2小于2a;当a>2时,a2>2a;据此解答即可.解:因为当a=2时,a2=22=4,2a=2×2=4,此时a2=2a;所以a2与2a一定不相等说法错误.故答案为:×.点评:引导学生举出反例,是判断此题最简单的方法.22.在下面的图形里任意选几个拼成一个长方形,你所拼成的长方形面积用字母表示是.【答案】mn+ma【解析】本题有多种组合的方法,我们就选①和②图形进行组合,把②放在①的上面,这样就组成了长方形,依据长方形的面积公式,长×宽=面积,分别把2个图形的面积计算出来加在一起,就是新图形的面积.解:拼图如下:根据长方形的面积公式;大正方形的面积=①+②,=mn+ma;故答案为:mn+ma.点评:本题考查了学生的动手操作能力,同时考查了长方形的面积公式的灵活应用.23.某校四年级有两个班,其中甲班有a人,乙班比甲班多3人,则该校四年级共有学生人.【答案】2a+3【解析】根据“甲班有a人,乙班比甲班多3人”,可用字母表示出乙班的人数,再进一步求得四年级的总人数.解:乙班的人数:a+3(人);四年级的总人数:a+(a+3)=2a+3(人).答:该校四年级共有学生2a+3人.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.24.小明买了5只笔,3个本,每只笔X元,每个本Y元,他一共花了元.【答案】5x+3y【解析】根据:单价×数量=总价,分别求出5支笔的总价和3个本子的总价,然后用买笔的总价加上买本子的总价即可.解:5x+3y,故答案为:5x+3y.点评:此题主要考查单价、数量和总价之间的关系,做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来.25.一件上衣a元,一条裤子38元.a﹣38表示 a+38表示2a+38表示 a+38×2表示.【答案】一件上衣比一条裤子贵多少元钱,买一件上衣和一条裤子共花费多少元钱,买2件上衣和一条裤子共多少元钱,买1件上衣和2条裤子共多少元钱【解析】因为一件上衣a元,一条裤子38元,所以可以得出:a﹣38表示一件上衣比一条裤子贵多少元钱?a+38表示买一件上衣和一条裤子共花费多少元钱?2a+38表示买2件上衣和一条裤子共多少元钱?a+38×2表示买1件上衣和2条裤子共多少元钱?据此解答.解:a﹣38表示一件上衣比一条裤子贵多少元钱?a+38表示买一件上衣和一条裤子共花费多少元钱?2a+38表示买2件上衣和一条裤子共多少元钱?a+38×2表示买1件上衣和2条裤子共多少元钱?故答案为:一件上衣比一条裤子贵多少元钱,买一件上衣和一条裤子共花费多少元钱,买2件上衣和一条裤子共多少元钱,买1件上衣和2条裤子共多少元钱.点评:解答此题的关键是,根据各个题的特点,把给出的字母当做已知数,再根据基本的数量关系解答.26.还剩页.【答案】n﹣24【解析】用书的总页数减去看了的页数求出剩下的页数.解:n﹣24(页),答:还剩n﹣24页;故答案为:n﹣24.点评:利用本题的数量关系是:书的总页数﹣看了的页数=剩下的页数解决问题.27. a×3可以简写成,b×b可以简写成.【答案】3a,b2【解析】字母与数字的乘积可以省略乘号,把数字写在字母的前面;两个相同因数的乘积是这个数的平方;据此解答.解:a×3可以简写成3a,b×b可以简写成b2;故答案为:3a,b2.点评:解决本题的关键是明确字母表示数的简便方法.28.一支铅笔的单价是a元,买了6支,应付元.【答案】6a【解析】根据:总价=单价×数量,代数计算即可.解:a×6=6a(元);答:应付6a元;故答案为:6a.点评:此题主要考查总价、单价、数量之间的关系,要灵活运用.29.一本故事书小文看了8天,每天看a页,还剩18页,这本书共有页.【答案】8a+18【解析】先根据看的总页数=每天看的页数×天数,求出已经看的页数,则这本书的总页数=已经看的页数+剩下的页数,代数计算即可.解:这本书共有:8a+18(页).答:这本书共有8a+18页.故答案为:8a+18.点评:解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.30.一批货物100吨,每车运6吨,运了x车后,还剩下吨.【答案】100﹣6x【解析】先求出x车运的吨数,用货物的总吨数减去运走的吨数,就是剩下的吨数.解:100﹣6×x,=100﹣6x(吨),答:剩下100﹣6x吨,故答案为:100﹣6x.点评:解答此题的关键是,把字母x当做已知数,再根据基本的数量关系,列式解答即可.31. x与y的差的6倍,用式子表示为:6x﹣y.【答案】错误【解析】先求出x与y的差,再用求出的差乘6就是x与y的差的6倍.解:(x﹣y)×6,=6x﹣6y,故答案为:错误.点评:解答此题的关键是,根据题意,判断运算顺序,即先算x与y的差,由此得出答案.32.学校体育组买了4只篮球,每只X元,付给营业员250元,4x表示,200﹣4x表示.【答案】买4只篮球的总价,还剩的钱数【解析】根据题意,可知4x表示买4只篮球的总价;200﹣4x表示还剩的钱数.解:4x表示买4只篮球的总价;200﹣4x表示还剩的钱数.故答案为:买4只篮球的总价,还剩的钱数.点评:此题考查根据给出的含字母的式子,说出式子表示的意义,根据题意解答即可.33.水果店运回a箱苹果和b箱梨子,苹果比梨子少箱.【答案】b﹣a【解析】用梨子的箱数减去苹果的箱数即可.解;苹果比梨子少:b﹣a(箱).答:苹果比梨子少b﹣a箱.故答案为:b﹣a.点评:此题主要考查用字母表示数的方法解决一个数比另一个数少几的问题.34.学校买来2箱皮球,每箱b个,用了12个,还剩个.【答案】2b﹣12【解析】先根据每箱个数×箱数求出皮球总个数,再减去用的就是剩下的数量.解:还剩:b×2﹣12=2b﹣12(个).答:还剩2b﹣12个.故答案为:2b﹣12.点评:解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.35.闹钟降价a元后是14元,它的原价是元.【答案】a+14【解析】由题意得:原价﹣a=14,所以原价=a+14.据此解答即可.解:原价是:a+14(元).答:它的原价是a+14元.故答案为:a+14.点评:解决本题关键是找出等量关系.36. x的3倍的一半写成式子是3x÷2..【答案】√【解析】求x的3倍的一半,先用x乘3求得x的3倍,再除以2或乘,即可求出x的3倍的一半.解:x的3倍的一半写成式子是3x÷2或3x×;故判定为:√.点评:理解求一个数的一半就是把这个数平均分成2份,求其中的一份是多少;也可以根据分数乘法的意义,就是求这个数的是多少.37.轮船每小时行a千米,比汽车每小时少行18千米.轮船6小时行千米.5(a+18)表示.【答案】6a,汽车5小时行的路程【解析】①求轮船6小时行多少千米,根据:速度×时间=路程,解答即可;②“a+18”表示汽车每小时行的路程,即汽车的速度,则5(a+18)表示:汽车5小时行多少千米;据此解答.解:①a×6=6a(千米);②5(a+18)表示汽车5小时行的路程;故答案为:6a,汽车5小时行的路程.点评:此题考查了用字母表示数,根据速度、时间和路程三者之间的关系进行解答.38.一辆汽车从甲地出发去乙地,平均每时行a千米,行了3时,这时离乙地还有5千米.甲、乙两地的路程是千米.【答案】3a+5【解析】此题属于较简单的行程问题,条件较明确.首先根据速度×时间=路程算出已行3小时的路程,然后再加上还没行驶的5千米即可.解:a×3+5=3a+5(千米)答:甲、乙两地的路程是3a+5千米.故答案为:3a+5.点评:此题考查基本数量关系:速度×时间=已行路程,已行路程+未行路程=总路程,再据题目中的数据即可解决问题.39.在横线上填上含有字母的式子.(1)青山果园里有桃树χ棵,梨树比桃树的2倍少30棵,梨树有棵.(2)学校买来彩色粉笔χ盒,买来的白粉笔是彩色粉笔的8.5倍.买来白粉笔盒,白粉笔和彩色粉笔一共有盒,彩色粉笔比白粉笔少盒.(3)一台插秧机χ小时可插秧10公顷,这台插秧机平均每公顷要小时,它平均1小时能插秧公顷.【答案】2x﹣30,8.5x,9.5x,7.5x;,【解析】(1)由“梨树比桃树的2倍少30棵,”得出梨树的棵数=桃树的棵数×2倍﹣30,桃树的棵数是x,由此求出梨树的棵数;(2)由“买来的白粉笔是彩色粉笔的8.5倍,”得出买来的白粉笔的盒数=彩色粉笔的盒数×8.5,而彩色粉笔有x盒,由此求出白粉笔的盒数,进而求出白粉笔和彩色粉笔一共的盒数及彩色粉笔比白粉笔少的盒数;(3)求这台插秧机平均每公顷要多少小时,根据“所用时间÷插秧的面积=平均每公顷要用的时间”进行解答;求平均1小时能插秧多少公顷,根据“插秧的面积÷所用时间=平均每小时插秧的面积”进行解答.解:(1)2x﹣30(棵),(2)8.5x(盒),8.5x+x=9.5x(盒),8.5x﹣x=7.5x(盒),(3)x÷10=(小时);10÷x=(公顷);故答案为:2x﹣30,8.5x,9.5x,7.5x;,.点评:解答此题认真分析题意,找出题中数量间的关系,根据数量间的关系解答即可.40.一个自然数n(n>1),与它相邻的两个自然数是和.【答案】n﹣1,n+1【解析】因为相邻的两个自然数相差1,则与n相邻的两个自然数为:n﹣1,n+1;据此解答即可.解:n是一个自然数,与n相邻的两个自然数分别n﹣1和n+1;故答案为:n﹣1,n+1.点评:解答此题的关键是知道每相邻的两个自然数之间相差1.41.用简便记法表示b+b+b+b+b=3b•b= m+3m=【答案】5b,3b2,4m【解析】(1)根据乘法的意义:表示相同的几个加数相加,可以把b+b+b+b+b写为5b;(2)根据有理数的平方的意义可以把3b•b写为3b2;(3)m+3m=4m.解:(1)b+b+b+b+b=5b,(2)3b•b=3b2,(3)m+3m=4m.故答案为:5b,3b2,4m.点评:本题主要考查了含字母的运算的式子的简便的写法.42.省略x×2.5+1×a中的乘号应为.【答案】2.5x+a【解析】当字母和字母相乘时,中间的乘号可以省略,当字母和数相乘时,省略乘号,数要写在字母的前面.解:x×2.5+1×a=2.5x+a,故答案为:2.5x+a.点评:本题主要考查了字母与字母相乘及字母和数相乘时的简便写法.43.爸爸今年a岁,妈妈(a﹣4)岁,再过x年,他俩相差4x岁..【答案】×【解析】两人的年龄差是永远不变的,两人原来相差a﹣(a﹣4)=4岁,若干年后仍然相差4岁.解:由“爸爸今年a岁,妈妈今年(a﹣4)岁”可知:爸爸与妈妈年龄相差4岁,且这个数值是不变的,所以说再过x年后,他俩仍然相差4岁.故答案为:×.点评:此题主要考查年龄差是永远不变的.44.如果用v表示速度,t表示时间,S表示路程,那么S=.【答案】vt【解析】因为路程=速度×时间,所以s=vt,据此解答即可.解:由题意得:S=vt.故答案为:vt.点评:此题主要考查路程=速度×时间,要熟记三者之间的关系.45.一只盒子可以装a个皮球,b盒子可以装一箱,一辆汽车装上了c箱皮球,那么(1)ab表示(2)3b表示(3)bc表示(4)abc表示.【答案】b个盒子可以装多少个皮球;3箱可以装多少盒皮球;一辆汽车可以装多少盒皮球;一辆汽车可以装多少个皮球【解析】根据乘法的意义结合已知条件即可得出各代数式表示的意义.解:根据题意可知(1)ab表示 b个盒子可以装多少个皮球;(2)3b表示 3箱可以装多少盒皮球;(3)bc表示一辆汽车可以装多少盒皮球;(4)abc表示一辆汽车可以装多少个皮球.故答案为:b个盒子可以装多少个皮球;3箱可以装多少盒皮球;一辆汽车可以装多少盒皮球;一辆汽车可以装多少个皮球.点评:考查了用字母表示数,本题关键是对乘法意义及连乘的理解,难度较大.46.一个数连续除以两个数,就等于这个数除以这两个数的,用字母表示是.【答案】积,a÷b÷c=a÷(b×c)【解析】一个数连续除以两个数,就等于这个数除以这两个数的积,这是除法的性质,用字母表示是:a÷b÷c=a÷(b×c);据此解答.解:一个数连续除以两个数,就等于这个数除以这两个数的积,用字母表示是:a÷b÷c=a÷(b×c);故答案为:积,a÷b÷c=a÷(b×c).点评:本题考查了除法的性质以及用字母表示数.47.在分数中,当时,它是一个真分数;当时,它是一个假分数;当时,它的分数值是2.【答案】A<5,A≥5,A=10【解析】在分数中,分子小于分母的分数为真分数;分子大于或等于分母的分数为假分数.由此可知,在分数中,当 A<5时,它是一个真分数;当A≥5时,它是一个假分数;根据分数的意义可知,当当 A=10时,它的分数值是2.解:在分数中,当 A<5时,它是一个真分数;当A≥5时,它是一个假分数;当 A=10时,它的分数值是2.故答案为:A<5,A≥5,A=10.点评:本题重点考查了学生对于真分数与假分数意义的理解与应用.48. 1÷a(a≠0)的商一定是a的倒数..(判断对错)【答案】√【解析】根据倒数的意义,乘积是1的两个数互为倒数.0没有倒数,1的倒数是1,大于1的自然数的倒数就是用这个自然数作分母、用1作分子的真分数.由此解答.解:求一个非0数的倒数,可用1除以这个数,因此,1÷a(a≠0)的商一定是a的倒数是正确的.故答案为:√.点评:此题主要考查倒数的意义和求一个数的倒数的方法.49.用字母公式表示:梯形的面积计算公式;乘法分配律.【答案】S=(a+b)h,(a+b)c=ac+bc【解析】根据“梯形的面积=(上底+下底)×高÷2”,然后用字母表示出即可;乘法分配律:两个数的和(或差)与一个数相乘,等于把两个数分别同这个数相乘,再把两个积相加(或相减);用字母表示:(a+b)c=ac+bc;据此写出.解:梯形的面积公式用字母表示:S=(a+b)h.乘法分配律用字母表示:(a+b)c=ac+bc;故答案为:S=(a+b)h,(a+b)c=ac+bc点评:此题考查用字母表示运算定律和计算公式,熟记公式,正确写出.50.用字母a,b,c表示乘法分配律是,表示乘法结合律是.【答案】(a+b)c=ac+bc,(ab)c=a(bc)【解析】乘法分配律的内容是:两个数的和与一个数相乘,可以用这两个加数分别同这个数相乘,再把乘积相加,它们的结果不变;乘法结合律的内容是:三个数相乘,可以把前两个数相乘,再同第三个数相乘,也可以把后两个数相乘,再同第一个数相乘,结果不变;据此用字母表示出来即可.解:用字母a、b、c表示乘法分配律是:(a+b)c=ac+bc;用字母a、b、c表示乘法结合律是:(ab)c=a(bc).故答案为:(a+b)c=ac+bc,(ab)c=a(bc).点评:此题考查用字母表示乘法分配律和乘法结合律,熟记定律的内容是关键.51.(1)一天早晨的温度是m摄氏度,中午比早晨高6摄氏度.中午的气温是摄氏度.(2)一本书有a页,小兰每天看6页,看了b天.a﹣6b表示.【答案】(1)m+6;(2)剩下的页数【解析】(1)由题意得出等量关系式:中午的温度=早晨的温度+6,代数计算即可;(2)a﹣6b中a表示一本书的总页数,6b表示b天看的页数,a﹣6b表示总页数减去b天看的页数是剩下的页数.解:(1)中午的温度为:m+6(摄氏度);答:中午的气温是m+6摄氏度.(2)由分析得出:a﹣6b表示剩下的页数.故答案为:(1)m+6;(2)剩下的页数.点评:解决本题的关键是找出等量关系式,再代数计算.52.蜘蛛每分爬行x米,是蜗牛的30倍,比乌龟的爬行速度的4倍还多3米.蜗牛每分爬行米,乌龟每分爬行米.【答案】;【解析】(1)根据“是蜗牛的30倍,”知道蜘蛛爬行的速度=蜗牛的速度×30,由此用蜘蛛爬行的速度除以就是蜗牛的速度;(2)根据“比乌龟的爬行速度的4倍还多3米.”知道蜘蛛爬行的速度=乌龟的爬行速度×4+3,用蜘蛛爬行的速度减去3就是乌龟爬行速度的4倍,再除以4就是乌龟爬行的速度.解:(1)x÷30=(米),(2)(x﹣3)÷4=(米),答:蜗牛每分爬行米,乌龟每分爬行米.故答案为:;.点评:关键是把给出的字母当做已知数,再根据题中的数量关系,列式解答即可.53.六年级有男生a人,女生比男生少,六年级共有学生人.【答案】a【解析】的单位“1”是男生的人数,根据“女生比男生少,”知道女生人数是男生人数的(1﹣),由此根据分数乘法的意义求出女生的人数,进而求出六年级共有学生的人数.解:a×(1﹣)+a,=a+a,=a(人),答:六年级共有学生a人;故答案为:a.点评:把a当做已知数,找准单位“1”,找出数量关系,即女生人数=男生人数×(1﹣),列式求出女生的人数是本题的关键.54.一套《和福尔摩斯一起破案》共有10本,每本a元,买一套付200元,应找回元.【答案】200﹣10a【解析】由题意得出等量关系式:应找回的钱数=所付总钱数﹣一本书的单价×数量,代数计算即可.解:应找回:200﹣10a (元),答:应找回200﹣10a元.故答案为:200﹣10a.点评:解决本题的关键是先根据:总价=单价×数量,计算出花的钱数.55. a加b的和再除以c的3倍,商是多少?列式为.【答案】【解析】本题是一个用字母表示数的题,根据题意直接列出含字母的式子即可.解:根据题干可以列式为:(a+b)÷(3c)=,故答案为:.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.56.有三个连续的自然数,中间一个用x表示,其他两个自然数分别是和.【答案】x﹣1,x+1【解析】分析题意可以知道这三个自然数是连续的,而每相邻的两个自然数之间相差1,因此,前一个数就比中间的数少1,后一个就比中间的数多1,明白这些后进一步用算式算出即可.解:因为这三个自然数是连续的,中间的一个是a,所以和它相邻的前一个是x﹣1,后一个是x+1.故答案为:x﹣1,x+1.点评:解答这道题的关键是知道每相邻的两个自然数之间相差1.57. 2b+5=b×b+5.【答案】错误【解析】因为2b=b×2,所以2b+5=b×2+5,据此判断即可.解:由题意得:2b+5=b×2+5,所以2b+5=b×b+5说法错误.故答案为:错误.点评:解决本题的关键是知区分:2b=2×b,b×b=b2.58.乐乐今年a岁,爸爸的年龄是他的7倍,今年爸爸和乐乐共岁,两年后爸爸比他大岁.【答案】8a,6a【解析】先得到爸爸的年龄是7a,再将爸爸和乐乐的年龄相加即可求得爸爸和乐乐的岁数和;用爸爸的年龄﹣乐乐的年龄,即可求得爸爸比乐乐大的岁数.解:7a+a=8a(岁),7a﹣a=6a(岁).故答案为:8a,6a.点评:考查了用字母表示数,本题中爸爸和乐乐的年龄差是不变的.59. a×b可以写成a•b.….【答案】√【解析】因为a×b可以简写为a•b或ab,由此做出判断.解:因为a×b可以简写为a•b或ab,故答案为:√.点评:本题主要考查了字母与字母相乘时的简便写法,即字母与字母相乘时可以省略乘号或把乘。

数学用字母表示数试题答案及解析

数学用字母表示数试题答案及解析

数学用字母表示数试题答案及解析1. x+x表示()A.x2B.2xC.x+2【答案】B【解析】x+x表示两个x相加,用乘法表示是2x,据此解答即可.解:x+x=2x.故选:B.点评:此题主要考查根据乘法的意义将加法改写成乘法.2.在a÷0.1,a×0.1,a×2.5,a÷2.5四个算式中(a均不为0),得数最大的一个算式是()A.a÷0.1B.a×0.1C.a×2.5D.a÷2.5【答案】C【解析】分别求出四个选项中算式的值,比较大小解答.解:A、a÷0.1=10a,B、a×0.1=0.1a,C、a×2.5=2.5a,D、a÷2.5=0.4a,故选:C.点评:此题除了计算数值比较外,还可以用商的变化规律以及积的变化规律解答.3.一个两位数,个位上是A,十位上是8,用含有字母的式子表示是()A.8A B.8+A C.8×10+A D.8+10A【答案】C【解析】两位数=十位数字×10+个位数字,依此可得两位数为8×10+A.解:因为十位数字为8,个位数字为A,所以这个两位数可以表示为8×10+A.故选C.点评:此题考查了用字母表示数以及两位数的表示方法,数字的表示方法要牢记.两位数字的表示方法:十位数字×10+个位数字.4.(2011•青山湖区模拟)甲数是a,比乙数的3倍多b,乙数是()A.(a+b)÷3B.(a﹣b)÷3C.a÷3﹣b【答案】B【解析】解答此题,要求乙数是多少,要弄清甲数和乙数的关系,根据题意,甲数a﹣b正好是乙数的3倍,进而又根据“已知一个数的几倍是多少,求这个数用除法计算”即可列式解答.解:由分析知:甲数是a,比乙数的3倍多b,乙数是(a﹣b)÷3,故选:B点评:此题考查了用字母表示数,解答此题要认真题意,理清数量关系,然后进行解答.5.原价a元的商品8.8折后的售价是()元.A.8.8aB.8.8C.88%a【答案】C【解析】打8.8折就是按原价的88%出售,再根据原价是a元,也就是求a元的88%是多少,用乘法计算.解:原价a元的商品,8.8折后的售价是:a×88%=88%(元);故选:C.点评:解决此题关键是理解8.8折就是按原价的88%出售,进而根据分数乘法的意义,列式即可得解.6.2011 年4 月25 日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3000 元的部分不必纳税,超过3000 元的部分为全月应纳税所得额,此项税款按下表分段累进计算.级数全月应纳税所得额税率1 不超过1500元的部分 5%2 超过1500元至4500元的部分 10%…依据草案规定,解答下列问题:李工程师的月工薪a 元(4500<a<7500),则他每月应当纳税()元.A.0.1a B.0.1a+75C.0.1a﹣300D.0.1a﹣450【答案】C【解析】由题意可知:李工程师的月工薪a超出部分在1500和4500元之间,应缴纳10%的个人所得税,再据分数乘法的意义即可得解.解:(a﹣3000)×10%=0.1a﹣300,故选:C.点评:考查了学生对税率概念的理解以及对此类问题分步解答的能力.7.若72÷x2=y3,且x、y是自然数,则x的最小值是()A.2B.3C.4D.5【答案】B【解析】根据“x、y是自然数,且72÷x2=y3”,可以把每一个选项中的x的数值代入等式中,能够使y的数值为自然数的即可符合题意.解:A、把x=2代入72÷x2=y3,可得72÷4=18,那么y3=18,y的数值不是自然数,不符合题意;B、把x=3代入72÷x2=y3,可得72÷9=8,那么y3=8,可得y=2,所以y的数值是自然数,符合题意;C、把x=4代入72÷x2=y3,可得72÷16=4.5,那么y3=4.5,y的数值不是自然数,不符合题意;D、把x=5代入72÷x2=y3,可得72÷25=2.88,那么y3=2.88,y的数值不是自然数,不符合题意;故选:B.点评:由于此题是选择题,所以可采用逐项代入的方法,只要代入x的数值,求出y的数值是自然数即可符合题意.8.长方形的周长是C厘米,长比宽长X厘米,表示宽边长度的式子是()A.(C﹣X)÷2B.(C﹣2X)÷2C.(C﹣2X)÷4D.(C+2X)÷4【答案】C【解析】设宽为a厘米,则长是(a+x)厘米,根据长方形的周长公式,即周长=(长+宽)×2,列式解答即可.解:设长方形的宽是a厘米,则长是(a+x)厘米,(a+x+a)×2=C,4a+2x=C,4a=C﹣2x,a=(C﹣2x)÷4;故选:C.点评:解答此题的关键是根据题意设出未知数,再根据长方形的周长公式列方程解答.9.工地有a吨水泥,每天用去2.5吨,用了b天,还剩多少用式子表示是()A.2.5a﹣b B.a﹣b﹣2.5C.a﹣2.5b D.a÷2.5﹣b【答案】C【解析】根据剩下的吨数=原有的吨数﹣每天用去的吨数×天数,列出式子即可求解.解:由分析可得,剩下的吨数为:a﹣2.5b.故选:C.点评:考查了用字母表示数,解题的关键是理解剩下的吨数、原有的吨数、用去的吨数之间的关系.10.在有余数的整数除法算式中,除数和商分别是m,n(m,n均不为0),被除数最大为()A.mn+m B.mn﹣1C.mn+m﹣1D.mn﹣m+1【答案】C【解析】在有余数的除法中,余数小于除数,所以除数是m,余数最大是m﹣1,然后再根据公式被除数=商×除数+余数进行计算即可得到被除数.解:除数为m,商为n,余数为m﹣1,被除数=商×除数+余数,=nm+m﹣1.故选:C.点评:解答此题的关键是确定余数的大小,然后再根据公式进行计算即可.11.甲数是a,比乙数的4倍多c,表示乙数的式子是()A.4a+c B.a÷4+c C.(a+c)÷4D.(a﹣c)÷4【答案】D【解析】先用“a﹣c”求出乙数的4倍是多少,进而根据已知一个数的几倍是多少,求这个数,用除法解答即可.解:表示乙数的式子:(a﹣c)÷4;故选:D.点评:本题主要考查用字母表示数,解答此题用到的知识点:已知一个数的几倍是多少,求这个数,用除法解答.12.连一连.【答案】【解析】(1)根据乘法的意义,x+x=2x;(2)根据乘方的意义:x•x=x2;(3)根据字母表示数的方法得出:3.2m=3.2×m;(4)根据乘法的意义得出:2a=a+a;(5)根据乘方的意义:a2=a×a;(6)根据乘方的意义:32=3×3;据此连线即可.解:如图所示:.点评:此题主要考查字母表示数的简便写法.13.什么情况下,a2=2a?【答案】a=0或a=2【解析】a2表示两个a相乘,2a表示两个a相加,据此当a是0或2时,a2=2a,可以把数字代入该式进行验证说明.解:当a=0时,则a2=0,2a=2×0=0,所以a2=2a.当a=2时,则a2=22=4,2a=2×2=4,所以a2=2a.,答:在a=0或a=2的情况下,a2=2a.点评:解决此题可以采用举例验证说明的方法,举实例也是解决问题的常用方法.14.甲书架有a本书,乙书架上书的本数比甲书架本数的1.8倍还多7本.(1)用式子表示乙书架上书的本数.(2)如果a=100,乙书架有多少本书?【答案】(1)1.8a+7本;(2)187本【解析】(1)求乙书架上书的本数,根据:乙书架上书的本数=甲书架上书的本数×1.8+7,解答即可;(2)求如果a=100,乙书架有多少本书,把a=100,代入含有字母的式子,解答即可.解:(1)1.8a+7(本);(2)100×1.8+7=187(本);答:乙书架有187本书.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.15. b×9可以写成9b..【答案】√【解析】b×9,这个乘法算式里含有字母,可以省略乘号,但是必须把数字提到字母的前面,可以写成9b;据此判断.解:b×9可以写成9b.故判断为:√.点评:注意:字母与数相乘时可以简写,即省略乘号,把数字提到字母的前面.16.只列式不计算.(1)工地上有a吨水泥,每天用b吨,用了c天后还剩多少吨?列式:(2)五年级同学参加科技小组的有34人,比参加文艺组人数的2倍少6人.参加文艺组的有多少人?解:设文艺组有x人.列方程:.【答案】a﹣bc,2x﹣6=34【解析】(1)先用字母表示出c天用了的吨数,再用总吨数﹣用去的吨数=还剩的吨数;(2)等量关系:文艺组人数×2﹣6=科技小组的34人,设文艺组有x人,列出方程即可.解:(1)还剩的吨数:a﹣b×c=a﹣bc;(2)设文艺组有x人,由题意得:2x﹣6=34.故答案为:a﹣bc,2x﹣6=34.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.17.植树的寿命.樱桃树的寿命是a岁,樟树的寿命比樱桃树的寿命多500岁,银杏树的寿命比樟树寿命的2倍还多400岁.樟树的寿命是多少岁?【答案】a+500岁【解析】根据“樟树的寿命=樱桃树的寿命+500岁”可得樟树的寿命:a+500岁.解:a+500岁,答:樟树的寿命是a+500岁.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.18. a与b平方和不大于它们和的平方.【答案】a2+b2≤(a+b)2【解析】根据“a与b平方和不大于它们和的平方,”得出a2+b2≤(a+b)2,利用完全平方和公式即可证明此不等式.解:因为(a+b)2=a2+b2+2ab,所以(a+b)2≥a2+b2,即a2+b2≤(a+b)2.点评:本题主要利用完全平方和公式((a+b)2=a2+b2+2ab)解决问题.19.列式计算:(1)6与的积减2后,再除以,商是多少?(2)一个数的比3.5的1.6倍少2.6,这个数是多少?(列方程解)(3)a和7所得和的3倍除以5的商是15,求a的值.(4)若2!=2×3,3!=3×4×5,5!=5×6×7×8×9,那么,求4!+6!的值.【答案】(1);(2)24;(3)8;(4)333480【解析】(1)先计算6与的积,再减去2,所得的差再除以即可;(2)设这个数是x,那么x的比3.5的1.6倍少2.6,列出方程进行解答即可;(3)a和7所得和的3倍除以5的商是15,可得(a+7)×3÷5=15,再进一步解答即可;(4)根据2!=2×3,3!=3×4×5,5!=5×6×7×8×9,可得4!=4×5×6×7,6!=6×7×8×9×10×11,再把所得的积加起来即可.解:(1)(6×﹣2)÷,=(﹣2)÷,=÷,=.答:商是.(2)设这个数是x;根据题意可得:x+2.6=3.5×1.6x+2.6=5.6,x+2.6﹣2.6=5.6﹣2.6,x=3,x÷=3÷,x=24.答:这个数是24.(3)(a+7)×3÷5=15,(a+7)×3÷5×5=15×5,(a+7)×3=75,(a+7)×3÷3=75÷3,a+7=15,a+7﹣7=15﹣7,a=8.答:a的值是8.(4)4!=4×5×6×7,6!=6×7×8×9×10×11,4!+6!,=4×5×6×7+6×7×8×9×10×11,=840+332640,=333480.答:4!+6!的值是333480.点评:根据题意,先弄清运算顺序,然后再列式计算即可.20.(2012•剑川县模拟)我们已经知道三角形三个内角度数的和是180°.(1)你能运用这个知识求出四边形、五边形、六边形等多边形的内角和吗?你能把想法用图表示出来吗?你仔细思考后发现了什么规律?试一试用自己的话说出来.(2)请你用字母的式子表示出n边形内角和..【答案】(1)360°,540°,720°,多边形每增加一个边,内角和就增加180°;(2)(n﹣2)•180°【解析】根据过同一顶点作出的对角线把多边形分成的三角形的个数的规律,再利用三角形的内角和等于180°即可推出多边形的内角和公式.解:(1)四边形分成2个三角形;180°×2=360°;五边形分成3个三角形;180°×3=540°;六边形分成4个三角形:180°×4=720°规律:多边形每增加一个边,内角和就增加180°;(2)n边形的内角和可以表示为:(n﹣2)•180°.故答案为:(n﹣2)•180°.点评:本题考查了多边形的内角和公式的推导,理清过同一个顶点把多边形分成的三角形的个数是解题的关键,也是本题的难点.21.买4个篮球,每个a元,5个足球,每个b元.4a+5b表示;4a﹣5b表示.【答案】买4个篮球和5个足球的总费用;买4个篮球比买5个足球多花的费用【解析】学校买4个篮球,每个a元,5个足球,每个b元;因为单价×数量=总价,所以4a表示买4个篮球的总费用;5b表示买5个足球的总费用;4a+5b表示买买4个篮球和5个足球的总费用;4a﹣5b表示买4个篮球比买5个足球多花的费用.解:4a+5b表示买4个篮球和5个足球的总费用;4a﹣5b表示买4个篮球比买5个足球多花的费用.故答案为:买4个篮球和5个足球的总费用;买4个篮球比买5个足球多花的费用.点评:此题考查了用字母表示数,用到的知识点:单价、数量和总价之间的关系.22. a是b的5倍,b就是a的.【答案】【解析】a是b的5倍,反过来说,就是b是a的,由此即可求解.解:a是b的5倍,b就是a的.故答案为:.点评:此题考查如果一个数是另一个数的几倍,也可以说另一个数是一个数的几分之一.23.一件毛衣打七五折后是a元,原价是元.【答案】a【解析】七五折是指现价是原价的75%,把原价看成单位“1”,它的75%对应的数量是a元,由此用除法求出原价.解:原价是:a÷75%=a.故答案为:a.点评:本题关键是理解打折的含义:打几几折,现价就是原价的百分之几十几;要注意用字母表示数的方法.24.某校五年级有a人,六年级的人数比五年级的2倍还多8人,六年级有人.【答案】2a+8【解析】求六年级的人数,根据:六年级的人数=五年级的人数×2+8,代入数值,解答即可.解:a×2+8,=2a+8;故答案为:2a+8.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.25.省略乘号,写出下面各式.b×x=a×b=a×a×a=(a+b)×c=a×b+c=a×b×c=.【答案】bx,ab,a3,ac+bc,ab+c,abc【解析】a×a×a,表示3个a相乘,可表示为a3;(a+b)×c,运用乘法分配律改写;a×b+c,只能省略乘号,不能省略加号;其它式子直接省略乘号即可.解:省略乘号,写出下面各式.b×x=bx;a×b=ab;a×a×a=a3;(a+b)×c=ac+bc;a×b+c=ab+c;a×b×c=abc.故答案为:bx,ab,a3,ac+bc,ab+c,abc.点评:此题考查用字母表示数,注意:在含有字母的式子里,如果是字母和字母相乘,中间的乘号可以直接省略;但如果是字母和数相乘时中间的乘号也可以省略,但要把数字写在字母的前面.26.水果店原来有120千克苹果,又运来a千克,现在水果店共有苹果千克.【答案】120+a【解析】求现在水果店共有苹果多少千克,根据:原来的苹果重量+后来运来的苹果重量=现在水果店共有苹果的重量;据此解答即可.解:120+a(千克);答:现在水果店共有苹果120+a千克;故答案为:120+a.点评:明确题中数量间的关系,是解答此题的关键.27.红花朵数是蓝花的3.6倍,设有x朵,那么有3.6x朵.【答案】蓝花,红花【解析】设蓝花有x朵,根据求一个数的几倍,用乘法解答;可知:那么红花有3.6x朵;据此解答.解:红花朵数是蓝花的3.6倍,设蓝花有x朵,那么红花有3.6x朵;故答案为:蓝花,红花.点评:此题考查了用字母表示数,找出蓝色朵数和红花朵数的关系,是解答此题的关键.28.用含有字母的式子表示下面的数量关系.(1)a的平方减去2个a的差.(2)x的6倍减去3.6的差.(3)比a的2.8倍多b的数.(4)a与b的9倍的差.(5)x与4的和的一半..【答案】(1)a2﹣2a;(2)6x﹣3.6;(3)2.8a+b;(4)a﹣9b;(5)(x+4)【解析】(1)a的平方是a2,2个a是2a,据此解答即可;(2)先用乘法计算出x的6倍,再减去3.6即可;(3)先用乘法计算出a的2.8倍,再加上b即可;(4)先用乘法计算出b的9倍,再用a减去9b即可;(5)先用加法计算出x与4的和,再乘即可.解:(1)a的平方减去2个a的差是a2﹣2a.(2)x的6倍减去3.6的差是:6x﹣3.6.(3)比a的2.8倍多b的数是:2.8a+b.(4)a与b的9倍的差是a﹣9b.(5)x与4的和的一半是:(x+4).故答案为:(1)a2﹣2a;(2)6x﹣3.6;(3)2.8a+b;(4)a﹣9b;(5)(x+4).点评:解决本题的关键是根据题意找出运算顺序,再根据题意列式.29.一辆汽车t小时行了s千米,每小时行千米.【答案】s÷t【解析】根据“路程÷时间=速度”,代入数据,即可解答;解:s÷t(千米);答:每小时行s÷t千米;故答案为:s÷t.点评:此题主要考查了,路程、速度和时间的三者之间的关系.30.六年级有男生m人,比女生多n人,女生有人,(m﹣n)÷m表示.【答案】m﹣n;女生人数是男生人数的几分之几【解析】(1)根据“比女生多n人”知,女生比男生少n人,则女生人数=男生人数﹣n;(2)(m﹣n)÷m中,m﹣n表示女生人数,m表示男生人数,则(m﹣n)÷m表示女生人数是男生人数的几分之几.解:(1)女生有:m﹣n 人.答:女生有m﹣n 人.(2)(m﹣n)÷m表示女生人数是男生人数的几分之几.故答案为:m﹣n;女生人数是男生人数的几分之几.点评:解答此题的关键是,根据已知条件,把未知的数量用字母正确的表示出来.31.一辆汽车t小时行了s千米,每小时行千米;行120千米要小时.【答案】;【解析】(1)根据:速度=路程÷时间,代入字母表示即可;(2)根据:时间=路程÷速度,用字母表示即可.解:(1)速度为:s÷t=(千米);答:每小时行千米.(2)120÷=(小时).答:行120千米要小时.故答案为:;.点评:解答此题的关键是,根据已知条件,把未知的数用字母正确的表示出来,再结合所求的问题,即可得出答案.32. a×3可以简写成,b×b可以简写成.【答案】3a,b2【解析】字母与数字的乘积可以省略乘号,把数字写在字母的前面;两个相同因数的乘积是这个数的平方;据此解答.解:a×3可以简写成3a,b×b可以简写成b2;故答案为:3a,b2.点评:解决本题的关键是明确字母表示数的简便方法.33.用S表示路程,用V表示速度,用t表示时间,这三种量之间的关系写成字母公式是S=;V=;t=.【答案】Vt,S÷t,S÷V【解析】本题是一个用字母表示数的题目,根据路程、速度和时间三种量之间的关系写出含有字母的式子即可.解:S=Vt;V=S÷t;t=S÷V.故答案为:Vt,S÷t,S÷V.点评:此题考查用字母表示数量,用含字母的式子分别表示出路程、速度和时间即可.34.师傅每天做а个零件,比徒弟多做10个,师徒两人一天可做个.【答案】2a﹣10【解析】先求出徒弟每天做多少个零件,再把他与师傅的相加即可.解:徒弟的数量是a﹣10个,师徒一共加工:a+a﹣10=2a﹣10个;故答案为:2a﹣10.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.35.闹钟降价a元后是14元,它的原价是元.【答案】a+14【解析】由题意得:原价﹣a=14,所以原价=a+14.据此解答即可.解:原价是:a+14(元).答:它的原价是a+14元.故答案为:a+14.点评:解决本题关键是找出等量关系.36.一堆煤m吨,每天烧x吨,5天后还剩下吨.【答案】m﹣5x【解析】根据题意,用x乘5先求出5天烧煤的吨数,进而用总吨数减去用去的吨数,即可求得还剩下的吨数.解:m﹣x×5=m﹣5x(吨).故答案为:m﹣5x.点评:关键是找出数量关系式:剩下的吨数=总吨数﹣用去的吨数,再根据数量关系式列式解答;注意字母与数相乘时要简写,即省略乘号,把数写在字母的前面.37.妈妈a分钟打字x个,平均每分钟打字个,打一个字需要分.【答案】x÷a,a÷x【解析】①求每分钟打字多少个,根据“打字的总数量÷时间=平均每分钟打字的个数”进行解答即可;②求打一个字需要的时间,根据“总时间÷打字总个数=打一个字需要的时间”进行解答即可.解:①x÷a(个);②a÷x(分);故答案为:x÷a,a÷x.点评:解答此题的关键是:弄清要求的是什么,找出关系式,根据关系式解答即可.38.小英每天读书 a页,小华每天读书b页,(a+b)×4表示.【答案】小英和小华两人4天一共读多少页【解析】由题意可知:(a+b)表示小英和小华一天共读书多少页,(a+b)×4表示小英和小华两人4天一共读多少页;据此解答.解:小英每天读书 a页,小华每天读书b页,(a+b)×4表示:小英和小华两人4天一共读多少页;故答案为:小英和小华两人4天一共读多少页.点评:解答此题的关键:根据两人每天读的页数、天数和两人一共读的页数三者之间的关系进行解答.39. a比b少c,列成式子是a﹣c=b或b﹣a=c..【答案】×【解析】a比b少c,即a=b﹣c,变形为a+c=b或b﹣a=c,依此即可作出判断.解:由a比b少c,可得a=b﹣c,变形为a+c=b或b﹣a=c,故a比b少c,列成式子是a﹣c=b或b﹣a=c是错误的.故答案为:×.点评:考查了用字母表示数,本题关键是理解a比b少c表示的等量关系.40.三个连续自然数的中间数是a,这三个数的和是,三个连续偶数的和是90,最大的一个偶数是.【答案】3a,32【解析】因为相邻的两个自然数相差1,中间的一个是a,由此表示出三个连续自然数为:a﹣1,a,a+1.然后求和;我们知道两个相邻连续偶数相差2、三个连续偶数的和就是中间一个偶数的3倍,求出中间的一个偶数,加2即是较大的一个.解:因为已知三个连续自然数且中间一个为a,所以另两个为:a﹣1,a+1.则三个连续自然数的和为:a﹣1+a+a+1=3a.90÷3+2,=30+2,=32.答:这三个数的和是3a,最大的一个偶数是32.故答案为:3a,32.点评:解答此题的关键是知道相邻的两个自然数相差1,由此即可得出答案;第二问关键是求出中间一个偶数.相邻偶数相差2.41.五(1)班有学生50人,其中男生有50﹣c人,c表示.【答案】女生人数【解析】因为五(1)班学生包括男生和女生,男生人数=全班人数﹣女生人数,所以c是女生人数,据此解答即可.解:男生人数=全班人数﹣女生人数,=50﹣c,所以c是女生人数.故答案为:女生人数.点评:解决本题的关键是根据题意找出等量关系式,再一一对应找出字母表示的数的意义.42.一根铁丝长a米,用去5米,剩下米.【答案】a﹣5【解析】要求剩下的米数,用原来的长度a米分别减去用去的5米即可.解:a﹣5(米),答:剩下a﹣5米;故答案为:a﹣5.点评:要求剩下的长度,用原来的长度减用去的长度即可.43.超市运来苹果X千克,是运来香蕉的3倍,运来香蕉千克;运来的梨比苹果的少20千克,运来梨千克.【答案】X÷3或,x﹣20【解析】由所给条件可知:香蕉的3倍是苹果的X千克,求香蕉的质量,用除法计算;梨比苹果的少20千克,求梨的质量,就是求比x的少20千克的数是多少.解:香蕉:x÷3或;梨:x×﹣20=x﹣20.故答案为:X÷3或,x﹣20.点评:此题考查用字母表示数,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.44.一只盒子可以装a个皮球,b盒子可以装一箱,一辆汽车装上了c箱皮球,那么(1)ab表示(2)3b表示(3)bc表示(4)abc表示.【答案】b个盒子可以装多少个皮球;3箱可以装多少盒皮球;一辆汽车可以装多少盒皮球;一辆汽车可以装多少个皮球【解析】根据乘法的意义结合已知条件即可得出各代数式表示的意义.解:根据题意可知(1)ab表示 b个盒子可以装多少个皮球;(2)3b表示 3箱可以装多少盒皮球;(3)bc表示一辆汽车可以装多少盒皮球;(4)abc表示一辆汽车可以装多少个皮球.故答案为:b个盒子可以装多少个皮球;3箱可以装多少盒皮球;一辆汽车可以装多少盒皮球;一辆汽车可以装多少个皮球.点评:考查了用字母表示数,本题关键是对乘法意义及连乘的理解,难度较大.45. 257+(a+43)=(257+)+.【答案】43,a【解析】三个数相加,先把前两个数相加,或先把后两个数相加,它们的和不变.据此解答.解:根据以上分析知:257+(a+43)=(257+43)+a.故答案为:43,a.点评:本题主要考查了学生对加法结合律的掌握情况.46.用A+B=B+A表示加法交换律;则A﹣B=B﹣A也可以表示减法交换律..【答案】×【解析】根据加法交换律的意义:两个数相加交换加数的位置和不变.而在减法中,被减数和减数的位置是不能交换的.据此判断即可.解:根据分析知:用A+B=B+A表示加法交换律;是正确的;而A﹣B=B﹣A也可以表示减法交换律,是错误的.故答案为:×.点评:此题考查的目的是理解掌握加法交换律的意义,明确:在减法中,被减数和减数的位置是不能交换的.47.一支钢笔的价钱是a元,比一支圆珠笔贵6元,一支圆株笔的价钱是元;3支钢笔元;5支圆珠笔元.【答案】a﹣6,3a,5a﹣30【解析】(1)求一支圆珠笔的价钱,用“a﹣6”即可;(2)根据单价×数量=总价进行解答即可;(3)根据单价×数量=总价进行解答即可.解:(1)圆珠笔:a﹣6(元);(2)a×3=3a(元);(3)(a﹣6)×5=5a﹣30(元);故答案为:a﹣6,3a,5a﹣30.点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.48.两地相距s千米,一辆速度是每小时v千米的汽车行了t小时,还剩千米没有行.如果s=460千米,v=60千米/时,t=3小时,还剩千米没有行.【答案】s﹣vt,280【解析】(1)要求还剩多少千米没有行,先用速度v千米乘时间t小时求得行驶了的路程,进而用总路程减去行驶了的路程即可;(2)把s=460千米,v=60千米/时,t=3小时,代人含字母的式子,求得式子的数值得解.解:(1)s﹣vt;(2)当s=460千米,v=60千米/时,t=3小时,原式=460﹣60×3,=460﹣180,=280.故答案为:s﹣vt,280.点评:关键是用含字母的式子先表示出已经行驶了的路程,进而用总路程减去行驶了的路程;也考查了含字母的式子求值,把字母表示的数值代入式子,计算式子的数值即可.49.(a+b)+c=a+(b+c)表示的运算定律是;乘法的交换律用字母写出来是,乘法的分配律用字母写出来是.【答案】加法结合律,a×b=b×a,(a+b)×c=a×c+b×c【解析】加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变;用字母表示为(a+b)+c=a+(b+c);乘法交换律:交换两个因数的位置,积不变;用字母:a×b=b×a;乘法分配律:两个数相加,再同第三个数相乘,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变;用字母表示为:(a+b)×c=a×c+b×c;解答即可.解:(a+b)+c=a+(b+c)表示的运算定律是加法结合律;乘法的交换律用字母写出来是:a×b=b×a,乘法的分配律用字母写出来是:(a+b)×c=a×c+b×c;故答案为:加法结合律,a×b=b×a,(a+b)×c=a×c+b×c.点评:此题考查了加法和乘法中的一些运算定律.50. a2和2a表示的意义相同..【答案】×【解析】根据平方的定义,乘法的定义即可作出判断.解:a2表示两个a相乘;2a表示a的2倍,故a2与2a表示的意义不相同.故答案为:×.点评:本题考查了用字母表示数中平方的意义,乘法的意义,是基础题型,比较简单.51.长方形的周长是9m,长是X米,则宽为(9﹣X)米..【答案】错误【解析】根据长方形的周长=(长+宽)×2,可推出宽=周长﹣长,根据题意,把周长9m,长X 米,代入公式求得宽的米数,再进行判断.解:宽=周长﹣长把周长=9m,长=X米代入上式,则有宽=×9﹣X=﹣X(米),所以宽是(﹣X)米,不是(9﹣X)米;故判断为:错误.点评:此题考查用字母表示数,解决此题关键是先根据长方形的周长公式,推出求长方形宽的计算公式,再把相关的数或字母代入公式而得解.52.每个篮球a元,每个排球b元,a﹣b表示,5(a+b)表示.【答案】篮球比排球贵多少元,5个篮球和5个排球一共多少元【解析】①每个篮球a元,每个排球b元,a﹣b表示篮球比排球贵多少元;②a+b表示买一个篮球和一个足球花多少钱,然后再乘5,即5(a+b),表示5个篮球和5个排球一共多少元.解:a﹣b表示篮球比排球贵多少元,5(a+b)表示5个篮球和5个排球一共多少元,故答案为:篮球比排球贵多少元,5个篮球和5个排球一共多少元.点评:解答此题的关键是,根据已知条件,找出数量间的基本关系,再结合所给的算式,得出算式所表示的含义.53.张师傅上午加工a个零件,比下午多加工6个,下午加工个零件.【答案】(a﹣6)【解析】根据上午加工零件的个数=下午加工零件的个数+6个,即可得出下午加工(a﹣6)个.解:下午加工(a﹣6)个零件.故答案为:(a﹣6).点评:考查了用字母表示数,本题关键是找到上午加工零件的个数与下午加工零件的个数的等量关系.。

用字母表示数_典型例题四

用字母表示数_典型例题四

典型例题
例.水果店上午运来苹果a箱,下午运来苹果b箱,每箱苹果m千克.
1.用式子表示水果店一共运来苹果的千克数和上午、下午运来苹果的平均千克数,以及上午运来的苹果比下午的多多少千克?
2.当a=40,b=25,m=20时,求出上面几个式子的实际数.
分析:1.上午运来a箱,下午运来b箱,共(a+b)箱,每箱m千克,故共m(a+b)(千克),或上午a箱,共am(千克),下午b箱,共b m(千克),上、下午共(am+bm)千克;上、下午运来苹果的平均数为m(a+b)÷2(千克)或(am+bm)÷2(千克).上午运来的苹果比下午的多(am-bm)(千克).
2.把a=40,b=25,m=20分别代人上面各式中相应的字母,计算即得实际数.解:1.上午、下午共运来苹果m(a+b)(千克)或(am+bm)(千克);
上、下午运来苹果的平均数为
m(a+b)÷2(千克)或(am+bm)÷2(千克);
上午运来的苹果比下午的多(am-bm)(千克)或m(a-b)(千克).2.当a=40,b=25,m=20时
m(a+b)=20×(40+25)=1300(千克),
m(a+b)÷2=20×(40+25)÷2二650(千克)
m(a-b)=20×(40-25)=300(千克).。

《用字母表示数》典型案例

《用字母表示数》典型案例

《用字母表示数》典型案例◆您现在正在阅读的《用字母表示数》典型案例文章内容由收集!本站将为您提供更多的精品教学资源!《用字母表示数》典型案例【教学内容】人教版义务教育课程标准实验教科书小学数学五年级上册第四单元《简易方程》第一节《用字母表示数》第4446页例1、例2、例3。

【教材分析】知识点:第一课时的教学内容。

这部分内容主要让学生初步理解用字母表示数的必要性,经历用字母表示数的抽象概括过程,学会用含有字母的式子表示简单的数量、数量关系和计算公式。

地位:这部分内容是学生在小学阶段学习代数知识的基础,能有效地培养学生的抽象能力、概括能力等,有利于发展学生的符号感,也为学生后续学习方程的初步知识奠定了基础。

作用: 这部分内容和传统教材相比,新教材改变了原来局限于利用计算公式和常用的数量关系,进行比较抽象的数学教学,而是从学生比较熟悉的一些实际问题入手,涉及到的数量关系比较丰富,让学生感受用字母表示数的优越性。

而且也注意到问题呈现形式的变化,目的是让学生进一步积累感性认识,强化用字母表示数的意识和习惯。

可以说,学习代数就是从学习用字母表示数开始的。

教学目标:知识与技能目标:使学生初步理解用字母表示数的方法,会用含有字母的式子表示简单的数量、数量关系和计算公式,会根据字母所取的值口头求简单的式子的值。

方法与过程目标:使学生完整地经历用含有字母的式子表示简单的数量、数量关系和计算公式的过程,进一步体会数学的抽象性与概括性,发展符号感。

情感与价值观目标:培养学生用字母表示数的意识和兴趣,使学生进一步产生对数学学习的好奇心。

教学重点:怎样用字母表示含有字母式子的数量。

教学难点:理解怎样根据量与量之间的关系,用含有字母的式子来表示数量。

【教学过程】一、创境激趣初步感知用字母表示数的意义教学例1。

1、投影出示例1(1):引导学生仔细观察两行图中,数的排列规律。

问:每行图中的数是按什么规律排列的?(指名口答)2、学生自己看书解答例1的(2)、(3)小题。

字母表示数的例子

字母表示数的例子

字母表示数的例子1. 哎呀,说到字母表示数,我可是有一肚子的话要说!你们知道吗,这玩意儿可不是数学老师为了折磨我们才发明的,它可是数学界的一大神器啊!想想看,如果没有字母表示数,那些复杂的公式岂不是要写得像天书一样?2. 记得有一次,我们班上那个数学小天才小李在黑板上写了一个超长的算式,全是数字,看得我眼花缭乱。

我忍不住问他:"哥们儿,你这是在写密码吗?"小李翻了个白眼说:"这叫纯数字表达式,你懂个屁!"我心想,这要是考试题,我怕是要写到手抽筋啊!3. 后来老师教我们用字母代替数字,我才恍然大悟。

原来字母可以是数学界的变色龙啊!它可以随时变成任何数字,简直比孙悟空的七十二变还厉害!4. 比如说,我们可以用"甲"来表示一个未知数。

"甲加上五等于十",这不就是"甲等于五"吗?瞧瞧,多简单!要是用纯数字写,那就得是"某个数加上五等于十,求这个数是多少"。

啰里啰嗦的,听着就让人头大!5. 还有啊,字母表示数还能玩出花来呢!比如说,"乙等于甲的两倍"。

这下可有意思了,甲变大,乙就跟着变大;甲变小,乙就乖乖变小。

就像是甲乙两兄弟,甲是哥哥,乙是弟弟,哥哥长高了,弟弟也跟着蹿个儿。

6. 有一次,我问老师:"为啥非得用甲乙丙丁啊?能不能用'葫芦娃'来表示数啊?"老师差点没被我气死,说:"你以为这是在演童话剧吗?"我心想,要是真能用葫芦娃,那数学题不就变得有趣多了?想象一下:"大娃加二娃等于三娃",是不是听着就很带劲儿?7. 说到底,字母表示数就像是给数字穿上了隐形衣。

它们可以是任何数,但又不是特定的数。

这种神奇的特性让我们能够解决更复杂的问题。

比如说,"丙等于甲加乙的平方"。

这下可有意思了,甲乙丙三个字母在那儿玩起了数学版的躲猫猫!8. 有时候,我觉得数学老师就像是魔术师。

五年级 用字母表示数 -含答案

五年级 用字母表示数 -含答案

用字母表示数,含字母式子的求值一、知识梳理二、教学重、难点三、作业完成情况四、典题探究例题1、梦想剧场楼上有A排,每排30个座位;楼下有B排,每排38个座位。

(1)用式子表示这个剧场共有多少座位。

(2)当A=15时,B=20时,求这个剧场一共有多少个座位。

例题2、某厂计划每月生产服装500件,实际10个月就超过全年计划B件,(1)用式子表示10个月实际的产量。

(2)当B=210时,这10个月实际生产服装多少件?例题3、下图是小明家的客厅和厨房的平面图。

(1)小明家的客厅比厨房的面积大多少平方米?(2)当B=6时,求小明家的客厅比厨房的面积大多少平方米?例题4、一辆汽车,每小时行驶a千米,上午行驶4小时,下午行驶了b千米。

(1)用式子表示这辆汽车行驶的千米数。

(2)当a=80、b=200时,这辆汽车行驶了多少千米?例题5、青青林场栽了梧桐树和雪松各x排,已知梧桐树每排12棵,雪松每排14棵。

(1)栽梧桐树和雪松共多少棵?(2)当x=20时,青青林场一共有多少棵梧桐树和雪松?例题6、学校买来一批篮球和足球。

买来篮球12只,共用a元,买来足球b只,每只25元。

(1)篮球的单价比足球贵多少元?(2)买这批篮球和足球共用了多少元?例题7、小华a小时做了12朵纸花,小明2小时做了b朵纸花,(1)平均每人做几朵纸花?(2)两人平均每小时做几朵纸花?五、演练方阵A档(巩固专练)一、填空题1、书店运来故事书420本,卖出χ本,还剩()本。

书店运来故事书a本,卖出b本,还剩()本。

2、一枝铅笔价钱是0.25元,买χ枝应付()元。

一枝铅笔价钱是a元,买b枝应付()元。

3、一辆汽车每小时行48千米,t小时行()千米。

4、洗衣机厂每天生产b台洗衣机,30天生产()台。

5、一架飞机3小时飞行s千米,平均每小时飞行()千米。

6、工厂要运进a吨煤,已经运进650吨。

还需要运()吨。

7、一种糖每千克a元,买1千克付()元,买2千克付()元,3千克付()元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型例题
例.水果店上午运来苹果a箱,下午运来苹果b箱,每箱苹果m千克.
1.用式子表示水果店一共运来苹果的千克数和上午、下午运来苹果的平均千克数,以及上午运来的苹果比下午的多多少千克?
2.当a=40,b=25,m=20时,求出上面几个式子的实际数.
分析:1.上午运来a箱,下午运来b箱,共(a+b)箱,每箱m千克,故共m(a+b)(千克),或上午a箱,共am(千克),下午b箱,共b m(千克),上、下午共(am+bm)千克;上、下午运来苹果的平均数为m(a+b)÷2(千克)或(am+bm)÷2(千克).上午运来的苹果比下午的多(am-bm)(千克).
2.把a=40,b=25,m=20分别代人上面各式中相应的字母,计算即得实际数.解:1.上午、下午共运来苹果m(a+b)(千克)或(am+bm)(千克);
上、下午运来苹果的平均数为
m(a+b)÷2(千克)或(am+bm)÷2(千克);
上午运来的苹果比下午的多(am-bm)(千克)或m(a-b)(千克).2.当a=40,b=25,m=20时
m(a+b)=20×(40+25)=1300(千克),
m(a+b)÷2=20×(40+25)÷2二650(千克)
m(a-b)=20×(40-25)=300(千克).。

相关文档
最新文档