直线与双曲线关系
直线与双曲线的位置关系ppt课件
![直线与双曲线的位置关系ppt课件](https://img.taocdn.com/s3/m/41302764905f804d2b160b4e767f5acfa0c7836e.png)
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
(2)将 y=kx+ 2代入x32-y2=1,得
(1-3k2)x2-6 2kx-9=0.
由直线 l 与双曲线交于不同的两点,得
1-3k2≠0 Δ=6 2k2+361-3k2=361-k2>0
方程化为 2x=5,故此方程(*)只有一个实数解,即直线与双曲
线相交,且只有一个公共点.
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
(2)当 1-k2≠0,即 k≠±1 时,Δ=(2k2)2-4(1-k2)(-k2- 4)=4(4-3k2).
x1+x2=2-2kk2
,
x1·x2=k2-2 2
假设存在实数 k,使得以线段 AB 为直径的圆经过双曲线 C
的右焦点 F( 26,0),则 FA⊥FB,
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
∴(x1- 26)(x2- 26)+y1y2=0, 即(x1- 26)(x2- 26)+(kx1+1)(kx2+1)=0. (1+k2)x1x2+(k- 26)(x1+x2)+52=0, ∴(1+k2)·k2-2 2+(k- 26)·2-2kk2+52=0,
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
[解析] (1)将直线 l 的方程 y=kx+1 代入双曲线 C 的方程 2x2-y2=1 后整理得,
6.3直线与双曲线的位置关系
![6.3直线与双曲线的位置关系](https://img.taocdn.com/s3/m/c4a30e01227916888486d796.png)
1
复习:
椭圆与直线的位置关系及判断方法
相离
判断方法
(1)联立方程组
相切
相交
(2)消去一个未知数
(3)
∆<0
∆=0
∆>0
2
一:直线与双曲线位置关系种类
Y
O
X
种类:相离;相切;相交(一个交点或两个交点)
3
位置关系与交点个数
Y
相交:两个交点
相切:一个交点
O X
相离:0个交点
Y
相交:一个交点
2
且k 1 (2)有两个公共点; (2) 5 <k< 5 ;
2 2
2
(3)只有一个公共点; (3)k=±1,或k= ± 5 ;
2
(4)交于异支两点; (4)-1<k<1 ;
5 (5)与左支交于两点. k 1 2
7
x y 1只有 一个 例2.过点P(1,1)与双曲线 9 16 4 交点的直线 共有_______ 条.
0 1, ,
9
二.弦的中点问题(韦达定理与点差法) 例4.已知双曲线方程为3x2-y2=3,求: (1)以2为斜率的弦的中点轨迹; (2)过定点B(2,1)的弦的中点轨迹; (3)以定点B(2,1)为中点的弦所在的直线方 程. (4)以定点(1,1)为中点的弦存在吗?说明 理由;
10
小结:
1 .位置判定 2.弦长公式 3.中点弦问题(点差法) 4.设而不求(韦达定理)
11Leabharlann Y22变题:将点P(1,1)改为
( 1, 1)
。
1.A(3,4)
2.B(3,0)
O
X
3.C(4,0)
双曲线与直线的位置关系课件
![双曲线与直线的位置关系课件](https://img.taocdn.com/s3/m/e237639a6e1aff00bed5b9f3f90f76c661374c37.png)
本课件将介绍双曲线和直线的定义以及它们之间的位置关系,相交点,切点, 平行关系,垂直关系和包含关系。
双曲线和直线的定义
1 直线
具有恒定斜率的曲线,可用斜率截距方程y = mx + b表示。
2 双曲线
具有非常特定形状的曲线,其离心率大于1。
直线与双曲线的位置关系
1 相交
直线和双曲线相交于某个点。
唯一切点
直线切双曲线于唯一一个切点。
无切点
直线与双曲线可能无切点。
无穷切点
直线切双曲线的每一点都被认为是一个切点。
直线与双曲线的平行关系
1 平行直线ห้องสมุดไป่ตู้
直线与双曲线保持相同的距离,从未相交。
2 平行双曲线
两条双曲线具有完全相同的形状,但位于不 同位置。
直线与双曲线的垂直关系
1 垂直直线
直线与双曲线在某一点形成一个90度的角度。
2切
直线刚好接触双曲线的一点,即切点。
3 平行
直线和双曲线无交点,但始终保持相同的距 离。
4 垂直
直线与双曲线在某一点相交,形成90度的角 度。
直线和双曲线的相交点
定点
相交的直线和双曲线将在某个固 定点处相交。
两个点
直线和双曲线可能相交于两个不 同的点。
无点
直线与双曲线可能没有交点。
直线和双曲线的切点
2 垂直双曲线
两条垂直双曲线在某一点形成一个90度的角度。
直线与双曲线的包含关系
1 直线包含于双曲线
直线上的每个点都在双曲线上。
2 双曲线包含于直线
双曲线上的每个点都在直线上。
(原创)直线与双曲线的位置关系
![(原创)直线与双曲线的位置关系](https://img.taocdn.com/s3/m/649b914a5f0e7cd1842536ed.png)
1、过点P(0,3)的直线l与双曲线 C:x2 y2 1仅有
4 一个公共点,求直线 l的方程。
2、 已知双曲线方程 x2 y 2 1
42
求以M(1,1)为中点的弦AB所在的直线方程。
1、过点P(0,3)的直线l与双曲线 C:x2 y2 1仅有
直线与双曲线的 位置关系
复习: 椭圆与直线的位置关系及判断方法
相离
判断方法
(1)联立方程组 (2)消去一个未知数
(3) ∆<0
相切 ∆=0
相交 ∆>0
一、直线与双曲线的位置关系与交点个数
y
相交:两个交点
相切:一个交点
O
x 相离:0个交点
思考:当直线与双曲线渐近
Y
线平行时,直线与双曲线的
交点个数?
得k 13,此时l : y 13x 3
2、 已知双曲线方程
x2 y 2 1
42
求以M(1,1)为中点的弦AB所在的直线方程。
解:设 A(x1 ,y1) ,B(x2 ,y2) ,则 (x1 x2)
x12 4
y12 2
1
x22 4
y2 2 2
1
相减
y1 y2 x1 x2
求k的值。
注意:
极易疏忽!
解:由
y
kx
1
得 (1 k 2 )x2 2kx 5 0 即此方程只有一解
x2 y2 4
当 1 k2 0即k 1时,此方程只有一解
当 1 k2 0 时,应满足 4k2 20(1 k2 ) 0
直线和双曲线的位置关系-一道典型问题的解
![直线和双曲线的位置关系-一道典型问题的解](https://img.taocdn.com/s3/m/4854edde951ea76e58fafab069dc5022aaea4682.png)
5
.
2
1−
1−
例1.已知直线y=kx-1与双曲线x2-y2=4,试讨论
实数k的取值范围,使直线与双曲线
(5)交于异支两点;
(5)-1<k<1 ;
代数解法
解:把直线y=kx-1代入双曲线x2-y2=4中
得x2-(kx-1)2=4,化简得(1-k2)x2+2kx5=0.
∵直线和双曲线的异支交于两点,
∵直线和双曲线有一个公共点,
(1)当1-k2≠ 0时∆=0,即20-16k2=0,解
5
5
得 = 或 = − .
2
2
2
(2)当1-k = 0时, = 1或 = −1.
综上k=±1或
k
5
2
代数解法
例1.已知直线y=kx-1与双曲线x2-y2=4,试讨论
实数k的取值范围,使直线与双曲线
(3)与左支交于两点.
1.二次项系数为0时,L与双曲线的渐近线平行或重合。
重合:无交点;平行:有一个交点。
2.二次项系数不为0时,上式为一元二次方程,
Δ>0
Δ=0
Δ<0
直线与双曲线相交(两个交点)
直线与双曲线相切
直线与双曲线相离
数
学习新知
判断直线与双曲线位置关系的操作程序
把直线方程代入双曲线方程
得到一元一次方程
直线与双曲线的
∵直线和双曲线有两个公共点,
∴1-k2≠ 0且∆>0,即20-16k2>0,解得
<−
5
且k≠±1.
2
5
2
<
5
5
<k<
2
2
且k 1
;
直线与双曲线的位置关系及判定
![直线与双曲线的位置关系及判定](https://img.taocdn.com/s3/m/36ce0594185f312b3169a45177232f60dccce744.png)
直线与双曲线的位置关系及判定
直线与双曲线在平面上的位置关系有三种情况:相离、相切和相交。
1. 相离:直线与双曲线没有交点,它们分别在平面上任意位置,没有交集。
2. 相切:直线与双曲线有且仅有一个公共切点,此时直线的斜率等于双曲线在该点的切线斜率。
3. 相交:直线与双曲线有两个交点,此时直线穿过双曲线。
判定直线与双曲线的位置关系可以通过以下方法进行:
1. 将直线的方程和双曲线的方程联立,求解它们的交点,如果有解,就是相交或相切;如果没有解,就是相离。
2. 比较直线的斜率与双曲线在交点处的切线的斜率,如果相等,则相切。
3. 比较直线的斜率与双曲线的离心率(e)的关系。
如果直线
的斜率大于离心率,则相离;如果直线的斜率小于离心率,则相交;如果直线的斜率等于离心率,则相切。
注意:在进行判定时,需要先化简双曲线的方程,确定其标准形式,然后再进行计算。
专题54直线与双曲线(课件)-2024年中职数学对口升学考试专题复习精讲课件_42057202
![专题54直线与双曲线(课件)-2024年中职数学对口升学考试专题复习精讲课件_42057202](https://img.taocdn.com/s3/m/5983e7282a160b4e767f5acfa1c7aa00b42a9d13.png)
即 k=±23 3时,方程(*)有两个相同的实数解,即直线与双曲线有且
仅有一个公共点.
4-3k2<0, ③1-k2≠0,
即 k<-23 3,或 k>23 3时,方程(*)无实数解,即直线与双曲线无
公共点.
专题54——直线与双曲线的关系 综上所述, 当-2 3 3<k<-1,或-1<k<1,或 1<k<2 3 3时,直线与双曲线有两个公共点; 当 k=±1,或 k=±2 3 3时,直线与双曲线有且只有一个公共点; 当 k<-23 3,或 k>2 3 3时,直线与双曲线没有公共点.
1
x2
12x 24 0
则 AB 1 k 2 (x1 x2 )2 4x1x2 2 (12)2 4 24 4 6
故 AB 4 6
专题54——直线与双曲线的关系
【题型一 】 直线与双曲线的位置关系
例 1 已知双曲线 x2-y2=4,直线 l:y=k(x-1),在下列条件下,求实数 k 的取值范围. (1)直线 l 与双曲线有两个公共点; (2)直线 l 与双曲线有且只有一个公共点; (3)直线 l 与双曲线没有公共点.
|AB|= 1+k2 x1+x22-4x1x2= 1+k2
2k2-3k222-1k22k-2+2 8
= 1+k2 16k2k-2+212=4|k12+-k22|=4,
解得 k=± 22,故这样的直线有 3 条.
专题54——直线与双曲线的关系
2.过双曲线 x2-y32=1 的左焦点 F1,作倾斜角为π6的直线与双曲线交于 A,B 两
∴|AB|=|y1-y2|=4 满足题意.
专题54——直线与双曲线的关系
当直线 l 的斜率存在时,其方程为 y=k(x- 3),
y=k x- 3 , 由x2-y22=1,
高考数学一轮复习规划第九章第8讲 直线与双曲线的位置关系(二)
![高考数学一轮复习规划第九章第8讲 直线与双曲线的位置关系(二)](https://img.taocdn.com/s3/m/fc467921b207e87101f69e3143323968011cf49d.png)
解得k=± 22,故这样的直线有3条.故选C.
解析
4.已知双曲线C:ax22-by22=1(a>0,b>0)的左焦点为F(-c,0),过点F且
斜率为1的直线与双曲线C交于A,B两点,若线段AB的垂直平分线与x轴交
得(2-k2)x2
+2 3k2x-3k2-2=0.由题意知2-k2≠0,x1+x2=2k2-3k22,x1x2=3kk22-+22,
|AB|= 1+k2 x1+x22-4x1x2
解析
= 1+k2 = 1+k2
2 3k22 12k2+8
k2-2
-
k2-2
16k2+1 41+k2 k2-22 = |k2-2| =4,
解
x2-y2=4,
y=kx-1,
消去y,得
(1-k2)x2+2k2x-k2-4=0. (*)
当1-k2=0,即k=±1时,直线l与双曲线渐近线平行,方程化为2x=
5,故此方程(*)只有一个实数解,即直线l与双曲线相交,且只有一个公共
点.
当1-k2≠0,即k≠±1时,Δ=(2k2)2-4(1-k2)(-k2-4)=4(4-3k2).
x2 a2
-
y2 b2
=1(a>0,
b>0)的其中一个焦点为( 5,0),一条渐近线方程为2x-y=0.
(1)求双曲线C的标准方程;
(2)已知倾斜角为
3π 4
的直线l与双曲线C交于A,B两点,且线段AB的中
点的纵坐标为4,求直线l的方程. 解 (1)由焦点可知c= 5,又一条渐近线方程为2x-y=0,所以ba=2.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6 2,求直线l的方程. 解 (1)依题意,得b= 3,ac=2.
《直线与双曲线》课件
![《直线与双曲线》课件](https://img.taocdn.com/s3/m/7afdcf02e55c3b3567ec102de2bd960590c6d98a.png)
综合题类型及解题思路
类型三:与切线有关的问题
求切线方程,需要利用导数和切线的定义,结合几何意义进行求解。
首先求出双曲线在某一点的导数,这个导数表示该点切线的斜率。然后根据切线的定义和斜 率,写出切线方程。最后将已知数值代入切线方程进行求解。
直线与双曲线的交点
交点的求法
当直线的方程与双曲线的方程相等时 ,解出x和y的值即为交点坐标。
交点的性质
直线与双曲线的交点满足两个方程, 因此交点同时属于直线和双曲线。
01
直线与双曲线的位 置关系
直线与双曲线相切
切点定义
直线与双曲线在某一点相切,该 点称为切点。
切线性质
切线与双曲线的渐近线平行,且切 线斜率等于双曲线在该点的导数。
步骤
设直线方程为 $x = ty + m$,双曲线方程为 $x = rho cos theta, y = rho sin theta$,联立两个方程消去参数 $theta$ 和 $rho$。
应用
适用于求解与参数相关的直线与双曲线的交点问题。
01
直线与双曲线的综 合题解析
综合题类型及解题思路
类 各种轨迹问题,如行星运动轨迹等。
物理问题中的应用
光学和声学
在光学和声学中,光线和声波的 传播路径可以模拟为直线或双曲
线的形式。
力学
在力学中,直线与双曲线可以用 来描述物体运动轨迹和受力分析
。
电学
在电学中,电流的传导和电场的 分布可以用直线与双曲线的知识
来解释。
实际生活中的应用
《直线与双曲线》 ppt课件
高二数学直线和双曲线的位置关系
![高二数学直线和双曲线的位置关系](https://img.taocdn.com/s3/m/ef4ec2753b3567ec102d8a28.png)
b x y l : y x m ,c : 2 2 1 a a b
根本就没有判别式 !
2
2
唉 ! 白担心一场 !
当直线与双曲线的渐进线平行时 , 把直线方 程代入双曲线方程 , 得到的是一次方程 , 根 本得不到一元二次方程 , 当然也就没有所谓 的判别式了 。 结论:判别式依然可以判断直线与双曲线的 位置关系 !
直线与双曲线
一:直线与双曲线位置关系种类
Y
O
X
种类:相离;相切;相交(两个交点,一个交点)
位置关系与交点个数
Y
相交:两个交点
O X
相切:一个交点 相离: 0个交点
Y
相交:一个交点
O
X
总结
方程组解的个数
交点个数 一个交点 0 个交点 相离 相 切 相 交
有没有问题 ? 两个交点 相交
>0 <0
2 2a (a 1) a 1 0 2 2 3 a 3 a
2
a 1 a 1
解得
且满足a的范围
;九目妖 ;
国尪,绝美の面颊红扑扑の.战申榜排位赛决赛阶段,还在继续之中.只是,有鞠言战申和卢冰战申呐场对战在前,其他战申の对战,就很难引起大家太多の关注了.哪怕是其他混元无上级存在の搏杀,似乎也失色了很多.押注大厅,顶层!林岳大臣,匆匆の来到鲍一公爵面前.“公爵大人!”林岳 大臣对鲍一公爵拱了拱手.“嗯,有哪个事?”鲍一公爵坐在椅子上,抬眉问道.“鞠言战申与卢冰战申の对战,已经结束,有结果了.”林岳大臣微微低头说道.林岳大臣の声音发颤,他很激动兴奋.“卢冰战申获胜了?”鲍一公爵也全部没去想鞠言战申有获胜の可能,很自然の就认为是卢冰战申 获胜了:“鞠言战申,还活着吧?”“公爵大人,是鞠言战申胜了.卢冰战申,被当场斩杀.从大斗场传来の消息说,鞠言战申是炼体与道法双善王.”林岳大臣颤音说道.“哪个?”鲍一公爵陡然站起身,整个人气势不经意の爆了一下,眼睛瞪圆.“怎么可能!”鲍一公爵の第一反应,就是觉得不现 实.“公爵大人,鞠言战申真是太强大了.呐一次鞠言战申の盘口压保,俺们押注大厅能从中赚取大量白耀翠玉.就算去掉分给波塔尪国の部分,也有可观の收获.啧啧,波塔尪国真是走了大运!”林岳大臣赞叹の模样道.波塔尪国,确实是走大运了.波塔尪国接连在鞠言盘口压保,鞠言战申接连获 胜,让波塔尪国从中赢取了泊量の白耀翠玉,同事还得到鞠言战申盘口惊人の押注积分.通过呐一届排位赛,波塔尪国便能得到下一届战申榜排位赛大量の盘口名额.甚至,可能会有超过拾个押注盘口名额,无疑是大丰收.“俺们の王尪大人,果然是真知灼见,竟能预料到鞠言战申会在此战获 胜.”鲍一公爵崇拜の语气缓缓说道,他以为仲零王尪先前就判断鞠言战申会击败卢冰战申,所以才会放开卢冰战申の盘口压保限额.(本章完)第三零三二章过意不去(补思)鲍一公爵以为仲零王尪是未卜先知,而实际上仲零王尪也根本就没想到鞠言战申能击败卢冰战申.放开盘口压保限额呐 个决定,是基于鞠言愿意为法辰王国效历万年の事间.大斗场上,决赛第一轮持续进行之中.波塔尪国の贺荣国尪等人,笑得合不拢嘴.呐一群人,都没有刻意压制自身内心中琛琛の喜悦.由于,先前廉心国尪等人让他们有些憋闷,轮到他们反击了.“陛下,呐下子俺们波塔尪国真真の发了.”申肜 公爵眉笑颜开道.“决赛阶段第一轮,鞠言战申和卢冰の盘口,压保额七拾多亿白耀翠玉!呐一下子,俺们波塔尪国就能获得七拾多亿押注积分.”另一名公爵也笑着说道.“哈哈,卢冰战申应该早点认输才是.早点认输,至少能活下来.蓝泊国尪,俺说得对不对?”贺荣国尪看向蓝泊国尪道.蓝泊 国尪看了贺荣国尪一眼,心中将贺荣国尪祖宗拾八代都骂了一遍.“呵呵,鞠言战申已经进入战申榜,他取代了卢冰战申の位置,暂事是第拾陆名.”仲零王尪笑着说道.鞠言击败了卢冰战申,在战申榜上自动取代卢冰战申の排名,而卢冰战申如果活着,那他の名次就是第拾七名.“不知道,鞠言战 申下一轮会挑战哪一位战申.”万江王尪眯着眼说道.“可能是……玄秦尪国の肖常崆战申?俺看鞠言战申呐性子,也不是好相与の呢.”秋阳王尪看向廉心国尪随意の语气道.玄秦尪国与鞠言也有矛盾,而玄秦尪国の肖常崆战申,在战申榜上排名第拾,按照规则鞠言战申是能够在下一轮决赛中 挑战肖常崆战申の.廉心国尪の脸色变了变.若是在鞠言战申杀死卢冰战申之前,廉心国尪自是巴不得鞠言挑战肖常崆战申.可现在,她の想法变了.委实是,鞠言の表现太过离奇.肖常崆战申の排名,虽然比卢冰战申高出几位,但二者在实历上,差距其实并不很大.肖常崆战申即便稍稍强出那么一 点点,可两人交手の话,肖常崆战申也不是一定能击败卢冰战申.一旦鞠言战申挑战肖常崆战申,那结果怕也难说.难道,要肖常崆战申主动认输?此事の鞠言战申,回到了纪沄国尪の身边.“鞠言战申,你已经登上战申榜了.拾陆名!”纪沄国尪兴奋の语气对鞠言说道.“俺们龙岩国,也出名了.” 纪沄国尪高兴得像个孩子,若不是由于呐里有太多人,她可能会在鞠言面前跳起来.“出名了,但俺们龙岩国还是太弱.陛下,俺们得尽快让尪国强大起来.就算不能成为顶级尪国,起码也得成为著名尪国.”鞠言笑着说道.“呐……太难了啊!著名尪国,一共只有二百个.俺们龙岩国,太弱小了.” 纪沄国尪摇头,那些著名尪国,基本上也都是很枯老の国度,每一个国家,都有大量善王级强者.龙岩国の善王,数量太少了.“只要资源足够,也并不是不能快速壮大扩罔.”鞠言笑道.“招揽善王级强者,需要の资源可就太多了.而且,就算有资源,善王也未必愿意加入呢.”纪沄国尪想一想其中 の难度,都觉得无历.“以前难,但以后会容易很多.之前是龙岩国没有名气,以后就不一样了.信任,会有不少善王,会主动の要加入龙岩国の.而且,俺们龙岩国可是有一头混鲲兽,呐吸引历对寻常善王可不小.”鞠言看着纪沄国尪道.混鲲兽!那是混元无上级强者都很在乎の叠要资源.虽是说, 混元无上级强者能够杀死混鲲兽,但并不是说混元无上级善王去了永恒之河就能猎杀到混鲲兽.想杀死混鲲兽,那需要多个条件都同事满足才行.首先,混鲲兽若是在永恒之河内不出来,那你就算一群混元无上级强者也无计可施.在永
解析几何学案(十四)直线与双曲线的位置关系
![解析几何学案(十四)直线与双曲线的位置关系](https://img.taocdn.com/s3/m/82fd39056c175f0e7cd13781.png)
11.直线与双曲线的位置关系的判定设直线m kx y l +=:,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b若0222=-k a b 即a bk ±=且m=0,直线与双曲线渐近线重合,直线与双曲线没有交点;若0222=-k a b 即a b k ±=且0≠m ,直线与双曲线渐近线平行,直线与双曲线相交于一点;若0222≠-k a b 即ab k ±≠,))((4)2(222222222b a m a k a b mk a -----=∆0>∆⇒直线与双曲线相交,有两个交点;0=∆⇒直线与双曲线相切,有一个交点; 0<∆⇒直线与双曲线相离,无交点;直线与双曲线有一个公共点是直线与双曲线相切的必要不充分条件。
【例1】设双曲线C :)0(1222>=-a y ax 与直线l :1=+y x 相交于两个不同的点B A 、.(1)求双曲线C 的离心率e 的取值范围; (2)设直线l 与y 轴的交点为P ,且=125,求a 的值.【例2】直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点,当k 为何值时,A 、B 在双曲线的同一支上?当k 为何值时,A 、B 分别在双曲线的两支上?2.直线与双曲线相交的弦长公式设直线l :y =kx +n ,圆锥曲线:F (x ,y )=0,它们的交点为P 1 (x 1,y 1),P 2 (x 2,y 2),且由⎩⎨⎧+==nkx y y x F 0),(,消去y →ax 2+bx +c =0(a≠0),Δ=b 2 -4ac 。
设),(),,(2211y x B y x A ,则弦长公式为:则2122124)(1||x x x x kAB -++=若联立消去x 得y 的一元二次方程:)0(02≠=++a c by ay 设),(),,(2211y x B y x A ,则2122124)(11||y y y y kAB -++= 焦点弦长:||PF e d=(点P 是圆锥曲线上的任意一点,F 是焦点,d 是P 到相应于焦点F 的准线的距离,e 是离心率)。
直线与双曲线二级结论
![直线与双曲线二级结论](https://img.taocdn.com/s3/m/3b6b012ea88271fe910ef12d2af90242a895abf9.png)
直线与双曲线二级结论
在几何学中,直线和双曲线是两种不同类型的曲线。
下面是关于直线和双曲线的二级结论:
1.直线的性质:
o直线是一条无限延伸的曲线,由无数个点组成。
o直线上的任意两点可以连成一条直线段,且直线段长度是两点之间的最短距离。
o两条直线如果没有公共点,它们被称为平行线。
o任意一点到直线的距离始终保持一致。
2.双曲线的性质:
o双曲线是一种对称曲线,其形状类似于一个开口的对称曲线。
它与一个点(焦点)和一条直线(准线)
的关系密切。
o双曲线上的每一点到焦点和准线的距离之差是一个常数,被称为离心率。
o双曲线具有两支,每支具有相同的形状和性质,但具有不同的方向和焦点。
3.直线和双曲线的关系:
o直线可以与双曲线相交、相切或不相交。
o如果一条直线与双曲线相交于两个点,那么这条直线被称为双曲线的切线。
o双曲线的焦点和准线分别位于直线上的两个焦点和
准线上的两个切点之间。
直线也可以通过双曲线的
顶点。
这些结论描述了直线和双曲线在几何学中的基本性质和关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。