频数分布表与频率分布直方图
7.4频数分布表和频数分布直方图
(2)视力在4.9及4.9以
上的同学占调查学生的比
频 60
数
()
例为_3_/8__ ;
名 50
(3)如果视力在第1,2,3 40
组范围内均属视力不良,那 30
么该校约共有_1_25_0_名学 20
生视力不良,应给予治疗、 矫正。
10
第3组
第2组 第1组
第4组 第5组 视力
3.95 4.25 4.55 4.85 5.15 5.45
()
才艺展示
1.一次统计七年级若干名学生每分跳绳次数的频数分布直方图如图. 请根据这个直方图回答下面的问题:
(1)参加测试的总人数是多少? 15人
(2)自左至右最后一组的频数、频率分别是多少?
频数是3
频率是0.2
(3)数据分组时,组距是多少?
组距是25次
频
数
七年级若干名学生每分跳绳次数的频数分布 直方图
合计
20 ___2_5__
30 10 5 100
3.每年的6月6日是全国的爱眼日,让我们行动起来, 爱护我们的眼睛!某校为了做好全校2000名学生的眼 睛保健工作,对学生的视力情况进行一次抽样调查, 如图,是利用所得数据绘制的频数分布直方图。请你 根据此图提供的信息,回答下列问题:
(1)本次调查共抽测了__16_0 _名学生;
82.5; 82.5~87.5; 87.5~92.5)
解: 20名学生每分脉搏跳动次数的频数分布表
组别(次) 67.5~72.5 72.5~77.5 77.5~82.5 82.5~87.5 87.5~92.5
频数 2 4 9 3 2
20名学生每分脉搏跳动次数的频数分布直方图
频
数 10
频数分布表与直方图
THANKS
感谢观看
均匀分布
数据在各个区间内的频数或频 率大致相等,表示数据分布较 为均匀。
双峰分布
数据呈现两个明显的峰值,表 示数据可能存在两个不同的集
中区域。
03
频数分布表与直方图关系
数据呈现方式比较
频数分布表
通过表格形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率。
直方图
通过图形形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率, 各矩形面积总和表示所有数据点的数 量。
可以是水平的。
数据表示Βιβλιοθήκη 02直方图用矩形的面积表示频数或频率,而条形图的条形长度直
接表示数据值。
数据间隔
03
直方图的矩形通常是连续的,没有间隔,而条形图的条形之间
通常有间隔。
常见直方图形状解读
钟型分布
数据呈现中间高、两边低的形 状,类似于钟的轮廓,表示数
据分布较为集中。
偏态分布
数据分布偏向一侧,可能是左 偏或右偏,表示数据在某个方 向上存在较多的极端值。
调整柱子形状
可以选择不同的柱子形状,如矩形、圆形等,以更好地展示数据 分布。
调整柱子颜色
可以通过调整柱子颜色来区分不同的数据组,使得直方图更加直 观易懂。
添加图例
为不同的数据组添加图例,以便读者更好地理解直方图。
添加标题、坐标轴标签等元素
添加标题
为直方图添加标题,简要说明数据的来源和含义。
添加坐标轴标签
05
直方图制作步骤及注意事 项
根据频数分布表绘制直方图
确定组数
根据数据的分布规律,选择合适的组数,通常组数选择在5-15之 间。
确定组距
根据数据的范围和组数,计算合适的组距,使得数据能够均匀地分 布在各个组中。
频数分布表和频数分布直方图(课件)
课堂练习
1.为了绘制一组数据的频数直方图,首先要算出这组 数据的变化范围,数据的变化范围是指数据的( C ) A.最大值 B.最小值 C.最大值与最小值的差 D.个数
课堂练习
2.一组数据的最小数是12,最大数是38,如果分组的组
距相等,且组距为3,那么分组后的第一组为( B )
A.11.5~13.5
为了参加全校各年级之间的广播操比赛,七年级准备从63名同学中挑出身
高相差不多的40名同学参加比赛为此收集到这63名同学的身高(单位:cm)
如下:
158 158 160 168 159 159 151 158 159 168 158 154 158 154 169 158 158 158 159 167 170 153 160 160 159 159 160 149 163 163 162 172 161 153 156 162 162 163 157 162 162 161 157 157 164 155 156 165 166 156 154 166 164 165 156 157 153 165 159 157 155 164 156
典型例题
例题1 已知一组数据,最大值为93,最小值为22,
现要把它分成6组,则下列组距合适的是( B )
A.9
B.12
C.15
D.18
典型例题Βιβλιοθήκη 例题2 在绘制频数直方图时,计算出最大值与最小值
的差为25 cm,若取组距为4 cm,则组数为( D )
A.4组
B.5组
C.6组
D.7组
典型例题
例题3 某中学部分同学参加全国初中数学竞赛,并取得了优异的成 绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试 题满分120分),并且绘制了如图的频数直方图(每组中含最低分 数,但不含最高分数),请回答: (1)该中学参加本次数学竞赛的共有多少人? (2)如果成绩在90分以上(含90分)的同学获奖, 那么该中学参赛同学的获奖率是多少? (3)图中还提供了其他信息,例如该中学没有 获得满分的同学等,请再写出两条信息.
(课件)频数分布表和频数分布直方图
直方图,根据图形提供的信息,回答下列问题:
(1)该单位职工有多少? 解:该单位职工有50人 (2)不小于38岁但小于44的职工人 数占职工总人数的百分比是多少? 不小于38岁但小于44的职工 人数占职工总人数的60% (3)如果42岁职工有4人,那么 年龄42岁以上的职工有多少?
年龄(岁) 34 36 38 40 42 44 46 48
第4 组 第5 组
视力
5.15
5.45
下表是从场口镇中学随机抽取的部 分同学的视力情况频数分布表
视力 3.95~4.25
4.25~4.55
频数 2
频率 0.04
6
23
18
0.12
0.46 0.36
4.55~4.85 4.85~5.15
5.15~5.45
合计
1
50
0.02
1.00
(1)、请你把上表补充完整; (2)、请你根据频数分布表,画出频数分布直方图
40
20
49.5 59.5 69.5 79.5 89.5 99.5
分 数
下面请同学们总结一下直方图的特点:
下表是从新星中学随机抽出的部分同学的视力情况频数分布表。
(1)请你把下表补充完整(每一组含最小值,但不含最大值);
学 以 致 用
视力
3.92~4.25 4.25 ~ 4.55 4.55~4.85 4.85~5.15
分组 22.5~ 24.5 2 24.5~ 26.5 3 26.5~ 28.5 8 28.5~ 30.5 4 30.5~ 合计 32.5
解: (4)列频数分布表:
频数记录
频数
3
20
例题:已知一个样本:27,23,25,27,29,
[数学]-7.4 频数分布表与频数分布直方图(原卷版)
7.4 频数分布表与频数分布直方图同步培优讲练综合1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.组距(2)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.3.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图.4.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.5. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.一、组距【例1】一个样本最大值为143,最小值为50,取组距为10,则可以分成 组.【例2】一组数据的最大值与最小值的差为2.8 cm,若取组距为0.4 cm,应将该数据分为 组.二、 频数分布直方图【例1】某校为了解学生参与“凤城悦读”的情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:)min ,然后利用所得数据绘制成如图不完整的统计图表: 课外阅读时间频数分布表:根据图表中提供的信息,回答下列问题: (1)a = ,b = ; (2)将频数分布直方图补充完整;(3)若全校有1200名学生,估计该校有多少名学生平均每天的课外阅读时间不少于50min ?【例2】小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;②样本中每天微信阅读不足20分钟的人数大约占16%;③选取样本的样本容量是60;④估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()A.①②③B.①②④C.①③④D.②③④【例3】为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②三、综合应用(与条形统计图、扇形图的结合)【例1】为了了解春节晚会群众喜爱节目类型(“歌舞类”、“语言类”、“戏曲类”、“其他”)情况,对某地区的部分群众的喜爱节目类型做了调查,其中每人只能填选一项,现根据调查情况绘制了如图直方图和扇形统计图.请根据图中信息解答下列问题:(1)此次调查中一共调查了多少人?(2)求所调查的群众中,喜爱“戏曲”的人数,并补全直方图的空缺部分;(3)若该地区共有人口360万人,估计该地区喜爱“语言类”约有多少人.【例2】某校为了解九年级学生休息日时每天学习的时长情况,随机抽取了n名九年级学生进行调查,据调查每名学生休息日时每天学习时长都少于5小时.该校将所收集的数据分组整理,绘制了如图所示的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是.(填写“全面调查”或“抽样调查”)(2)求n的值.(3)若该校九年级共有450名学生,请估计该校休息日时每天学习时长在3≤t<4范围的学生人数.3≤t<43≤t<4【例3】为了得到一种零件的加工精度,从中抽出40个进行检测,其尺寸数据如下(单位:cm):161 165 164 166 160 158 163162 168 159 147 170 167 151164 159 152 159 149 172 162157 162 169 156 164 163 157163 165 173 159 157 169 165154 153 163 168 169将数据适当分组,并绘制相应的频数分布直方图,图中所反映出这种零件的尺寸在哪个范围内的最多?1.某校组织部分学生参加安全知识竞赛,并将成绩整理后绘制成频数分布直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14人.其中正确的有( )A.1个B.2个C.3个D.4个2.某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图.已知从左到右5个小长方形的高的比为1∶3∶7∶6∶3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有篇.3、三台县某中学“五.四”青年节举行了“班班有歌声”歌咏比赛活动.比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图.老师评委评分统计表:学生评委评分折线统计图师生评委评分频数分布直方图(1)补全频数分布直方图.(2)计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占60%、40%的方法计算各班最后得分,知甲班最后得分94.4分,试求统计表中的x.4、扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间t/h 频数频率0<t≤0.5 240.5<t≤1 36 0.31<t≤1.5 0.41.5<t≤2 12 b合计 a 1根据以上信息,回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1h的人数5、为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩的分布情况进行处理分析,制成如下图表(成绩得分均为整数):组别成绩分组频数A 47.5-59.5 2B 59.5-71.5 4C 71.5-83.5 aD 83.5-95.5 10E 95.5-107.5 bF 107.5-120 6图7-4-7根据图表中提供的信息解答下列问题:(1)在频数分布表中,a= ,b= ;在扇形统计图中,m= ,n= .(2)补全频数分布直方图.(3)已知全区八年级共有200个班(平均每班有40人),用这份试卷进行检测,108分及以上为优秀,预计优秀的人数约为人,72分及以上为及格,预计及格的人数约为人.。
频数分布图与频数分布直方图的区别
一、基本概念1.频数:落在不同小组中的数据个数为该组的频数.各组的频数之和等于这组数据的总数.注:在统计频数多少的时候,我们一般通过数“正”字的方法累计.2.频率:频数与数据总数的比,即频率=各组频率之和为1.频率大小反映了各组频数在数据总数中所占的份量3.组数:把全体样本分成的组的个数称为组数.4.组距:把所有数据分成若干个组,每个小组的两个端点的距离。
5.极差:用样本数据中的最大值减去最小值。
组距=极差除以组数二、列频数分布表的注意事项运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数.画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组.编辑本段三、直方图的特点通过长方形的高代表对应组的频数与组距的比(因为比是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图.它能:①清楚显示各组频数分布情况;②易于显示各组之间频数的差别.编辑本段四、制作频数分布直方图的步骤1.找出所有数据中的最大值和最小值,并算出它们的差.2.决定组距和组数.3.确定分点4.列出频数分布表.5.画频数分布直方图.编辑本段五、频数分布折线图的制作我们可以在直方图的基础上来画,先取直方图各矩形上边的中点,然后在横轴上取两个频数为0的点,这两点分别与直方图左右两端的两个长方形的组中值(矩形宽的中点)相距一个组距,将这些点用线段依次联结起来,就得到了频数分布折线图.编辑本段六、条形图和直方图的区别1.条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,可以用矩形的的高表示频数;2.条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;3.条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙;编辑本段七、与统计图有关的数学思想方法1.数形结合:从统计图中,能看出各组数据的特点,可进一步应用这些数据特点解决实际问题.通过整理数据,根据要求绘制统计图,可进一步分析数据、做出决策.2.类比:绘制频数分布直方图和绘制条形图类似,如果长方形的宽一样,那么长方形的高度之比就是各组内数据个数之比.编辑本段八、如何画频数分布直方图①集中和记录数据,求出其最大值和最小值。
频数分布表频数布直方图
频数分布表频数布直方图————————————————————————————————作者:————————————————————————————————日期:23 课题: 7.4频数分布表和频数分布直方图预习目标1.观察教材P25八年级50名学生的身高数据,直观感受数据分组的必要性.2.思考如何用一组数据确定频数分布的组距、组数,尝试归纳制作频数分布表、频数分布直方图的步骤.3.了解条形统计图与频数分布直方图之间的区别与联系,教材导读阅读教材P25~P27内容,回答下列问题:1.频数分布的几种统计方式频数分布反映了总体中各部分个体在该部分的_______,有利于了解总体中每一部分所含个体的具体数量,常见的频数分布统计方式有:_______、_______和_______.2.频数分布统计的一般步骤(1)确定数据的波动范围方法:找出一组数据的最_______值和最_______值,计算它们的_______.(2)确定组距、组数①每组两端点之间的距离称为组距;②利用()()()-,且取与结果相邻较大的整数值为组数,一般情况下,数据的个数在100以内的分成5~12组.(3)确定分点①第一组的起点应比统计数据的最小值略小;保证每个统计数据都落在各个小组内. ②每个分点的取值应比统计数据多一位小数.例如:一组数据的最小值为45,组距为4,组数为5,则分组情况为_______~_______、_______~_______、_______~_______、_______~_______、_______~_______.(4)列频数分布表(常见表格的形式)(5)绘制频数分布直方图①画出两条互相垂直且具有公共原点的数轴,分别以向右、向上为正方向,两条数轴的单位长度不一定要统一;②根据频数分布表确定每个小长方形的高度与宽度,其中高度由_______决定,宽度由_______决定.3.条形统计图与频数分布直方图之间的区别与联系条形统计图与频数分布直方图都能从不同的角度直观、形象地描述、分析数据.它们具有各自的特点.条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量特征.频数分布直方图用横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.频数分布直方图是特殊的条形统计图,条形统计图各个“条形”之间都有间隙,频数分布直方图各个“条形”之间没有间隙.例题精讲例为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参赛,为了了解此次竞赛的成绩,从中抽取了部分学生的成绩(得分取整数,满分为100分)进行统计.请你根据尚未完成的频数分布表和频数分布直方图(如图①),解答下列问题.(1)补全频数分布表;(2)补全频数分布直方图;(3)在全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的学生约有多少人?小结:频数分布表和频数分布直方图是我们进行数据统计的基本图表,频数分布表考查的是频数、频率、样本容量三者之间的关系:频率=频数÷样本容量.频数分布直方图是根据频数分布表中的数据绘制的.本题中,样本的优秀率可以看成全校的优秀率,所以全校的优秀人数等于全校人数乘样本的优秀率.热身练习班级姓名学号1.某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图45 所示的频数分布直方图.请根据频数分布直方图计算,仰卧起坐的次数在15~20次之间的频率是 ()A .0.1B .0.17C .0.33D .0.42.某校七年级(3)班有50名学生,他们的上学方式为步行、骑车、乘车,根据表中可得 ( )A .a =18,d =24%B .a =18,d =40%C .a =12,b =24%D .a =12,b =40%3.八年级(1)班全体学生参加了学校举办的安全知识竞赛.如图是该班学生竞赛成绩的频数分布直方图(满分为100分,成绩均为整数).若将成绩不低于90分的评为优秀,则该班这次成绩达到优秀的人数占全班总人数的百分比是_______.4.时代中学举行了一次科普知识竞赛,满分为100分,学生的最低得分为31分.如图是根据学生竞赛成绩绘制的频数分布直方图的一部分.若参加这次知识竞赛的学生共有40人,则得分在60~70分的频率为_______.5.随着车辆的增加,交通违规的现象越来越严重,交警对在某雷达测速区监测到的一组汽车的速度数据进行整理,得到其频数及频率如下表:注:30~40为速度大于30千米/时而小于40千米/时,其他类同.(1)请你把表中的数据填写完整; (2)补全如图所示的频数分布直方图;(3)如果汽车速度不低于60千米/时即为违章,那么违章车辆一共有多少辆?6.勤劳是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整小时数),所得数据统计如下表:(1)抽取的样本容量是_______;(2)根据表中的数据补全频数分布直方图;(3)若该校有学生1260名,则大约有多少名学生寒假在家做家务的时间在40.5~100.5小时之间?6。
频数分布表和频率分布直方图课件
Excel制作频数分布表和频率分布直方图方法总结
频数分布表和频率分布直 方图
频数分布表和频率分布直方图是数据分析中常用的工具。通过本课件,我们 将介绍它们的定义、制作方法以及应用范围和重要性。
为什么需要频数分布表和频率 分布直方图?
频数分布表和频率分布直方图帮助我们更好地理解和解释数据。通过可视化 数据,我们可以发现模式、趋势和异常值,从而做出有意义的数据分析。
Excel提供了便捷的功能和工具来制作频数分布表和频率分布直方图。学习如 何使用Excel进行制作,并注意一些细节,可以更高效地进行数据分析。
结论
频数分布表和频率分布直方图在数据分析中应用广泛且具有重要性。它们帮助我们理解数据、发现规律,并为 数据分析提供有力支持。
参考资料
频数分布表知识点总结
频率分布直方图知识点总结
频数பைடு நூலகம்布表
频数是指某个数值或区间在数据集中出现的次数。制作频数分布表可以帮助 我们了解数据的分布情况和集中程度,从而更好地进行统计分析。
频率分布直方图
频率是指某个数值或区间在数据集中出现的频率或概率。通过制作频率分布 直方图,我们可以直观地展示数据的分布情况和集中程度。
使用Excel绘制频数分布表和频 率分布直方图
12.3频数分布表与频数分布直方图
13.2频数分布表与频数分布直方图班级___________姓名____________【学习目标】1.掌握频数、频率的概念。
会求一组数据的频数与频率。
2.如何收集与处理数据。
3.会绘制频数分布直方图与频数分布折线图。
4.了解频数分布的意义,会得出一组数据的频数分布。
【学习过程】一、重点回顾常用的统计图中,能够清晰的表示各部分在总体中所占百分比的是____________,条形统计图能够_________________________________________,如果我们需要知道同一事物在不同时期的变化趋势时,我们一般用_______________来表示数据。
二、求知若渴金请大家仔细阅读书本P145-P148,和老师一起尝试解决一下问题:1、概念梳理频数:__________________________;频率:__________________________组距:__________________________。
2、如书P146,罗列了2001年国家环保局统计的47个重点城市的空气质量,空气质量等级划分如下:空气污染指数1-50为I级,51-100为II级,101-200为III级,201-300为IV 级。
请按城市空气质量级别填表:空气污染指数1-50(I级)51-100(II级)101-200(III级)201-300(IV级)划记频数频率3、现在再将这些数据做适当的整理,将其分组,以制成频数分布直方图。
你觉得如何分组最为合适,请你说说你的理由。
并将你的分组填入下表,制成频数分布表。
空气污染指数分组频数划记频数4、根据上表绘制频数分布直方图:5、为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直方图上取点、连线,得到频数分布折线图。
6、比较一下各种统计图各自的优缺点.三、当堂训练“五一”期间,新华商场贴出促销海报,内容如图4.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如图5的频数分布直方图.(1)补齐频数分布直方图;(2)求所调查的200人次摸奖的获奖率;(3)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?购物券人次图2图313.2频数分布表与频数分布直方图 课后作业班级___________姓名____________一、选择题1、如图1是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是( ) A.该班总人数为50人B.步行人数为30人C.骑车人数占总人数的20%D.乘车人数是骑车人数的2.5倍2、体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图2).由图可知,最喜欢篮球的频率是( )A .0.16B .0.24C .0.3D .0.4二、解答题3、 每年的6月6日是全国的爱眼日,让我们行动起来,爱护我们的眼睛!某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查,下图3是利用所得数据绘制的频数分布直方图(视力精确到0.1).请你根据此图提供的信息,回答下列问题: (1)本次调查共抽测了 名学生;(2)视力在4.9及4.9以上的同学约占全校学生比例为多少? (3)如果视力在第1,2,3组范围内(视力在4.9以下)均属视力不良,应给予治疗、矫正.请计算该校视力不良学生约有多少名?4、中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有50名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A B C D ,,,四等,并绘制成下面的频数分布表(注:6~7的意义为大于等于6分且小于7分,其余类似)和扇形统计图(如图4).515 1020 25乘车 步行 骑车步行 30%乘车50%骑车 图1 九年级(1)班学生最喜欢体育项目的频数分布直方图频数(人)242016 12 8 4O4 12 6 20 8体育项目 羽毛球 乒乓球 跳绳 篮球 其它 图2频数分布表等级 分值 跳绳(次/1分钟) 频数A9~10 150~170 48~9 140~150 12 B 7~8 130~140 176~7 120~130 mC5~6 110~120 04~5 90~110 nD3~4 70~90 10~3 0~70 0(1)求m n ,的值;(2)在抽取的这个样本中,请说明哪个分数段的学生最多?请你帮助老师计算这次1分钟跳绳测试的及格率(6分以上含6分为及格).5、某县七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:频 率 分 布 表分 组 频 数 频 率 49.5~59.5 20 59.5~69.5 32 0.08 69.5~79.5 0.20 79.5~89.5 124 89.5~100.5 144 0.36 合 计4001请你根据不完整的频率分布表. 解答下列问题: (1)补全频率分布表; (2)补全频数分布直方图;(3)若将得分转化为等级,规定得分低于59.5分评 为“D ”,59.5~69.5分评为“C ”,69.5~89.5分评为 “B ”,89.5~100.5分评为“A ”,这次15000名学生 中约有多少人评为“D ”?如果随机抽取一名参赛学 生的成绩等级,则这名学生的成绩评为“A ”、“B ”、 “C ”、“D ”哪一个等级的可能性大?请说明理由..图4 扇形统计图A C DB 64% 成绩(分)频数(人)60 40 2080 100 120 140 160 49.5 59.5 69.5 79.5 89.5 100.532124144图5。
《频数分布表和频数分布直方图》word教案 (公开课获奖)2022苏教版 (3)
7.4 频数分布表和频数分布直方图学习目标:1.了解频数分布的意义,会绘制频数分布表和频数分布直方图;2.通过经历调查、统计、研讨等活动,开展学生实践能力与合作意识;3.通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.重点、难点:了解频数分布的意义,会得出一组数据的频数分布表和频数分布直方图.决定组距与组数,数据分布规律。
一.【预学指导】七年级学生的身高在什么范围内?整体情况如何?首先,抽样测量某中学七年级40名同学的身高,结果如下(单位:cm):144 148 159 156 157 163 156 164 156 159169 163 156 162 163 164 155 162 153 155160 165 160 161 166 159 161 157 155 167162 165 159 147 162 172 156 165 157 161问:①上述共有______个数据;②这些数据中最小值是________,最大值是_______,它们相差________;③研究这些数据,大局部数据大概在怎样的范围?怎么分析?二.【问题探究】问题1:某中学为了了解八年级学生身高的范围和整体分布情况,抽样调查了八年级50名同学的身高,结果如下〔单位:cm〕:150 148 159 156 157 163 156 164 156 159 169 163 170 162 163 164 155 162 153 155 160 165 160 161 166 159 161 157 155 167 162 165 159 147 163 172 156 165 157 164 152 156 153 164 165 162 167 151 161 162怎样描述、分析这50名学生身高的分布情况?1. 组距:每组两个端点之间的距离;注意:为了使每个数据都落在相应的组内,可取比数据多一位小数来分组,并把第1组的起点略微减小一点,把上述数据“划记〞到相应的组中,得到相应数据出现的频数.2. 频数分布图(左以下图);频数分布直方图(右以下图).3.频数折线图.将每个小长方形上面一条边的中点顺次用折线连接起来的频数分布直方图.问题2:问题讨论.1、用频数分布表整理数据的步骤如何?2、绘制频数分布表时,如何分组?3、根据上面的频数分布表、频数分布直方图,你能获得哪些信息?对该校八年级学生身高的整体分布情况能做出怎样的估计?4、条形统计图、频数分布直方图,从不同的角度直观、形象地描述、分析数据.请比拟它们各自的特点.三.【拓展提升】1.根据某班40名同学的体重频数分布直方图,答复以下问题:〔1〕体重在哪个范围内的人数最多?〔2〕体重超过的同学占全班同学的百分之几?2.100个数据的分组及各组的频数如下:59.5~61.5 2 61.5~63.5 563.5~65.5 9 65.5~67.5 1567.5~69.5 21 69.5~71.5 1971.5~73.5 13 73.5~75.5 975.5~77.5 5 77.5~79.5 22试画出这组数据的频数分布直方图.四.【课堂小结】1.频数分布表和频数分布直方图的作用是什么?2.频数分布直方图的特点是什么?五.【反应练习】1.一组数据有80个,其中最大值为140,最小值为40,取组距为10,那么可以分成( )A.10组 B.9组 C.8组 D.7组2.在对n个数据整理时,把这些数据分成7组,那么各组的频数之和、频率之和为( )A.n和1 B.n和n C.1和n D.1和13. 某校九年级共有学生400人,为了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的频率分布表中,各小组频数之和等于_______;假设某一小组的频数为4,那么该小组的频率为_______;假设~这一小组的频率为,那么可估计该校九年级学生视力~范围内的人数约为________.4.某校八年级学生进行体育测试,八年级(2)班男生的立定跳远成绩绘制成如图l2—23所示的频数分布直方图,图中从左到右各矩形的高之比是2:3:7:5:3,最后一组的频数是6,根据直方图所表达的信息,解答以下问题.(1)该班有多少名男生?(2)假设立定跳远的成绩在米以上(包括米)为合格,那么该班的这项测试合格率是多少?9.1 单项式乘单项式力.教学重点:理解单项式相乘的法那么,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法那么解决实际问题.【情景创设】用6个边长为a的小正方体拼成一个长方体,并用不同的方法表示你所拼出来的长方体的体积,从不同的表示方法中,你能发现些什么?〔1〕体积的表示方法;〔2〕面对你的侧面积的表示方法.探索新知让学生在交流的根底上思考以下问题:〔1〕体积的表示方法:①3a·2a·a=________________=6a3,②3a·2a·b=________________=6a2b.侧面积的表示方法:3a·2a=________________=6a2.〔2〕从不同的表示中你发现了什么?〔3〕通过下面两个计算我们来进一步的探讨:〔2a2b〕〔3ab2〕=[2 ×3]•〔a2•a〕〔b•b2〕=6a3b3系数相乘相同字母相同字母〔4ab2〕〔5b〕=[4×5]•〔b2•b〕•a=20ab3系数相乘相同字母只在一个单项式中出现的字母你能告诉大家你算出的结果吗?你是怎样来思考的呢?通过探索得到单项式乘单项式的计算法那么:〔1〕将它们的系数相乘;〔2〕相同字母的幂相乘;〔3〕只在一个单项式中出现的字母,那么连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ). 注:教师强调格式标准,板书过程.〔通过计算引导学生发现单项式与单项式相乘时,一找系数,二找相同字母的幂,三找只在一个单项式里出现的字母.〕练习1:判断正误:〔1〕3x 3·(-2x 2)=5x 3; 〔2〕3a 2·4a 2=12a 2; 〔3〕3b 3·8b 3=24b 9; 〔4〕-3x ·2xy =6x 2y ; 〔5〕3ab +3ab =9a 2b 2.练习2:课本练一练 第1、2题.例 2 计算:〔1〕(2x )3·(-3xy 2); 〔2〕(-2a 2b )·(-a 2)·14bc . 注:遇到乘方形式先用积的乘方公式展开,然后转化为单项式乘以单项式的形式,再根据今天所学内容计算.练习3:计算:〔1〕(a 2)2·(-2ab ) ;〔2〕-8a 2b ·(-a 3b 2) ·14b 2 ; 〔3〕(-5a n +1b ) ·(-2a )2;〔4〕[-2(x -y )2]2·(y -x )3.【盘点收获】【课后作业】补充习题和同步练习。
2.2.1频率分布表和频率分布直方图
第一课时
知识探究(一):频率分布表
【问题】 我国是世界上严重缺水的国家 之一,某市政府为了节约生活用水,计 划在本市试行居民生活用水定额管理, 即确定一个居民月用水量标准a,用水量 不超过a的部分按平价收费,超出a的部 分按议价收费.通过抽样调查,那么标准a 制定为多少较合理呢?为了较为合理的 确定出这个标准,需要做哪些工作 ?
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
频率分布表.
分组
[0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5] 合计
频数
频数 4 8 15 22 25 14 6 4 2
思考: 频率分布直方图中
小长方形的高
频率 组距
小长方形的面积表示什么?
小长方形的面积表示该组的频率.
所有小长方形的面积和=?
所有小长方形的面积和=1.
知识探究(二):频率分布直方图
思考:频率分布直方图非常直观地表明了 样本数据的分布情况,你能根据上述频率 分布直方图指出居民月均用水量的一些数 据特点吗?
2
0.02
100 1.00
知识探究(一):频率分布表
思考:如果市政府希望85%左右的居民每 月的用水量不超过标准,根据上述频率分 布表,你对制定居民月用水量标准(即a的 取值)有何建议?
知识探究(一):频率分布表
思考:如果市政府希望85%左右的居民每 月的用水量不超过标准,根据上述频率分 布表,你对制定居民月用水量标准(即a的 取值)有何建议?
优点:直观地表明了样本数据的分布情况,清楚 的看出数据分布的总体态势。 缺点:从直方图本身得不出原始的数据内容,造 成原有数据信息的丢失。
频数分布表和频率分布直方图课件
在医学领域,频数分布表和频率分布直方图可以用于分析病例数据 、药物疗效等,为医学研究和临床诊断提供支持。
05
制作频数分布表和频率分布直方图 的注意事项
数据来源的可靠性
确保数据来源可靠
在制作频数分布表和频率分布直 方图时,应确保所使用数据的来 源可靠,避免使用不准确或过时
的数据。
验证数据准确性
作用
方便地展示数据的分布情况,帮助我们了解数据的集中趋势、离散程度以及分布形态等特征,为进一步的数据 分析提供基础。
制作步骤
01
02
03
04
收集数据
首先需要收集需要分析的数据 。
数据分组
将数据按照一定的分类标准进 行分组,分组的方法可以根据
实际需求进行选择。
统计频数
统计每组数据的数量,即频数 。
制作表格
应用场景
频数分布表
适用于需要详细了解数据各组频数的场景,如人口普查、销 售数据统计等。
频率分布直方图
适用于需要直观展示数据分布的场景,如市场调研、产品质 量检测等。
实例对比
频数分布表
一个班级的考试成绩统计,可以得出各分数段的学生人数。
频率分布直方图
同个班级的考试成绩分布图,可以直观地看出成绩的集中区域和离散程度。
数据收集
收集需要分析的数据,并进行必要的整理 和筛选,确保数据的质量和准确性。
添加图表元素
在直方图中添加必要的图表元素,如坐标 轴、标题、图例等,以便更好地解释和展 示数据。
数据分组
将数据按照一定的规则进行分组,分组的 方法可以根据实际需求选择,常见的分组 方式有等距分组和等频分组等。
绘制直方图
根据频数和频率数据,绘制条形图来表示 每个数据组的分布情况,பைடு நூலகம்形图的高度代 表频率,宽度代表组距。
频率分布表和频率分布直方图分析
根据频数分布表绘制直方图
不及格的 学生数最 少!!!
绘制频数折线图
将直方图中每个小 长方形上面一条边 的中点顺次连结起 来,即可得到频数 折线图
2.2.1 用样本的频率分 布估计总体分布
1、用样本去估计总体,是研究统计问题的一个基本思想
2、前面我们学过的抽样方法有:简单随机抽样、系统抽样、 分层抽样。要注意这几种抽样方法的联系与区别。
2.是用样本的数字特征(如平均 数、标准差等)估Байду номын сангаас总体特征。
通过抽样,我们获得了100位居民某年的月 平均用水量(单位:t) ,如下表:
思考:由上表,大家可以得到什么信息?
3.1 3.4 3.2 3.3 3.2 3.0 2.5 2.6 2.5 2.8
2.5 2.6 2.7 2.8 2.9 2.9 2.8 2.7 2.6 2.5
分 组 [0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5] 合计
频数 4 正 8 正 正 正 15 正 正 正 正 22 正 正 正 正 正 25 正 正 14 正 一 6 4 2 100
频数累计
频率 0.04 0.08 0.15 0.22 0.25 0.14 0.06 0.04 0.02 1.00
频率 0.04 0.08 0.15 0.22 0.25 0.14 0.06
频率/组距 0.50 0.40 0.30 0.20 0.10 0
0.04 0.02 1
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t
问题 如果当地政府希望使80% 以上的居 民每月的用水量不超出标准,根据频率分 布表和频率分布直方图,你能对制定月用 水量标准提出建议吗?
频数分布表与频数分布直方图
大数据整合与共享
未来将有更多的数据整合和共享平台出现,频数分布表与频数分布直方图将作为重要的数据分析工具, 为全球范围内的数据共享和分析提供支持。
谢谢
THANKS
频数分布直方图的优点
可以直观地看出数据的分布趋势和异常值,便于进行定性分析;通过颜色的深浅、柱子的高低可以快 速判断数据的集中和离散程度。缺点:无法详细记录每个数据值的频数,定量分析时需要结合其他工 具或方法。
04 频数分布表与频数分布直方图的应用
CHAPTER
在统计学中的应用
描述数据分布特征
频数分布表和直方图可以清晰地展示数据的 分布情况,帮助我们了解数据集中和离散的 程度。
数据探索和可视化
通过频数分布直方图,我们可以直观地了解数据 的分布情况,进一步探索数据之间的关系和规律。
3
对比不同数据集
通过比较不同数据集的频数分布表和直方图,我 们可以发现它们之间的差异和相似之处,进而进 行数据分析和解释。
在实际生活中的应用
人口普查数据统计
在人口普查中,频数分布表和直 方图被广泛应用于展示不同地区、
03 频数分布表与频数分布直方图的比较
CHAPTER
特点比较
频数分布表
以表格形式展示数据的频数分布情况 ,可以清晰地看出数据的数量和分布 特征。
频数分布直方图
以图形方式展示数据的频数分布情况 ,可以直观地看出数据的分布趋势和 异常值。
应用场景比较
频数分布表
适用于需要详细了解数据分布情况,进行定量分析的场景。例如,在市场调研中,可以使用频数分布表来分析不 同年龄段、性别等人群的数量分布情况。
7.4 频数分布表和频数分布直方图 同步课件
2
频数
2
12
5
10
6
8
12
8
9
1
2
12
8
6
4
5
2
9
6
2
132 137 142 147 152
1
157 162 167 172
脉搏(次/分)
练一练
(2)根据频数分布表、频数分布直方图,你能获得哪些信息?
解:(2)频数分布表、频数分布直方图清楚地显示了各组数据的频数分布情况,反映
出各组数据频数之间的差别.
解: (1) 体重在49.5kg~54.5kg范围内的人数最多;
(2) 体重超过 59.5 kg的学生占全班学生的17.5%.
练一练
2.为了调查某市噪声污染情况,该市环保局抽样调查了40个噪声测量点的噪声声
级,结果如下(每组含起点值,不含终点值):
(1)在噪声最高的测量点,其噪声声级在哪个范围?
(2)噪声声级低于65 dB的测量点有多少个?
苏科版 八年级(下册)
7.4 频数分布表和频数分布直方图
学习目标
1. 了解频数分布的意义,会列出频数分布表、绘制频数分布
直方图;
2. 能根据统计结果做出合理的判断和预测,在解决实际问题的
过程中,体会统计对决策的作用.
新知探究
某校为了解八年级学生身高的范围和整体分布情况,抽样调查了
八年级50名学生的身高,结果如下(单位:cm):
50<n≤100时,分为8~12组.
(2)分点的两种确定方法:
①数据不落在分点上:若数据均为整数,则取某一分组区间的最小值减去0.5作
为该分组区间的左分点数据;若数据是保留小数点后一位的数,则取某一分组区间
解读频数分布表和频数分布直方图
解读频数分布表和频数分布直方图频数分布表和频数分布直方图是两种常见的统计表现形式,在实际问题中应用非常广泛.为帮助同学们更好地任何认识这两种统计方式,现从以下几个方面加以分析,供参考.一、正确理解频数的概念频数是记录数据时某个对象出现的次数,它能反映每个对象出现的频繁程度.二、作频数分布表和频数分布直方图的一般步骤在整理和描述数据时,往往把数据按照范围进行分组.先用频数分布表整理数据,然后用横轴表示数据范围,纵轴表示各小组的频数,以各组的频数为高画出与这一组对应的矩形,得到频数分布直方图.画频数分布直方图的一般步骤如下:1.计算出数据中最大值与最小值的差;2.确定组距与组数,100个以内数据一般分为5~12组;3.决定分点,常使分点比所统计数据多一位小数,并且把第一组的起点稍微减少一点;4.列频数分布表,用唱票法对数据进行频数累计;5.建立平面直角坐标系,用横轴表示数据范围,纵轴表示频数,画出频数分布直方图,这样画出的长方形的高就代表频数,各小组的频数之和等于数据总数.如果取直方图中每一个长方形上边的中点,然后在横轴上直方图的左右两边取两个频数为0的点,它们分别与直方图左右相距半个组距,将这些点用线段依次连接起来,就得到频数分布折线图.频数分布折线图可以更好地刻画数据的总体规律.三、画频数分布直方图的注意事项1.分组时,不能出现数据中同一数据在两个组的情况,为了避免出现这种情况,通常在分组时,每组两端的两个数据要比题中数据单位多一位,比如题中所给数据都是整数,分组时加或减0.5即可.2.组距和组数的确定没有固定的标准,这要凭借经验和研究的具体问题来决定.通常数据越多,分的组也越多,当数据在100个以内时,根据数据的多少通常分成5~12组.例 2008年5月12日,四川汶川发生里氏8.0级特大地震,举国震惊.一方有难,八方支援,某学校开展了向灾区“希望小学”捐赠图书的活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例的扇形统计图如图1所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成图2所示的频数分布直方图.根据以上信息解答下列问题:(1)从图2中我们可以看出人均捐赠图书最多的是 .(2)九年级约捐赠图书多少册?(3)全校大约共捐赠图书多少册?图 2九年级八年级 七年级年级人数捐赠数/册654.5图 1 九年级35%八年级 30%七年级35%解析:(1)从统计图中可以看出,人均捐赠图书最多的是八年级.(2)九年级的学生有1200×35%=420(人),估计九年级共捐赠图书420×5=2100(册).(3)七年级的学生有1200×35%= 420(人),估计七年级共捐赠图书420×4.5=1890(册).八年级的学生有1200×30%=360(人),估计八年级共捐赠图书360×6=2160(册).全校大约共捐赠图书1890+2160+2100=6150(册).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绘制频数折线图
将直方图中每个小 长方形上面一条边 的中点顺次连结起 来,即可得到频数 折线图
画频数分布直方图的一般步骤:
(1) 计算最大值与最小值的差(极差).
极差:
(2) 决定组距与组数: 极差/组距=_______
数据分成_____组. 注意:一般情况
(1)可以由组距来求组数; (2)当数据个数小于40时,组数为6-8组;
原则和
8
6
4
2
0 22.5 24.5 26.5 28.5 30.5 32.5 数据
1、一个样本含有20个数据:35,31,33,35,37,39, 35,38,40,39,36,34,35,37,36,32,34,35,36,34. 在列频数分布表时,如果组距为2, 那么应分成___组,32.5~34.5这组的频数为_____
中抽取200名学生的数学成绩(考生得分均为整数,满
分120分)进行统计,评估数学考试情况,经过整理得
到如下频数分布直方图,
请回答下列问题:
60 学生人数
60
(2)补全频数分布直方图 50
40
30
28
20 10
5 0
15 10
28 14
分数
0~35 36~47 48~59 60~71 72~83 84~95 96~107 08~120
15
试及格人数。
10 10 5
0
28 14
0~35 36~47 48~59 60~71 72~83 84~95 96~107 108~120
分数
小结
通过本节学习,我们了解了频数分布的意义及 获得一组数据的频数分布的一般步骤: (1)计算极差; (2) 决定组距和组数; (3) 决定分点; (4) 列出频数分布表; (5)画出频数分布直方图和频数折线图。
某班一次数学测验成绩如下: 63,84,91,53,69,81,61,69, 91,78,75,81,80,67,76,81, 79,94,61,69,89,70,70,87, 81,86,90,88,85,67,71,82, 87,75,87,95,53,65,74,77.
大部分同学处于哪个分数段? 成绩的整体分布的12000名学生
中抽取200名学生的数学成绩(考生得分均为整数,满
分120分)进行统计,评估数学考试情况,经过整理得
到如下频数分布直方图,
请回答下列问题:
60
学生人数
60
(3)若成绩在72分以上 50
(含72分)为及格, 40
请你评估该市考生数学 30
28
成绩的及格率与数学考 20
解: (4)列频数分布表:
分组 22.5~ 24.5~ 26.5~ 28.5~ 30.5~ 合计 24.5 26.5 28.5 30.5 32.5
频数记录
频数
2
3
8
4
3 20
例题:已知一个样本:27,23,25,27,29,
31,27,30,32,21,28,26,27,29, 28,24,26,27,28,30。 列出频数分布表, 并绘出频数分布直方图和频数折线图。
频 数 职报告,希望对大家有所作用。 企业纪委书记述职报告范文篇【一】 一、
围 绕 “ 落 实 科学发 展观, 创建社 会大物 流”, 进一步 强化监 督检查 科 学 发 展 观 是 指 引 我 们抓住 并用好 重要战 略机遇 期,推 进企业 持续发 展的重 要思想 武器。 我 公 司 重 大 决策和 工作部 署,是 实现企 业发展 战略目 标的基 本方略 和根本 依据。 各 单 位 党 政 要以干 事业的 激情, 干实事 的作风 ,干成 事的能 力,切 实履行 职责, 强 化监督 检查, 严格执 行和维 护党纪 政纪, 确保我 公司各 项奋斗 目标的 顺利实 现。 一 要 围 绕 贯 彻落实 “*”改 革发展 奋斗目 标加强 监督检 查。按 照我公司提出的“落 实 科学发 展观, 实施‘ 走出去 ’战略 ,创建 社会大 物流” 的要求 ,重点 加强对 “ *” 期 间 改 革 发 展总任 务和主 要奋斗 目标实 施过程 的监督 检查, 引导各 单位领 导干部 牢 固 树 立 科 学的发 展观和 正确的 政绩观 ,牢牢 把握集 团公司 党政提 出的七 项基本
解: (5)画频数分布直方图和频数折线图:
一 年 来 , 在上 级党委 和纪委 的正确 领导下 ,在公 司班子 成员和 各部门 全体干 部 职 工 的 大 力支持 和积极 配合下 ,本人 不断深 入学习 和全面 贯彻落 实党的 十八大 精 神 和 中 纪 委二次 全会精 神,以 生产经 营为中 心,以 落实八 项规定 、转变 工作作 风 为 抓 手 , 尽职尽 责,廉 洁奉公 .如下是 中国人 才网给 大家整 理的企 业纪委 书记述
2、对某班同学的身高进行统计(单位:厘 米),频数分布表中165.5~170.5这一组学 生人数是12,频率是0.25,则该班共有____名 学生.
3、 2003年中考结束后,某市从参加中考的12000名
学生中抽取200名学生的数学成绩(考生得分均为整数,
满分120分)进行统计,评估数学考试情况,经过整理
制作频数分布表
先将成绩按10分的距离分段,统计每个分数 段学生出现的频数,填入表20.1.2.
表20.1.2
根据频数分布表绘制直方图
表20.1.2
79.5分到89.5分 这个分数段的学 生数最多
根据频数分布表绘制直方图
90分以上 的同学较 少
根据频数分布表绘制直方图
不及格的 学生数最 少!!!
当数据个数40—100个时,组数为7-10组;
画频数分布直方图的一般步骤:
(1) 计算最大值与最小值的差(极差).
极差:
(2) 决定组距与组数: 极差/组距=________
(3) 决定分点.
数据分成_____组.
(4)列频数分布表.
数出每一组频数
(5)绘制频数分布直方图.
横轴表示各组数据,纵轴表示频数, 该组 内的频数为高,画出一个个矩形。
得到如下频数分布直方图,
请回答下列问题:
60 学生人数
60
(1)此次抽样调查
50
的样本容量是_____ 40
30
28
28
20
15 10 10
14
5
0
0~35 36~47 48~59 60~71 72~83 84~95 96~107 08~120
分数
2003年中考结束后,某市从参加中考的12000名学生
例题:已知一个样本:27,23,25,27,29,
31,27,30,32,21,28,26,27,29, 28,24,26,27,28,30。 列出频数分布表, 并绘出频数分布直方图和频数折线图。
解:(1)计算最大值与最小值的差: 32-23=9
(2)决定组距为2, 因为9/2=4.5,所以组数为5
(3)决定分点: 22.5~24.5,24.5~26.5, 26.5~28.5,28.5~30.5,30.5~32.5.
例题:已知一个样本:27,23,25,27,29,
31,27,30,32,21,28,26,27,29, 28,24,26,27,28,30。 列出频数分布表, 并绘出频数分布直方图和频数折线图。