河北省衡水中学高一上学期期末数学试卷(理科)
2023-2024学年河北省衡水中学高一(上)期末数学试卷【答案版】

2023-2024学年河北省衡水中学高一(上)期末数学试卷一、单项选择题(共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知命题p:∀x>0,都有(x+1)e x>1.则¬p为()A.∀x≤0,总有(x+1)e x≤1B.∃x0>0,使得(x0+1)≤1C.∃x0≤0,使得(x0+1)≤1D.∀x>0,总有(x+1)e x≤12.函数f(x)=的定义域是()A.(﹣∞,1)∪(1,+∞)B.[﹣2,+∞)C.[﹣2,1)∪(1,+∞)D.(1,+∞)3.若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<04.已知,则=()A.B.C.D.5.为了贯彻落实《中共中央国务院关于深入打好污染防治攻坚战的意见》,某造纸企业的污染治理科研小组积极探索改良工艺,使排放的污水中含有的污染物数量逐渐减少.已知改良工艺前所排放废水中含有的污染物数量为2.25g/m3,首次改良工艺后排放的废水中含有的污染物数量为2.21g/m3,第n次改良工艺后排放的废水中含有的污染物数量r n满足函数模型,其中r0为改良工艺前所排放的废水中含有的污染物数量,r1为首次改良工艺后所排放的废水中含有的污染物数量,n为改良工艺的次数.假设废水中含有的污染物数量不超过0.25g/m3时符合废水排放标准,若该企业排放的废水符合排放标准,则改良工艺的次数最少要()(参考数据:lg2≈0.30,lg3≈0.48)A.14次B.15次C.16次D.17次6.函数y=(1﹣a)x与y=log a x(其中a>1)的图象只可能是()A.B.C.D.7.已知f(x)是定义在R上的偶函数,且在区间[0,则不等式f(2x﹣1)>f(x+1)()A.(0,2)B.(﹣∞,0)∪(2,+∞)C.(﹣∞,2)D.(2,+∞)8.若关于x的方程(sin x+cos x)2+cos2x=m在区间[0,π)上有两个根x1,x2,且|x1﹣x2|,则实数m的取值范围是()A.[0,2)B.[0,2]C.[1,]D.[1,)二、多项选择题(共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.)9.已知a>b>0,a+b=1,则()A.B.C.2a﹣b<2D.log2(ab)>﹣210.已知θ∈(0,π),,则下列结论正确的是()A.B.C.D.11.若a>b>1,x=log a b,y=log b a,z=a b,则下列结论一定正确的是()A.x<y B.y<z C.x<z D.y>z12.已知函数f(x)=1+2cos x cos(x+2φ)是偶函数(0,π),则下列关于函数g(x)=cos(2x﹣φ)()A.g(x)在区间[﹣,]上的最小值为﹣B.g(x)的图象可由函数f(x)的图象向左平移个单位长度得到C.点是g(x)的图象的一个对称中心D.是g(x)的一个单调递增区间三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=,则f(f(﹣1))=.14.设m,n∈R+且m+n=1,则最小值为.15.已知函数,现将该函数图象先向左平移个单位长度,纵坐标不变,得到函数g(x),已知函数g(x)在区间,则ω的取值范围是.16.已知函数,给出下列三个结论:①当a=﹣2时,函数f(x)的单调递减区间为(﹣∞,1);②若函数f(x)无最小值,则a的取值范围为(0,+∞);③若a<1且a≠0,则∃b∈R,使得函数y=f(x)1,x2,x3,且x1x2x3=﹣1.其中,所有正确结论的序号是.四、解答题:本题共6小题,70分,其中第17题10分,其余均12分.17.(10分)记不等式a﹣x≤0(a∈R)的解集为A,不等式x2﹣2x﹣3>0的解集为B.(Ⅰ)当a=1时,求A∪B;(Ⅱ)若A∩∁R B≠∅,求实数a的取值范围.18.(12分)已知函数f(x)=2sin x cos x+cos2x﹣sin2x+a(x∈R)的最大值为5.(Ⅰ)求a的值和f(x)的最小正周期;(Ⅱ)求f(x)的单调增区间.19.(12分)已知函数的部分图像如图所示:(1)求函数f(x)的解析式;(2)将函数y=f(x)的图像上各点的横坐标缩短到原来的,纵坐标不变(x)的图像,求函数y=g (x)上的最大值及函数取最大值时相应的x值.20.(12分)已知函数g(x)=ax2﹣2ax﹣1+b(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=.(1)求a,b的值;(2)若不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.21.(12分)已知函数f(x)=lg(1+x)+klg(1﹣x),并解不等式f(x)<﹣1.①函数f(x)是偶函数;②函数f(x)是奇函数.注:如果选择多个条件分别解答,按第一个解答计分.22.(12分)随着科技的发展,手机上各种APP层出不穷,其中抖音就是一种很火爆的自媒体软件,记录美好生活的视频平台.在大部分人用来娱乐的同时,部分有商业头脑的人用抖音来直播带货,抖音上商品的价格随着播放的热度而变化.经测算某服装的价格近似满足:,其中J0(单位:元)表示开始卖时的服装价格,J(单位:元)表示经过一定时间t(单位:天)后的价格,J b (单位:元)表示波动价格,h(单位:天)表示波动周期.某位商人通过抖音卖此服装,开始卖时的价格为每件120元,服装价格降到70元每件时需要10天时间.(1)求h的值;(2)求服装价格降到60元每件时需要的天数.(结果精确到整数)参考数据:lg2≈0.30102023-2024学年河北省衡水中学高一(上)期末数学试卷参考答案与试题解析一、单项选择题(共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知命题p:∀x>0,都有(x+1)e x>1.则¬p为()A.∀x≤0,总有(x+1)e x≤1B.∃x0>0,使得(x0+1)≤1C.∃x0≤0,使得(x0+1)≤1D.∀x>0,总有(x+1)e x≤1解:因为全称命题的否定是特称命题,所以,命题p:∀x>0x>1.则¬p为∃x3>0,使得(x0+4)≤1.故选:B.2.函数f(x)=的定义域是()A.(﹣∞,1)∪(1,+∞)B.[﹣2,+∞)C.[﹣2,1)∪(1,+∞)D.(1,+∞)解:要使函数有意义,则,即,即x≥﹣2且x≠1,即函数的定义域为[﹣4,1)∪(1,+∞)故选:C.3.若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<0解:α为第四象限角,则﹣+2kπ<α<6kπ,则﹣π+4kπ<2α<8kπ,∴2α是第三或第四象限角或为y轴负半轴上的角,∴sin2α<3,故选:D.4.已知,则=()A.B.C.D.解:因为,所以.故选:A.5.为了贯彻落实《中共中央国务院关于深入打好污染防治攻坚战的意见》,某造纸企业的污染治理科研小组积极探索改良工艺,使排放的污水中含有的污染物数量逐渐减少.已知改良工艺前所排放废水中含有的污染物数量为2.25g/m3,首次改良工艺后排放的废水中含有的污染物数量为2.21g/m3,第n次改良工艺后排放的废水中含有的污染物数量r n满足函数模型,其中r0为改良工艺前所排放的废水中含有的污染物数量,r1为首次改良工艺后所排放的废水中含有的污染物数量,n为改良工艺的次数.假设废水中含有的污染物数量不超过0.25g/m3时符合废水排放标准,若该企业排放的废水符合排放标准,则改良工艺的次数最少要()(参考数据:lg2≈0.30,lg3≈0.48)A.14次B.15次C.16次D.17次解:依题意,r0=2.25,r4=2.21,当n=1时,7.25+t=1,可得t=﹣0.25,于是,由r n≤0.25,得30.25(n﹣1)≥50,即,则 ,又n∈N*,因此n≥16,所以若该企业排放的废水符合排放标准,则改良工艺的次数最少要16次.故选:C.6.函数y=(1﹣a)x与y=log a x(其中a>1)的图象只可能是()A.B.C.D.解:对于A,因为a>1,其图象应下降;对于B,a>1时,y=log a x为(6,+∞)上增函数;对于C,a>1时a x为(0,+∞)上增函数;对于D,a>3时a x为(0,+∞)上增函数.故选:B.7.已知f(x)是定义在R上的偶函数,且在区间[0,则不等式f(2x﹣1)>f(x+1)()A.(0,2)B.(﹣∞,0)∪(2,+∞)C.(﹣∞,2)D.(2,+∞)解:∵f(x)是定义在R上的偶函数,且在区间[0,∴不等式f(2x﹣3)>f(x+1)等价为f(|2x﹣3|)>f(|x+1|),即|2x﹣4|<|x+1|,平方得4x6﹣4x+1<x5+2x+1,即5x2﹣6x<6,即3x(x﹣2)<8,得0<x<2,即不等式的解集为(7,2),故选:A.8.若关于x的方程(sin x+cos x)2+cos2x=m在区间[0,π)上有两个根x1,x2,且|x1﹣x2|,则实数m的取值范围是()A.[0,2)B.[0,2]C.[1,]D.[1,)解:关于x的方程(sin x+cos x)2+cos2x=m在区间[5,π)上有两个根x1,x2,方程即sin8x+cos2x=m﹣1,即sin(6x+,∴sin(2x+)= ,π)上有两个根x1,x6,且|x1﹣x2|.∵x∈[0,π)∈[,)≤≤,求得5≤m≤2,故选:B.二、多项选择题(共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.)9.已知a>b>0,a+b=1,则()A.B.C.2a﹣b<2D.log2(ab)>﹣2解:对于A,,且a≠b,故A正确;对于B,(a+b)4=a2+b2+8ab≤2(a2+b4),又因为(a+b)2=1,所以,又a≠b等号不成立;对于C,因为a>b>0,所以b=1﹣a,可得,,所以4<a﹣b<1,因为y=2x在x∈R是单调递增函数,所以4a﹣b<2,故C正确;对于D,,因为y=log2x在x>2是单调递增函数,所以,故D错误.故选:ABC.10.已知θ∈(0,π),,则下列结论正确的是()A.B.C.D.解:∵,∴两边平方得:2+2sinθcosθ=,∴,∴sinθ与cosθ异号,又∵θ∈(4,∴,∴sinθ>cosθ,∴,∴,又∵,∴,,故选:ABD.11.若a>b>1,x=log a b,y=log b a,z=a b,则下列结论一定正确的是()A.x<y B.y<z C.x<z D.y>z解:由a>b>1,则0=log a2<log a b<log a a<1,即0<x<8,∵x=log a b,y=log b a,∴,所以y>x,∵z=a b>a5=a>1,所以z>x,取a=4,b=6,∵y=log24=8,z=42=16,此时z>y,取a=3,b=,∵,,此时z<y,y的大小不定.故选:AC.12.已知函数f(x)=1+2cos x cos(x+2φ)是偶函数(0,π),则下列关于函数g(x)=cos(2x﹣φ)()A.g(x)在区间[﹣,]上的最小值为﹣B.g(x)的图象可由函数f(x)的图象向左平移个单位长度得到C.点是g(x)的图象的一个对称中心D.是g(x)的一个单调递增区间解:由f(﹣x)=f(x)得2cos(﹣x)cos(﹣x+2φ)=2cos x cos(x+2φ),所以cos(﹣x+2φ)=cos(x+2φ)恒成立,得x=2φ是曲线y=cos x的对称轴,所以2φ=kπ(k∈Z),由φ∈(4,,x∈[﹣,],7x∈[,],∴g(x)在区间[﹣,]上的最小值为﹣;f(x)=1+2cos x cos(x+π)=4﹣2cos2x=﹣cos6x,函数f(x)的图象向左平移,可得y=﹣cos2(x+)=sin2x,函数g(x)=cos(2x﹣)=sin2x;x=,g(x)=sin3x=1不是g(x)的图象的一个对称中心;x=,g(x)=sin2x=7不是g(x)的一个单调递增区间;故选:AB.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=,则f(f(﹣1))=﹣4.解:因为f(x)=,所以f(﹣2)=2﹣1=,则f(f(﹣1))=f()=1﹣8=﹣4.故答案为:﹣4.14.设m,n∈R+且m+n=1,则最小值为9.解:因为=,当且仅当,即n=时取等号.故答案为:9.15.已知函数,现将该函数图象先向左平移个单位长度,纵坐标不变,得到函数g(x),已知函数g(x)在区间,则ω的取值范围是.解:=sinωx(1+sinωx)﹣sin5ωx=sinωx,由题意,.当时,由ω>4,则.若g(x)在上单调递增,则,可得不等式组.若g(x)在上单调递减,则,可得不等式组,解得,由,解得,则k=0,则.综上,ω的取值范围为.故答案为:.16.已知函数,给出下列三个结论:①当a=﹣2时,函数f(x)的单调递减区间为(﹣∞,1);②若函数f(x)无最小值,则a的取值范围为(0,+∞);③若a<1且a≠0,则∃b∈R,使得函数y=f(x)1,x2,x3,且x1x2x3=﹣1.其中,所有正确结论的序号是②③.解:对于①,当a=﹣2时,0]单调递减,5)上单调递减,1)不单调递减;对于②,因为y=|lnx|≥0,x≤2,此时函数的最小值为0;当a>0时,y=ax+5在(﹣∞,没有最小值,y→﹣∞;当a<0时,y=ax+1在(﹣∞,最小值为5;若函数f(x)无最小值,则a的取值范围为(0,②正确;对于③,令f(x)﹣b=0,ax+4=b,|lnx|=b;不妨设x1≤0<x3<x3,若函数有三个零点,则x1=≤0,x2=e﹣b,x4=e b,则x2x3=6.令x1==﹣3.a<0时,b=1﹣a>21x2x7=﹣1.0<a<4时,1>b=1﹣a>51x2x4=﹣1.综上可得:③正确.故答案为:②③四、解答题:本题共6小题,70分,其中第17题10分,其余均12分.17.(10分)记不等式a﹣x≤0(a∈R)的解集为A,不等式x2﹣2x﹣3>0的解集为B.(Ⅰ)当a=1时,求A∪B;(Ⅱ)若A∩∁R B≠∅,求实数a的取值范围.解:(Ⅰ)由a﹣x≤0得,x≥a,由x2﹣2x﹣3>0得,x<﹣6或x>3,或x>3},当a=7时,A={x|x≥1},∴A∪B={x|x≥1,或x<﹣8};(Ⅱ)由(Ⅰ)知,A={x|x≥a},∁R B={x|﹣1≤x≤3},∵A∩∁R B≠∅,∴a≤6,∴实数a的取值范围是(﹣∞,3].18.(12分)已知函数f(x)=2sin x cos x+cos2x﹣sin2x+a(x∈R)的最大值为5.(Ⅰ)求a的值和f(x)的最小正周期;(Ⅱ)求f(x)的单调增区间.解:(Ⅰ)f(x)=2sin x cos x+cos6x﹣sin2x+a=sin3x+cos2x+a=2sin(7x+,∵f(x)的最大值为5,∴2+a=5,得a=3.f(x)的最小正确为T==π.(Ⅱ)由2kπ﹣≤2x+,k∈Z得kπ﹣≤x≤kπ+即函数f(x)的单调递增区间为[kπ﹣,kπ+]19.(12分)已知函数的部分图像如图所示:(1)求函数f(x)的解析式;(2)将函数y=f(x)的图像上各点的横坐标缩短到原来的,纵坐标不变(x)的图像,求函数y=g (x)上的最大值及函数取最大值时相应的x值.解:(1)如图可知,,∴.∵f()=7sin(2×,由五点作图法可得2×,∴,即函数解析式为;(2)根据图象变换原则得,∵,∴,∴,当,即时,函数g(x)在.20.(12分)已知函数g(x)=ax2﹣2ax﹣1+b(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=.(1)求a,b的值;(2)若不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.解:(1)g(x)的对称轴为在直线x=1,开口向上,∴g(x)在区间[2,6]上是增函数,∴,解得.(2)由(1)可得f(x)=x+﹣8,∴f(2x)=2x+﹣2,∵f(4x)﹣k•2x≥0,即,∴,令=t2﹣4t+1,∵x∈[﹣1,4],4]2﹣2t+7=(t﹣1)2,则h(t)在[,2]上先减后增,∵h()=,∴h(t)max=h(2)=1,∴k≤1.21.(12分)已知函数f(x)=lg(1+x)+klg(1﹣x),并解不等式f(x)<﹣1.①函数f(x)是偶函数;②函数f(x)是奇函数.注:如果选择多个条件分别解答,按第一个解答计分.解:若选择①:函数f(x)是偶函数,函数f(x)=lg(1+x)+klg(1﹣x)的定义域为(﹣8,1),∵函数f(x)是偶函数,∴f(﹣)=f()+klg+klg,经检验知,k=1符合题意,∵f(x)=lg(4+x)+lg(1﹣x)=lg(1﹣x3),∴f(x)<﹣1⇔lg(1﹣x6)<lg⇔1﹣x8<,∴﹣1<x<﹣或<x<1,∴不等式f(x)<﹣5的解集为(﹣1,﹣)∪(.若选择②:函数f(x)是奇函数.函数f(x)=lg(1+x)+klg(1﹣x)的定义域为(﹣2,1),∵函数f(x)是奇函数,∴f(﹣)=﹣f()+klg+klg),经检验知,k=﹣1符合题意,∵f(x)=lg(5+x)+lg(1﹣x)=lg,∴f(x)<﹣1⇔lg<lg⇔<,∴﹣1<x<﹣,∴不等式f(x)<﹣1的解集为(﹣1,﹣).22.(12分)随着科技的发展,手机上各种APP层出不穷,其中抖音就是一种很火爆的自媒体软件,记录美好生活的视频平台.在大部分人用来娱乐的同时,部分有商业头脑的人用抖音来直播带货,抖音上商品的价格随着播放的热度而变化.经测算某服装的价格近似满足:,其中J0(单位:元)表示开始卖时的服装价格,J(单位:元)表示经过一定时间t(单位:天)后的价格,J b (单位:元)表示波动价格,h(单位:天)表示波动周期.某位商人通过抖音卖此服装,开始卖时的价格为每件120元,服装价格降到70元每件时需要10天时间.(1)求h的值;(2)求服装价格降到60元每件时需要的天数.(结果精确到整数)参考数据:lg2≈0.3010解:(1)由题意,得J=20+100×,J=70=70,h=10;(2)令J=60,即20+100×,解得﹣7)≈11天.。
河北省衡中高一上学期第五次月考(期末)数学(理)试题有答案-推荐

上学期第五次月考 高一年级理科数学试题考试时间120分钟 试题分数150分第Ⅰ卷(选择题 共60分)一.选择题(本题共15小题,每小题4分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1、如图所示,在平行四边形ABCD 中,下列结论中错误的是( )A 、AB DC = B 、AD AB AC += C 、AB AD BD -= D 、0AD CB += 2、下列函数中,既是偶函数又存在零点的是( ) A 、ln y x =B 、21y x =+C 、sin y x =D 、cos y x =3、已知向量()()2,1,1,a b m ==-,且()()//a b a b +-,则m 的值为( ) A 、2 B 、2- C 、12 D 、12- 4、函数()2ln -+=x x x f 的零点所在的一个区间是( )A 、(3,4)B 、()3,2C 、()2,1D 、()1,05、已知23)4sin(=+απ,则)43sin(απ-的值为( )A 、-32 B 、 32 C 、- 12 D 、126、已知平面向量,a b 的夹角为60°,,,则( )A 、2B 、23CD 、 4 7、已知点,, ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为A 、B C 、D 、( )8、给出如下四个函数①)3sin(5)(π-=x x f ②()cos(sin )f x x = ③x x x f 2sin )(=④xxx f 2tan 1tan )(+=其中奇函数的个数是 ( )A 、1个B 、2个C 、3个D 、4个 9、函数)2,0,0)(sin()(πφωφω<>>+=A x A x f 的部分图像如图所示,若将)(x f 图像上所有点的横坐标缩短为原 的21倍(纵坐标不变),得到函数)(x g 的图像,则)(x g 的解析式为( ) A 、)64sin(π+=x y B 、)34sin(π+=x y C 、)6sin(π+=x y D 、)12sin(π+=x y10、若f (cos )=cos2,则f (sin 15°)的值为( )A 、-32 B 、32 C 、-12 D 、1211、已知()()sin f x x ωϕ=+(0ω>, 2πϕ<)满足()()2f x f x π+=-,若其图象向左平移6π个单位后得到的函数为奇函数,则()f x 的解析式可以为( )A 、()sin(2)6f x x π=+B 、()sin(2)6f x x π=-C 、()sin(2)3f x x π=+D 、()sin(2)3f x x π=-12、要得到函数2log (21)y x =+的图像,只需将21log y x =+的图像( )A 、向左移动12个单位 B 、向右移动12个单位 C 、向左移动1个单位 D 、向右移动1个单位13、已知函数()f x 在()-∞+∞,上是奇函数,若对任意的实数0x ≥都有(2)()f x f x +=且当[02)x ∈,时,2()log (1)f x x =+,则(2013)(2014)f f -+的值( )A 、2B 、2-C 、1-D 、1 14、在平行四边形ABCD 中,,点,E F 分别在,BC DC 边上,且2,BE EC DF FC ==,则AE BF ⋅=( )A 、B 、1-C 、2D 、15、设函数1sin()20()1()09x x x f x x π--<⎧⎪=⎨⎪⎩,,≤≥,若关于的方程()0f x a -=有三个不等实根1x ,2x,3x ,且12352x x x ++=-,则的值是( ) A 、13B 、3C 、12D 、2第Ⅱ卷 (非选择题)二、填空题(本题共4小题,每小题5分,共20分。
河北省衡水中学高一上学期期末数学试卷(理科)

1、若一个矩形的长是2x+3,宽是x-1,则它的面积是?A. 2x² + x - 3B. 4x² + 4x - 3C. 2x² + 5x + 3D. 2x² - 5x - 3解析:矩形的面积等于长乘以宽,即(2x+3)乘以(x-1)。
展开得到2x² + 3x - 2x - 3 = 2x² + x - 3。
(答案)A2、若a/b = c/d = e/f = 2/3,则(3a - 2c + e)/(3b - 2d + f)的值为?A. 1/3B. 2/3C. 3/2D. 3解析:设a/b = c/d = e/f = k = 2/3,则a = 2k, b = 3k, c = 2k, d = 3k, e = 2k, f = 3k。
代入表达式得(32k - 22k + 2k)/(33k - 23k + 3k) = (6k - 4k + 2k)/(9k - 6k + 3k) = 4k/6k = 2/3。
(答案)B3、下列哪个数不是方程x² - 5x + 6 = 0的根?A. 1B. 2C. 3D. 6解析:方程x² - 5x + 6 = 0可以分解为(x - 2)(x - 3) = 0,所以方程的根是x = 2和x = 3。
(答案)D4、若一个等腰三角形的顶角是40°,则它的一个底角是?A. 40°B. 50°C. 60°D. 70°解析:等腰三角形的两个底角相等,且三角形内角和为180°。
若顶角为40°,则两个底角之和为180° - 40° = 140°,所以每个底角为140°/2 = 70°。
(答案)D5、若a > b > 0,c < d < 0,则下列不等式成立的是?A. a/c > b/dB. a/c < b/dC. a/d > b/cD. a/d < b/c解析:由于c < d < 0,取倒数后不等号方向改变,即1/c > 1/d > 0。
河北省衡水市2019-2020学年高一上学期期末数学试卷(I)卷

河北省衡水市2019-2020学年高一上学期期末数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)在给定映射即的条件下,与B中元素对应的A中元素是()A .B . 或C .D . 或2. (2分)函数的定义域为M,,全集U=R,则图形中阴影部分表示集合是()A .B .C .D .3. (2分) (2018高一上·四川月考) 下列函数中,与函数相同的函数是()A .B .C .D .4. (2分) (2019高二下·鹤岗月考) 下列函数中,在区间上为增函数的是()A .B .C .D .5. (2分)如图所示是函数y=(m、n∈N*且互质)的图象,则()A . m、n是奇数且<1B . m是偶数,n是奇数,且>1C . m是偶数,n是奇数,且<1D . m、n是偶数,且>16. (2分) (2018高二下·河北期末) 已知实数,,函数在上是减函数,又,则下列选项正确的是()A .B .C .D .7. (2分) (2016高一下·枣阳期中) 已知函数f(x)= ,函数g(x)=asin()﹣2α+2(a>0),若存在x1 ,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是()A . [ ]B . (0, ]C . [ ]D . [ ,1]8. (2分)已知函数的定义域是R,则实数的取值范围是()A .B .C .D .9. (2分)计算的结果是()A .B .C .D .10. (2分) (2016高一上·苏州期中) 已知a= ,b=log3 ,c= 4,则()A . b<a<cB . c<a<bC . c<b<aD . b<c<a11. (2分)(2017·江西模拟) 已知函数f(x)=ln ,若f()+f()+…+f()=503(a+b),则a2+b2的最小值为()A . 6B . 8C . 9D . 1212. (2分)(2017·襄阳模拟) 已知f(x)=x2﹣3,g(x)=mex ,若方程f(x)=g(x)有三个不同的实根,则m的取值范围是()A .B .C .D . (0,2e)二、填空题 (共5题;共6分)13. (1分) (2017高一上·六安期末) 函数f(x)=﹣x2+2(a﹣1)x+2在(﹣∞,4)上为增函数,则a的范围是________.14. (1分) (2017高一上·吉林月考) 已知函数,则的表达式是________.15. (1分) (2017高一上·长宁期中) 已知集合A={(x,y)|3x﹣y=7},集合B={(x,y)|2x+y=3},则A∩B=________.16. (1分)(2017·六安模拟) 命题“若ab=0,则a=0或b=0”的否定为________ .17. (2分) (2019高一上·杭州期中) 定义在上的偶函数满足:当,,则________,当时, ________.三、解答题 (共6题;共41分)18. (5分) (2017高二上·江苏月考) 已知,,若是充分条件,求实数m的取值范围.19. (10分) (2020高二上·黄陵期末) 设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足x2﹣5x+6<0.(1)若a=1,且p∧q为真命题,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.20. (1分) (2016高二上·扬州期中) 如果p:x>2,q:x>3,那么p是q的________条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选出适当的一种填空)21. (10分) (2015高二上·东莞期末) 已知p:x2﹣6x+5≤0,q:x2﹣2x+1﹣m2≤0(m>0).(1)若m=2,且p∧q为真,求实数x的取值范围;(2)若p是q充分不必要条件,求实数m的取值范围.22. (5分) (2017高三下·漳州开学考) 设函数f(x)=|2x+1|+|x﹣a|,a∈R.(Ⅰ)当a=2时,求不等式f(x)<4的解集.(Ⅱ)当a<时,对于∀x∈(﹣∞,﹣ ],都有f(x)+x≥3成立,求a的取值范围.23. (10分) (2016高二上·潮阳期中) 已知等差数列{an}的首项为a,公差为b,且不等式ax2﹣3x+2>0的解集为(﹣∞,1)∪(b,+∞)(1)求数列{an}的通项公式(2)设数列{bn}满足= ,求数列{bn}的前n项和Sn.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共6分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共6题;共41分) 18-1、19-1、19-2、20-1、21-1、21-2、22-1、23-1、23-2、。
河北省衡水市枣强中学高一数学上学期期末试卷 理(含解析)

2015-2016学年河北省衡水市枣强中学高一(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.角﹣2015°所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2﹣1=0},则下列式子表示正确的有()①1∈A②{﹣1}∈A③∅∈A④{﹣1,1}⊆A.A.1个B.2个C.3个D.4个3.α是第四象限角,,则sinα=()A.B.C.D.4.已知函数f(lgx)定义域是[0.1,100],则函数的定义域是()A.[﹣1,2] B.[﹣2,4] C.[0.1,100] D.5.给出命题①零向量的长度为零,方向是任意的.②若,都是单位向量,则=.③向量与向量相等.④若非零向量与是共线向量,则A,B,C,D四点共线.以上命题中,正确命题序号是()A.①B.②C.①和③D.①和④6.若α是第一象限角,则sinα+cosα的值与1的大小关系是()A.sinα+cosα>1 B.sinα+cosα=1C.sinα+cosα<1 D.不能确定7.当时,函数f(x)=sinx+cosx的()A.最大值是1,最小值是﹣1 B.最大值是1,最小值是﹣C.最大值是2,最小值是﹣2 D.最大值是2,最小值是﹣18.方程cosx=lgx的实根的个数是()A.1 B.2 C.3 D.无数9.函数f(x)=Acos(ωx+ϕ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+…+f (2011)+f(2012)的值为()A.2+B.C.D.0(x1≠x2),有10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)<0.则()A.B.f(0.76)<f(60.5)<f(log0.76)C.D.11.将函数y=(sinx+cosx)的图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,所得函数图象的解析式是()A.y=cos B.y=sin()C.y=﹣sin(2x+)D.y=sin(2x+)12.已知定义在R上的奇函数f(x)的周期为4,其图象关于直线x=1对称,且当x∈(2,3]时,f(x)=﹣(x﹣2)(x﹣4),则f(sin),f(sin1),f(cos2)的大小关系为()A.f(cos2)>f(sin1)>f(sin)B.f(cos2)>f(sin)>f(sin1)C.f(sin)>f(cos2)>f(sin1)D.f(sin1)>f(sin)>f(cos2)二、填空题:本大题共4小题,每小题5分13.已知向量=(2,3),=(﹣1,4),=﹣λ, =2﹣,若∥,则λ=.14.已知增函数f(x)=x3+bx+c,x∈[﹣1,1],且,则f(x)的零点的个数为.15.已知0<α<β<,且cosαcosβ+sinαsinβ=,tan,则tanα=.16.已知一个四次方程至多有四个根,记为x1,x2,…,x k(k≤4).若方程x4+ax﹣4=0各个实根所对应的点均在直线y=x的同侧,求实数a的取值范围.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.化简、求值:(1)求的值;(2)已知tanα=2,sinα+cosα<0,求的值.18.已知全集U为R,集合A={x|2≤x<4},B={x|3x﹣7≥8﹣2x},C={x|x<a}.(1)求A∩B;(2)求A∪(∁U B);(3)若A⊆C,求a的取值范围.19.已知函数f(x)=a(cos2x+sinxcosx)+b(1)当a>0时,求f(x)的单调递增区间;(2)当a<0且x时,f(x)的值域是[3,4],求a,b的值.20.已知y=f(x)=Asin(ωx+φ),A>0,ω>0,|φ|<的图象相邻两条对称轴之间的距离为,相邻两个最值点间的距离为,图象过点(0,1).(1)求函数解析式;(2)把y=f(x)图象向右平移m(m>0)个单位,所得图象关于x=对称,求m的最小值.21.已知向量=(cosωx,1),=(2sin(ωx+),﹣1)(其中≤ω≤),函数f(x)=,且f(x)图象的一条对称轴为x=.(1)求f(π)的值;(2)若f()=,f(﹣)=,且,求cos(α﹣β)的值.22.已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],且a+b≠0,有恒成立.(1)判断f(x)在[﹣1,1]上的单调性,并证明你的结论;(2)解不等式f(log2x)<f(log43x)的解集;(3)若f(x)≤m2﹣2am+1对所有的x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数m的取值范围.2015-2016学年河北省衡水市枣强中学高一(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.角﹣2015°所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【考点】象限角、轴线角.【专题】三角函数的求值.【分析】利用终边相同的角的集合定理即可得出.【解答】解:∵﹣2015°=﹣360°×6+145°,而90°<145°<180°,∴角﹣2015°所在的象限为第二象限.故选:B.【点评】本题考查了终边相同的角的集合定理,属于基础题.2.已知集合A={x|x2﹣1=0},则下列式子表示正确的有()①1∈A②{﹣1}∈A③∅∈A④{﹣1,1}⊆A.A.1个B.2个C.3个D.4个【考点】集合的包含关系判断及应用.【专题】集合思想;定义法;集合.【分析】先表示出集合A={﹣1,1},再根据集合与元素,集合与集合间的关系对各式作出判断,其中①④是正确的.【解答】解:因为A={x|x2﹣1=0}={﹣1,1},则:1∈A,所以①正确;{﹣1}⊆A,所以②不正确;∅⊆A,所以③不正确;{﹣1,1}⊆A,所以④正确;因此,正确的式子有2个,故答案为:B.【点评】本题主要考查了集合的包含关系的判断和应用,涉及集合的表示,子集的概念和空集的应用,属于基础题.3.α是第四象限角,,则sinα=()A.B.C.D.【考点】同角三角函数基本关系的运用.【分析】根据同角的三角函数之间的关系sin2+cos2α=1,得到余弦的值,又由角在第四象限,确定符号.【解答】解:∵α是第四象限角,∴sinα=,故选B.【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.4.已知函数f(lgx)定义域是[0.1,100],则函数的定义域是()A.[﹣1,2] B.[﹣2,4] C.[0.1,100] D.【考点】函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】由f(lgx)定义域求出函数f(x)的定义域,再由在f(x)的定义域内求解x的范围得答案.【解答】解:∵f(lgx)定义域是[0.1,100],即0.1≤x≤100,∴lg0.1≤lgx≤lg100,即﹣1≤lgx≤2.∴函数f(x)的定义域为[﹣1,2].由,得﹣2≤x≤4.∴函数的定义域是[﹣2,4].故选:B.【点评】本题考查函数的定义域及其求法,关键是掌握该类问题的解决方法,是中档题.5.给出命题①零向量的长度为零,方向是任意的.②若,都是单位向量,则=.③向量与向量相等.④若非零向量与是共线向量,则A,B,C,D四点共线.以上命题中,正确命题序号是()A.①B.②C.①和③D.①和④【考点】向量的物理背景与概念.【专题】规律型.【分析】根据零向量和单位向量的定义,易知①正确②错误,由向量的表示方法可知③错误,由共线向量的定义和四点共线的意义可判断④错误【解答】解:根据零向量的定义可知①正确;根据单位向量的定义,单位向量的模相等,但方向可不同,故两个单位向量不一定相等,故②错误;与向量互为相反向量,故③错误;方向相同或相反的向量为共线向量,由于与无公共点,故A,B,C,D四点不共线,故④错误故选A【点评】本题考察了向量的基本概念,熟记定义和向量间的相等,相反,共线等意义,是解决本题的关键6.若α是第一象限角,则sinα+cosα的值与1的大小关系是()A.sinα+cosα>1 B.sinα+cosα=1C.sinα+cosα<1 D.不能确定【考点】三角函数线.【专题】计算题.【分析】设角α的终边为OP,P是角α的终边与单位圆的交点,PM垂直于x轴,M为垂足,则由任意角的三角函数的定义,可得sinα=MP=|MP|,cosα=OM=|OM|,再由三角形任意两边之和大于第三边,得出结论.【解答】解:如图所示:设角α的终边为OP,P是角α的终边与单位圆的交点,PM垂直于x轴,M为垂足,则由任意角的三角函数的定义,可得sinα=MP=|MP|,c osα=OM=|OM|.△OPM中,∵|MP|+|OM|>|OP|=1,∴sinα+cosα>1,故选:A.【点评】本题主要考查任意角的三角函数的定义,以及单位园中的三角函数线的定义,三角形任意两边之和大于第三边,体现了数形结合的数学思想,属于中档题.7.当时,函数f(x)=sinx+cosx的()A.最大值是1,最小值是﹣1 B.最大值是1,最小值是﹣C.最大值是2,最小值是﹣2 D.最大值是2,最小值是﹣1【考点】三角函数中的恒等变换应用.【分析】首先对三角函数式变形,提出2变为符合两角和的正弦公式形式,根据自变量的范围求出括号内角的范围,根据正弦曲线得到函数的值域.【解答】解:∵f(x)=sinx+cosx=2(sinx+cosx)=2sin(x+),∵,∴f(x)∈[﹣1,2],故选D【点评】了解各公式间的内在联系,熟练地掌握这些公式的正用、逆用以及某些公式变形后的应用.掌握两角和与差的正弦、余弦、正切公式及其推导,本题主要是公式的逆用和对三角函数值域的考查.8.方程cosx=lgx的实根的个数是()A.1 B.2 C.3 D.无数【考点】余弦函数的图象.【专题】三角函数的图像与性质.【分析】本题即求函数y=cosx的图象和 y=lgx的图象的交点个数,数形结合可得结论.【解答】解:方程cosx=lgx的实根的个数,即函数y=cosx的图象和 y=lgx的图象的交点个数,数形结合可得函数y=cosx的图象和 y=lgx的图象的交点个数为3,故选:C.【点评】本题主要考查方程根的存在性以及个数判断,余弦函数、对数函数的图象特征,体现了转化、数形结合的数学思想,属于基础题.9.函数f(x)=Acos(ωx+ϕ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+…+f (2011)+f(2012)的值为()A.2+B.C.D.0【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】根函数f(x)=Acos(ωx+φ)(A>0,ω>0)及其图象,可以求得A=2,ω=,利用函数的周期性可以求得答案.【解答】解:由图象知A=2,T=可得ω=,由五点对应法得,可求得,∴,又f(1)+f(2)+f(3)+…+f(8)=0,∴f(1)+f(2)+f(3)+…+f(2012)=f(1)+f(2)+f(3)+f(4)=2sin+2sin+2sin+2sinπ=2×+2+2×=2+2,故选:C.【点评】本题考查三角函数解析式的求解,根据三角函数的图象与周期性是解决本题的关键.,难点在于根据图象求得A,ω,φ的值,属于中档题.(x1≠x2),有10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)<0.则()A.B.f(0.76)<f(60.5)<f(log0.76)C.D.【考点】奇偶性与单调性的综合.【专题】综合题;转化思想;综合法;函数的性质及应用.【分析】先由奇偶性将问题转化到[0,+∞),再由函数在区间上的单调性比较.【解答】解:∵任意的x1,x2∈[0,+∞)(x1≠x2),有<0∴f(x)在[0,+∞)上是减函数,又∵0.76<60.5<|log0.76|∴,故选:D【点评】本题主要考查用奇偶性转化区间和单调性比较大小,在比较大小中,用单调性的较多,还有的通过中间桥梁来实现的,如通过正负和1来解决.11.将函数y=(sinx+cosx)的图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,所得函数图象的解析式是()A.y=cos B.y=sin()C.y=﹣sin(2x+)D.y=sin(2x+)【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】由条件利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:将函数y=(sinx+cosx)=sin(x+)的图象上各点的横坐标伸长到原来的2倍,可得函数y=sin(x+)的图象;再向左平移个单位,所得函数图象的解析式为y=sin[(x+)+]=cos x,故选:A.【点评】本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.12.已知定义在R上的奇函数f(x)的周期为4,其图象关于直线x=1对称,且当x∈(2,3]时,f(x)=﹣(x﹣2)(x﹣4),则f(sin),f(sin1),f(cos2)的大小关系为()A.f(cos2)>f(sin1)>f(sin)B.f(cos2)>f(sin)>f(sin1)C.f(sin)>f(cos2)>f(sin1)D.f(sin1)>f(sin)>f(cos2)【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】根据函数的对称性和函数的周期性,画出函数的图象,从而得到函数的单调性,进而求出函数值的大小.【解答】解:由题意得函数f(x)的图象关于直线x=1对称,另外函数f(x)的周期为4,又当x∈(2,3]时,f(x)=﹣(x﹣2)(x﹣4),∴可以画出函数f(x)的图象,如图示:,可知函数f(x)在[﹣1,1]上单调递减,又﹣1<cos2<0<sin<sin1<1,∴f(cos2)>f(sin)>f(sin1),故选:B.【点评】本题考查了函数的周期性、奇偶性,考查数形结合思想,是一道基础题.二、填空题:本大题共4小题,每小题5分13.已知向量=(2,3),=(﹣1,4),=﹣λ, =2﹣,若∥,则λ=.【考点】平面向量共线(平行)的坐标表示.【专题】计算题;对应思想;向量法;平面向量及应用.【分析】根据题意,由向量、的坐标,结合向量的坐标运算法则,可得与的坐标,又由∥,则有(2+λ)×2﹣(3﹣4λ)×5=0,解可得λ的值,即可得答案.【解答】解:根据题意,向量=(2,3),=(﹣1,4),则=﹣λ=(2+λ,3﹣4λ),=2﹣=(5,2),若∥,则有(2+λ)×2﹣(3﹣4λ)×5=0,解可得λ=;故答案为:.【点评】本题考查数量积的坐标运算,涉及向量平行的坐标表示,解题的关键是求出向量、的坐标.14.已知增函数f(x)=x3+bx+c,x∈[﹣1,1],且,则f(x)的零点的个数为1个.【考点】函数零点的判定定理.【专题】计算题;函数的性质及应用.【分析】由函数的单调性及函数零点的判定定理可知函数有且只有一个零点.【解答】解:∵函数f(x)=x3+bx+c是增函数,∴函数f(x)=x3+bx+c至多有一个零点,又∵,且函数f(x)连续,∴f(x)在(﹣,)上有零点,故f(x)的零点的个数为1个,故答案为:1个.【点评】本题考查了函数的性质的判断与函数零点的判定定理的应用.15.已知0<α<β<,且cosαcosβ+sinαsinβ=,tan,则ta nα=.【考点】两角和与差的正切函数;同角三角函数基本关系的运用.【专题】三角函数的求值.【分析】由条件利用同角三角函数的基本关系求得tan(α﹣β)的值,再利用两角和差的正切公式求得tanα的值.【解答】解:∵0<α<β<,且cosαcosβ+sinαsinβ=,∴cos(α﹣β)=,α﹣β∈(﹣,0),∴sin(α﹣β)=﹣,∴tan(α﹣β)==﹣,即==﹣,求得tanα=.故答案为:.【点评】本题主要考查同角三角函数的基本关系,两角和差的正切公式,属于基础题.16.已知一个四次方程至多有四个根,记为x1,x2,…,x k(k≤4).若方程x4+ax﹣4=0各个实根所对应的点均在直线y=x的同侧,求实数a的取值范围a<﹣6或a>6 .【考点】根的存在性及根的个数判断;二元一次不等式(组)与平面区域.【专题】数形结合;转化法;函数的性质及应用.【分析】原方程等价于x3+a=,原方程的实根是曲线y=x3+a与曲线y=的交点的横坐标,分别作出左右两边函数的图象:分a>0与a<0讨论,可得答案.【解答】解:方程的根显然x≠0,原方程等价于x3+a=,原方程的实根是曲线y=x3+a与曲线y=的交点的横坐标,而曲线y=x3+a是由曲线y=x3向上或向下平移|a|个单位而得到的,若交点(i=1,2,…,k)均在直线y=x的同侧,因直线y=x与y=交点为:(﹣2,﹣2),(2,2);所以结合图象可得或,解得a>6或a<﹣6.故答案为:a>6或a<﹣6.【点评】本题综合考查函数与方程的应用,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质.考查学生的转化二行推理能力.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.化简、求值:(1)求的值;(2)已知tanα=2,sinα+cosα<0,求的值.【考点】运用诱导公式化简求值;同角三角函数基本关系的运用.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】(1)利用对数式的运算性质和运算法则即可求解.(2)利用同角三角函数基本关系式即可得解cosα的值,由诱导公式化简所求即可求值.【解答】解:(1)原式=(2)原式=,∵tanα=2>0,∴α在第一或第三象限,又∵sinα+cosα<0,∴,故原式=【点评】本题主要考查了指数式和对数式的运算,同角三角函数基本关系式,诱导公式的应用,解题时要注意运算法则和运算性质的合理运用,是基础题.18.已知全集U为R,集合A={x|2≤x<4},B={x|3x﹣7≥8﹣2x},C={x|x<a}.(1)求A∩B;(2)求A∪(∁U B);(3)若A⊆C,求a的取值范围.【考点】交、并、补集的混合运算.【专题】计算题.【分析】(1)由A={x|2≤x<4},B={x|3x﹣7≥8﹣2x}={x|x≥3},能求出A∩B.(2)先由B和R,求出C R B,再求A∪(C U B).(3)由集合A={x|2≤x<4},C={x|x<a},且A⊆C,能求出a的取值范围.【解答】解:(1)∵A={x|2≤x<4},B={x|3x﹣7≥8﹣2x}={x|x≥3},∴A∩B={x|2≤x<4}∩{x|x≥3}={x|3≤x<4}.(2)∵C R B={x|x<3},∴A∪(C U B)={x|2≤x<4}∪{x|x<3}={x|x<4}.(3)∵集合A={x|2≤x<4},C={x|x<a},且A⊆C,∴a≥4.【点评】本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.19.已知函数f(x)=a(cos2x+sinxcosx)+b(1)当a>0时,求f(x)的单调递增区间;(2)当a<0且x时,f(x)的值域是[3,4],求a,b的值.【考点】三角函数中的恒等变换应用;复合三角函数的单调性.【专题】计算题;三角函数的求值;解三角形.【分析】(1)由二倍角的三角函数公式和辅助角公式,化简整理得f(x)=asin(2x+)+a+b.再由正弦函数的图象与性质,解关于x的不等式即可得出a>0时f(x)的单调递增区间;(2)当x时,算出2x+.根据a<0可得当sin(2x+)最大时函数有最小值,当sin(2x+)最小时函数有最大值.由此结合函数的值域,建立关于a、b的方程组即可求出a、b的值.【解答】解:(1)∵cos2x=(1+cos2x),sinxcosx=sin2x∴f(x)=a(cos2x+sinxcosx)+b=a(sin2x+cos2x)+a+b=asin(2x+)+a+b当a>0时,令﹣+2kπ≤2x+≤+2kπ,(k∈Z)得﹣+kπ≤x≤+kπ,(k∈Z),因此函数f(x)的单调递增区间为[﹣+kπ,+kπ],(k∈Z)(2)∵x,∴2x+∴当x=时,f(x)的最大值﹣a+a+b=4…①当x=时,f(x)的最小值a+a+b=3…②联解①②,可得a=2﹣2,b=4.【点评】本题给出三角函数式的化简,求函数的单调区间与最值.着重考查了三角恒等变换、三角函数的图象与性质和函数的值域与最值等知识,属于中档题.20.已知y=f(x)=Asin(ωx+φ),A>0,ω>0,|φ|<的图象相邻两条对称轴之间的距离为,相邻两个最值点间的距离为,图象过点(0,1).(1)求函数解析式;(2)把y=f(x)图象向右平移m(m>0)个单位,所得图象关于x=对称,求m的最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合;分析法;三角函数的图像与性质.【分析】(1)由,利用周期公式可求ω,利用已知及勾股定理可求A的值,代入(0,1),结合范围,即可求的φ的值,即可得解函数解析式.(2)利用函数y=Asin(ωx+φ)的图象变换可得:,由题意可得,结合m>0,即可得解.【解答】(本题满分为12分)解:(1)∵,∴,∴f(x)=2sin(2x+φ)代入(0,1)得,∵,∴(2)平移后得代入,则,令∵m>0,令k=0得【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象和性质的综合应用,考查了数形结合思想和转化思想,属于中档题.21.已知向量=(cosωx,1),=(2sin(ωx+),﹣1)(其中≤ω≤),函数f(x)=,且f(x)图象的一条对称轴为x=.(1)求f(π)的值;(2)若f()=,f(﹣)=,且,求cos(α﹣β)的值.【考点】三角函数中的恒等变换应用;平面向量数量积的运算.【专题】三角函数的求值;三角函数的图像与性质;平面向量及应用.【分析】(1)根据向量的数量积公式,倍角公式,辅助角公式,化简函数的解析式,结合f (x)图象的一条对称轴为x=,求出ω=1,代入可得f(π)的值;(2)若f()=,f(﹣)=,且,可得α,β的余弦值,代入差角的余弦公式,可得答案.【解答】解:(1)∵向量=(cosωx,1),=(2sin(ωx+),﹣1)=((sinωx+cosωx),﹣1)∴函数f(x)==2cosωx(sinωx+cosωx)﹣1=2sinωxcosωx+2cos2ωx﹣1=sin2ωx+cos2ωx=sin(2ωx+),∵f(x)图象的一条对称轴为x=.∴2ω×+=+kπ,(k∈Z).又由≤ω≤,∴ω=1,∴f(x)=sin(2x+),∴f(π)=sin(2×π+)=﹣cos=﹣1,(2)∵f()=,f(﹣)=,∴sinα=,sinβ=,∵,∴cosα=,cosβ=,∴cos(α﹣β)=cosαcosβ+sinαsinβ=.【点评】本题考查的知识点是三角函数中的恒等变换应用,正弦函数的图象和性质,数量积公式,倍角公式,辅助角公式,两角差的余弦公式,难度中档.22.已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],且a+b≠0,有恒成立.(1)判断f(x)在[﹣1,1]上的单调性,并证明你的结论;(2)解不等式f(log2x)<f(log43x)的解集;(3)若f(x)≤m2﹣2am+1对所有的x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数m的取值范围.【考点】对数函数图象与性质的综合应用;奇偶性与单调性的综合.【专题】分类讨论;函数思想;转化法;函数的性质及应用.【分析】(1)直接根据单调性的定义判断和证明该函数为增函数;(2)根据对数函数的图象和性质列出不等式组解出即可;(3)问题转化为m2﹣2am+1≥f(x)max,再构造函数并通过分类讨论求范围.【解答】解:(1)f(x)在[﹣1,1]上为增函数,证明如下:任取x1,x2满足﹣1≤x1<x2≤1,由f(x)为奇函数,∴,又因为a,b∈[﹣1,1],且a+b≠0,都有,∴>0,∵x2﹣x1>0,∴f(x2)﹣f(x1)>0,所以f(x)在[﹣1,1]上为增函数;(2)原不等式等价于:,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②﹣﹣﹣﹣﹣﹣③综合以上三式得,原不等式解集为:;(3)f(x)在[﹣1,1]递增,则f(x)max=f(1),∴m2﹣2am+1≥f(x)max,即m2﹣2am≥0对a∈[﹣1,1]恒成立,记关于a的函数g(a)=﹣2ma+m2,﹣1≤a≤1,问题等价为:g(a)min≥0在a∈[﹣1,1]上恒成立,①当m=0时,g(a)=0满足,②当m<0时,g(a)递增,令g(a)min=g(﹣1)≥0⇒m≤﹣2;③当m>0时,g(a)递减,令g(a)min=g(1)≥0⇒m≥2,综合以上讨论得,实数m的取值范围为:(﹣∞,﹣2]∪{0}∪[2,+∞).【点评】本题主要考查了抽象函数单调性的判断与证明,对数函数的图象与性质,不等式恒成立问题的解法,属于中档题.。
2023届河北省衡水中学数学高一上期末调研试题含解析

【详解】解: log3 7 log7 9
lg 7 lg 9 lg 3 lg 7
lg 7 lg 32 lg 3 lg 7
lg 7 2 lg 3 lg 3 lg 7
2.
故答案为: 2
14、 5 14
【解析】由
4
4
,根据两角差的正切公式可解得
tan
4
tan
4
5 14
【详解】
故选:B
9、C
【解析】函数 f x 的图象和 g x 的图象都关于(0,2)对称,从而可知 4 个交点两两关于点(0,2)对称,即可求
出 y1 y2 y3 y4 的值
【详解】因为函数 f x 满足: f x f x 4 ,所以 f x 的图象关于(0,2)对称,
函数 g x 2x 1 2 1 ,由于函数 y 1 的图象关于(0,0)对称,故 g x 的图象也关于(0,2)对称,
A.
B.
C.
D.
5.幂函数 y f x 的图象过点 2, 2 ,则函数 y x f x 的值域是()
A. ,
B.
,
1 4
C.
1 4
,
D.
1 4
,
6.要得到函数 y 2sin(2x 2 ) 的图像, 需要将函数 y 2sin(2x 2 ) 的图像()
3
3
A.向左平移 2 个单位 3
(x1, y1) , (x2 , y2 ) , (x3, y3 ) , (x4 , y4 ) ,则: y1 y2 y3 y4
A. 0
B. 4
C. 8
D.16
10.已知两个不重合的平面 α,β 和两条不同直线 m,n,则下列说法正确的是
A.若m⊥n,n⊥α,m⊂β,则α⊥β
河北省衡水市衡水中学2023届高一数学第一学期期末达标检测试题含解析

2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若幂函数f (x )的图象过点(16,8),则f (x )<f (x 2)的解集为 A.(–∞,0)∪(1,+∞) B.(0,1) C.(–∞,0)D.(1,+∞)2.已知函数()1424xx f x +=-+,[]1,1x ∈-,则函数()y f x =的值域为()A.[)3,+∞B.[]3,4C.133,4⎡⎤⎢⎥⎣⎦ D.13,44⎡⎤⎢⎥⎣⎦3.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(2)(2)()xf x x f x +=+,则(5)f 的值为 A.0 B.1 C.2D.54.已知lg lg 0a b +=,则函数xy a =与函数log b y x =-的图象可能是()A. B.C. D.5.为了得到函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图像,只需将函数cos 2y x =的图像上所有的点()A.向左平移8π个单位长度 B.向右平移8π个单位长度 C.向左平移4π个单位长度D.向右平移4π个单位长度6.集合{}N 22x x ∈-<用列举法表示是() A.{}1,2,3 B.{}1,2,3,4 C.{}0,1,2,3,4D.{}0,1,2,37.电影《长津湖》中,炮兵雷公牺牲的一幕看哭全网,他的原型是济南英雄孔庆三.因为前沿观察所距敌方阵地较远,需要派出侦察兵利用观测仪器标定目标,再经过测量和计算指挥火炮实施射击.为了提高测量和计算的精度,军事上通常使用密位制来度量角度,将一个圆周分为6000等份,每一等份的弧所对的圆心角叫做1密位.已知我方迫击炮连在占领阵地后,测得敌人两地堡之间的距离是54米,两地堡到我方迫击炮阵地的距离均是1800米,则我炮兵战士在摧毁敌方一个地堡后,为了快速准确地摧毁敌方另一个地堡,需要立即将迫击炮转动的角度α=() 注:(ⅰ)当扇形的圆心角小于200密位时,扇形的弦长和弧长近似相等; (ⅱ)取π等于3进行计算 A.30密位 B.60密位 C.90密位D.180密位8.已知圆锥的底面半径为1,且它的侧面开展图是一个半圆,则这个圆锥的体积为( )9.若{}{}2,0,1,,0a a b -=,则20172017a b +的值为 A.0 B.1 C.-1D.210.已知正实数,x y 满足+=2x y xy ,则2x y+最小值为A.32+ B.3C.3+D.11.对x R ∀∈,不等式()()222240a x a x -+--<恒成立,则a 的取值范围是() A.22a -<≤ B.22a -≤≤ C.2a <-或2a ≥D.2a ≤-或2a ≥12.函数f (x )=|x |+ax(a ∈R )的图象不可能是() A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若偶函数()f x 在区间[)0,∞+上单调递增,且()01f =-,()10f =,则不等式()0f x ≥的解集是___________. 14.某高中校为了减轻学生过重的课业负担,提高育人质量,在全校所有的1000名高中学生中随机抽取了100名学生,了解他们完成作业所需要的时间(单位:h ),将数据按照,,,,,,分成6组,并将所得的数据绘制成频率分布直方图(如图所示).由图中数据可知___________;估计全校高中学生中完成作业时间不少于的人数为___________.15.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________ 16.函数()0.5log 43y x -_________.三、解答题(本大题共6个小题,共70分。
河北省衡水市2023-2024学年高一上学期期末考试数学试卷(含答案)

河北省衡水市2023-2024学年高一上学期期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知命题p:∀x>0,3x+x3>0,则p的否定是( )A. ∃x≤0,3x+x3>0B. ∃x>0,3x+x3<0C. ∀x≤0,3x+x3≤0D. ∃x>0,3x+x3≤02.已知函数f(x)={x2−2,x≤21x−2,x>2,则f(f(−3))=( )A. 12B. −15C. 15D. −193.折扇图1在我国已有三千多年的历史,它常以字画的形式体现我国的传统文化.图2为其结构简化图,设扇面A,B间的圆弧长为l1,C,D间的圆弧长为l2=12l1,当弦长AB为d=2√ 3,圆弧所对的圆心角为θ=2π3,则扇面字画部分的面积为( )A. πB. 4π3C. 2π3D. π34.已知2sinθ−cosθ=0,则cosθ+sinθcosθ−sinθ=( )A. 1B. 32C. 2D. 35.函数f(x)=ln√ |x|+1+cosx在[−π,π]上的大致图象为( )A. B.C. D.6.已知a=2log43,b=log48,c=30.6,则( )A. a<b<cB. b<c<aC. c<b<aD. b<a<c7.函数f(x)=ln(x2−4x+5)的减区间为( )A. (−∞,−1)B. (−∞,2)C. (2,+∞)D. (5,+∞)8.已知函数f(x)=|log2x|,正实数m,n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m、n的值分别为( )A. √ 22,√ 2 B. 14,2 C. 12,2 D. 14,4二、多选题:本题共4小题,共24分。
在每小题给出的选项中,有多项符合题目要求。
9.设0<a<b,且a+b=2,则( )A. 1<b<2B. 2a−b>1C. ab<1D. 1a +2b≥3+2√ 2210.某同学利用二分法求函数f(x)=lnx+2x−6的零点时,用计算器算得部分函数值如表所示:则函数f(x)=lnx+2x−6的零点的近似值(精确度0.1)可取为( )A. 2.49B. 2.52C. 2.55D. 2.5811.已知sinα−cosα=15,0≤α≤π,则下列选项中正确的有( )A. sinα=45B. tanα=43 C. sinα+cosα=−75D. sinαcosα=122512.把函数y =cosx 图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向左平移π3个单位长度,得到函数y =f(x)的图象,则( ) A. 函数f(x)的最小正周期为π B. 函数f(x)的图象关于直线x =π12对称 C. 函数f(x)图象的一个对称中心为(−π12,0) D. 函数f(x)在[0,π]上有2个零点三、填空题:本题共4小题,每小题3分,共12分。
河北省衡中高一上学期期末数学(理)试题有答案-名校版

2017—2018学年度上学期第五次月考高一年级理科数学试题考试时间120分钟 试题分数150分第Ⅰ卷(选择题 共60分)一.选择题(本题共15小题,每小题4分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1、如图所示,在平行四边形ABCD 中,下列结论中错误的是( )A 、AB DC = B 、AD AB AC += C 、AB AD BD -= D 、0AD CB += 2、下列函数中,既是偶函数又存在零点的是( ) A 、ln y x =B 、21y x =+C 、sin y x =D 、cos y x =3、已知向量()()2,1,1,a b m ==-,且()()//a b a b +-,则m 的值为( ) A 、2 B 、2- C 、12 D 、12- 4、函数()2ln -+=x x x f 的零点所在的一个区间是( )A 、(3,4)B 、()3,2C 、()2,1D 、()1,05、已知23)4sin(=+απ,则)43sin(απ-的值为( )A 、-32 B 、 32 C 、- 12 D 、126、已知平面向量,a b 的夹角为60°,,,则( )A 、2B 、23CD 、 4 7、已知点,, ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为A 、B 、D 、( )8、给出如下四个函数①)3sin(5)(π-=x x f ②()cos(sin )f x x = ③x x x f 2sin )(=④xxx f 2tan 1tan )(+=其中奇函数的个数是 ( )A 、1个B 、2个C 、3个D 、4个 9、函数)2,0,0)(sin()(πφωφω<>>+=A x A x f 的部分图像如图所示,若将)(x f 图像上所有点的横坐标缩短为原 的21倍(纵坐标不变),得到函数)(x g 的图像,则)(x g 的解析式为( ) A 、)64sin(π+=x y B 、)34sin(π+=x y C 、)6sin(π+=x y D 、)12sin(π+=x y10、若f(cos x)=cos2x ,则f(sin 15°)的值为( )A 、-32 B 、32 C 、-12 D 、1211、已知()()sin f x x ωϕ=+(0ω>, 2πϕ<)满足()()2f x f x π+=-,若其图象向左平移6π个单位后得到的函数为奇函数,则()f x 的解析式可以为( )A 、()sin(2)6f x x π=+B 、()sin(2)6f x x π=-C 、()sin(2)3f x x π=+D 、()sin(2)3f x x π=-12、要得到函数2log (21)y x =+的图像,只需将21log y x =+的图像( )A 、向左移动12个单位 B 、向右移动12个单位 C 、向左移动1个单位 D 、向右移动1个单位13、已知函数()f x 在()-∞+∞,上是奇函数,若对任意的实数0x ≥都有(2)()f x f x +=且当[02)x ∈,时,2()log (1)f x x =+,则(2013)(2014)f f -+的值( ) A 、2 B 、2- C 、1- D 、1 14、在平行四边形ABCD 中,,点,E F 分别在,BC DC 边上,且2,BE EC DF FC ==,则AE BF ⋅=( )A 、B 、1-C 、2D 、15、设函数1sin()20()1()09x x x f x x π--<⎧⎪=⎨⎪⎩,,≤≥,若关于x 的方程()0f x a -=有三个不等实根1x ,2x ,3x ,且12352x x x ++=-,则a 的值是()A 、13B 、3C 、12D 、2第Ⅱ卷 (非选择题)二、填空题(本题共4小题,每小题5分,共20分。
2022-2023学年河北省衡水中学高一上学期数学期末测试卷(含答案)

B.“ ”是“ 且 ”的充要条件;
C.“ ”是“ 或 ”的充要条件;
D.若集合 是全集 的子集,则命题“ ”与“ ”是等价命题.
【答案】AC
【解析】
【分析】从充分性和必要性的角度,结合题意,对选项进行逐一判断即可.
【详解】对 :若 ,满足 中至少有一个小于零,但无法推出 ,
【答案】
【解析】
【详解】试题分析:当 时, ,∴ ,∴ ;当 时, ,∴ ,∴ ,综上,使得 成立的 的取值范围是 .故答案为 .
考点:分段函数不等式及其解法.
【方法点晴】本题考查不等式的解法,在分段函数中结合指数函数不等式与幂函数不等式,考查学生的计算能力,属于基础题.利用分段函数,结合 分为两段当 时,根据单调性,解指数函数不等式,取交集;当 时,解幂函数不等式,取交集,综合取上述两者的并集,即可求出使得 成立的 的取值范围.
(1)写出从药物释放开始,y与x的之间的函数关系;
(2)据测定,当空气中每立方米的含药量降低至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能回到教室.
【答案】(1)
(2)0.6
【解析】
【分析】(1)利用函数图象经过点 ,分段讨论即可得出结论;
(2)利用指数函数的单调性解不等式 .
因为对任意的 ,不等式 恒成立,
也即 在 上恒成立,
记 ,则 在 上单调递增,
当 时, ,即 恒成立,则 ,所以 ,解得: ;
当 时,不等式显然成立;
当 时, ,即 在 恒成立,
则 ,因为 在 上单调递减,所以 时, ,解得: ,
因为对任意的 ,不等式 恒成立,
则综上可知:实数 的值为 .
河北省衡水市高一上学期期末数学试卷

河北省衡水市高一上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020高三上·长春月考) 若集合,,则()A .B .C .D .2. (2分) (2018高二下·虎林期末) 已知在上是单调递增的,且图像关于轴对称,若,则的取值范围是()A .B .C .D .3. (2分) (2019高一上·海林期中) 的值是()A .B . 1C .D . 24. (2分)(2020·海南模拟) 已知偶函数满足对,且当时,,则()A .B .C .D .5. (2分) (2017高一上·怀柔期末) 已知函数f(x)= ,则f[f(﹣)]=()A . cosB . ﹣cosC .D . ±6. (2分)设,,,则a,b,c的大小关系是()A .B .C .D .7. (2分)有4个命题:①对于任意;②存在③对于任意的;④对于任意的其中的真命题是()A . ①③B . ①④C . ②③D . ②④8. (2分)(2017·潮州模拟) 已知点(x1 , y1)在函数y=sin2x图象上,点(x2 , y2)在函数y=3的图象上,则(x1﹣x2)2+(y1﹣y2)2的最小值为()A . 2B . 3C . 4D . 99. (2分)设函数f(x)为定义在R上的奇函数,当时,(b为常数),则f(1)=()A . 3B . 1C . -3D . -110. (2分) (2018高一下·山西期中) 已知,则的值为()A .B .C .D .11. (2分)已知函数是R上的偶函数,且在区间是单调递增的,若则下列不等式中一定成立的是()A .B .C .D .12. (2分)已知偶函数f(x)的定义域为{x|x∈R且x≠0},f(x)=,则函数的零点个数为()A . 6B . 8C . 10D . 12二、填空题 (共4题;共4分)13. (1分) (2016高三上·泰州期中) 已知集合A={1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z},则A∩B=________.14. (1分) (2016高一下·石门期末) 给出下列命题:(1)函数y=tanx在定义域内单调递增;(2)若α,β是锐角△ABC的内角,则sinα>cosβ;(3)函数y=cos( x+ )的对称轴x= +kπ,k∈Z;(4)函数y=sin2x的图象向左平移个单位,得到y=sin(2x+ )的图象.其中正确的命题的序号是________.15. (1分) (2017高一上·昌平期末) 函数的定义域是________.16. (1分)(2017·重庆模拟) 已知sinθ+cosθ= ,θ∈(0,π),则的值是________.三、解答题 (共6题;共60分)17. (10分) (2019高一上·田阳月考) 已知,且 .(1)由的值;(2)求的值.18. (10分) (2016高一上·普宁期中) 已知函数f(x)= 是奇函数(1)求a的值;(2)判断函数的单调性,并给予证明.19. (10分)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA,且B为钝角.(1)若,求B;(2)求sinA+sinC的取值范围.20. (10分)(2018·台州模拟) 已知函数.(1)当时,若存在,使得,求实数的取值范围;(2)若为正整数,方程的两个实数根满足,求的最小值.21. (5分) (2018高一下·商丘期末) 已知函数(Ⅰ)当且时,求的值域;(Ⅱ)若 ,对任意的使得成立,求实数的取值范围.22. (15分)(2019高三上·长春月考) 已知函数 , ,设.(1)如果曲线与曲线在处的切线平行,求实数的值;(2)若对 ,都有成立,求实数的取值范围;(3)已知存在极大值与极小值,请比较的极大值与极小值的大小,并说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、。
河北衡水中学2022年数学高一上期末检测试题含解析

答案
【详解】由 log2 log3a 1,可得 log3a 2,lga 2lg3,故 a=32 9 , 由 log3 log4b 1,可得 log4b 3,lgb 3lg 4 ,故 b 43 64 ,
2022-2023 学年高一上数学期末模拟试卷
注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
A. y f (2x 1) 2
B. y f (2x 1)
C. y f ( x 1) 22
D. y f ( x 1) 2
10.下列函数中,值域是 (0, ) 的是
A. y x2 2x 1
B. y x 2 (x (0, )) x 1
1
C.
y
x2
2x
(x N) 1
D.
y
|
x
1 1
|
二、填空题(本大题共 5 小题,请把答案填在答题卡中相应题中横线上)
11.函数 g x log2 x2 5x 6 在______单调递增(填写一个满足条件的区间)
12.命题“ x0 R, x02 x0 1 0 ”的否定是__________
13.已知 f x ln
x2 1 x
=0,1
,
河北省衡水市滏阳中学2020年高一数学理上学期期末试题含解析

河北省衡水市滏阳中学2020年高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设,则的值为()A.0 B.1 C.2 D.3参考答案:B当时,,故;当时,,故,故选B.2. 如果cos(π+A)=﹣,那么sin(+A)的值是()A.﹣B.C.﹣D.参考答案:B【考点】三角函数的化简求值.【专题】计算题;函数思想;数学模型法;三角函数的求值.【分析】已知等式利用诱导公式化简求出cosA的值,所求式子利用诱导公式化简后将cosA的值代入计算即可求出.【解答】解:∵cos(π+A)=﹣cosA=﹣,即cosA=,∴sin(+A)=cosA=.故选:B.【点评】本题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,是基础题.3. 函数y=log a(x2+2x﹣3),当x=2时,y>0,则此函数的单调递减区间是()A.(﹣∞,﹣3)B.(1,+∞)C.(﹣∞,﹣1)D.(﹣1,+∞)参考答案:A【考点】4P:对数函数的单调区间.【分析】由题意可知,a的范围,以及对数函数的性质,求解即可.【解答】解:当x=2时,y=log a5>0,∴a>1.由x2+2x﹣3>0?x<﹣3或x>1,易见函数t=x2+2x﹣3在(﹣∞,﹣3)上递减,故函数y=log a(x2+2x﹣3)(其中a>1)也在(﹣∞,﹣3)上递减.故选A4. 已知集合等于A. B. C. D.参考答案:A,所以.5. (5分)已知△ABC是边长为2的正三角形,则?的值为()A. 2 B.﹣2 C.2D.﹣2参考答案:B考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:运用向量的数量积的定义,结合正三角形的定义,注意向量的夹角为π﹣B,计算即可得到所求值.解答:由于△ABC是边长为2的正三角形,则?=||?||?cos(π﹣B)=﹣2×2×cos60°=﹣4×=﹣2.故选B.点评:本题考查向量的数量积的定义,注意向量夹角的定义是解题的关键.6. 若,是方程3+6+2+1=0的两根,则实数的值为()A.-B.C.-或D.参考答案:A略7. 给出下列命题,错误命题的个数为()①一条直线和两条直线平行线中的一条垂直,则它也和另一条垂直;②空间四点A、B、C、D,若直线AB和直线CD是异面直线,那么直线AC和直线BD也是异面直线;③空间四点若不在同一个平面内,则其中任意三点不在同一条直线上;④若一条直线L与平面内的两条直线垂直,则.A.0 B.1 C.2 D.3参考答案:B略8. (3分)已知集合A={x|x2﹣x﹣2≥0},B={x|﹣2≤x<2},则A∩B=()A.B.C.D.参考答案:B 考点:交集及其运算.专题:集合.分析:求出A中不等式的解集确定出A,再由B,求出A与B的交集即可.解答:解:由A中不等式变形得:(x+1)(x﹣2)≥0,解得:x≤﹣1或x≥2,即A=(﹣∞,﹣1]∪.故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.9. 已知角终边上一点,则下列关系式中一定正确的是( )(A)(B)(C)(D)参考答案:D略10. 设,,向量,,且,,则().A.B.C.D.10 参考答案:B∵,,且,∴,解得,又∵,,且,∴,解得∴,,,∴.故选.二、填空题:本大题共7小题,每小题4分,共28分11. 若对任意x>0,≤a恒成立,则a的取值范围是________.参考答案:略12. 设全集A={0,1,2},B={﹣1,0,1},则A∪B=.参考答案:{﹣1,0,1,2}【考点】并集及其运算.【分析】直接利用并集运算得答案.【解答】解:∵A={0,1,2},B={﹣1,0,1},则A∪B={0,1,2}∪{﹣1,0,1}={﹣1,0,1,2}.故答案为:{﹣1,0,1,2}.13. (5分)函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于=.参考答案:考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:根据所给的三角函数的图象,可以看出函数的振幅和周期,根据周期公式求出ω的值,写出三角函数的形式,根据函数的图象过点(2,2),代入点的坐标,整理出初相,点的函数的解析式,根据周期是8和特殊角的三角函数求出结果.解答:由图可知函数f(x)的振幅A=2,周期为8,∴8=∴ω=y=2sin(x+φ)∵函数的图象过点(2,2)∴2=2sin(2×+φ)=2sin(+φ)=2cosφ∴cosφ=1∴φ=2kπ当k=0时,φ=0∴三角函数的解析式是y=2sin x∵f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)=0∴f(1)+f(2)+f(3)+…+f(11)=2sin+2sin+…+2sin=2+2故答案为:2+2点评:本题考查根据函数y=Asin(ωx+φ)的图象确定函数的解析式,考查特殊角的三角函数值,本题解题的关键是看出要求结果的前八项之和等于0,要理解好函数的中的周期、振幅、初相等概念,本题是一个中档题目.14. 若a,b∈R,且a≠0,b≠0,则+的可能取值所组成的集合中元素的个数为________.参考答案:3解析:当a>0且b>0时,+=2;当a ·b <0时,+=0;当a <0且b <0时,+=-2.所以集合中的元素为2,0,-2. 即元素的个数为3.15. 已知直线l :2x ﹣y ﹣2=0和直线l :x+2y ﹣1=0关于直线l 对称,则直线l 的斜率为 .参考答案:或﹣3【考点】IQ :与直线关于点、直线对称的直线方程. 【分析】设P (a ,b )是直线l 上任意一点,则点P 到直线l :2x ﹣y ﹣2=0和直线l :x+2y ﹣1=0的距离相等.,整理得a ﹣3b ﹣1=0或3a+b ﹣3=0,即可求解.【解答】解:设P (a ,b )是直线l 上任意一点,则点P 到直线l :2x ﹣y ﹣2=0和直线l :x+2y ﹣1=0的距离相等.整理得a ﹣3b ﹣1=0或3a+b ﹣3=0,∴直线l 的斜率为或﹣3. 故答案为:或﹣3 16. (5分)方程的解是.参考答案:x=﹣1考点: 有理数指数幂的运算性质. 专题: 计算题.分析: 把,化为3﹣2,然后按照指数幂的运算法则,转化为一次方程,求解即可.解答:故答案为:x=﹣1.点评: 本题考查有理数指数幂的运算性质,是基础题. 17. 先后抛掷两枚均匀的骰子,若骰子朝上一面的点数依次是,则的概率是参考答案:19/36 略三、 解答题:本大题共5小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年河北省衡水中学高一(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一个是符合题目要求的)1.若角α与角β终边相同,则一定有()A.α+β=180°B.α+β=0°C.α﹣β=k360°,k∈Z D.α+β=k360°,k∈Z2.已知集合M={x|≤1},N={x|y=lg(1﹣x)},则下列关系中正确的是()A.(∁R M)∩N=∅B.M∪N=R C.M⊇N D.(∁R M)∪N=R3.设α是第二象限角,且cos=﹣,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.下列四个函数中,既是(0,)上的增函数,又是以π为周期的偶函数的是()A.y=tanx B.y=|sinx| C.y=cosx D.y=|cosx|5.已知tanα=﹣,且tan(α+β)=1,则tanβ的值为()A.﹣7 B.7 C.﹣D.6.将函数y=sin2x的图象向左平移个单位,向上平移1个单位,得到的函数解析式为()A.y=sin(2x+)+1 B.y=sin(2x﹣)+1 C.y=sin(2x+)+1D.y=sin(2x﹣)+17.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式()A.y=﹣4sin(x﹣)B.y=4sin(x﹣)C.y=﹣4sin(x+)D.y=4sin(x+)8.在△ABC中,已知lgsinA﹣lgcosB﹣lgsinC=lg2,则三角形一定是()A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形9.已知函数f(x)=log a(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=a x+b的大致图象是()A.B.C.D.10.若定义在区间D上的函数f(x)对于D上任意n个值x1,x2,…x n总满足≤f(),则称f(x)为D的凸函数,现已知f(x)=sinx在(0,π)上是凸函数,则三角形ABC中,sinA+sinB+sinC的最大值为()A.B.3C.D.311.已知O为△ABC内任意的一点,若对任意k∈R有|﹣k|≥||,则△ABC一定是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定12.△ABC的内角A、B、C的对边分别为a,b,c,且a:b:c=:4:3,设=cosA,=sinA,又△ABC的面积为S,则=()A. S B. S C.S D. S二、填空题(本大题共4小题,每小题5分,共20分)13.设是奇函数,则a+b的取值范围是.14.函数y=3sin(x+10°)+5sin(x+70°)的最大值为.15.已知奇函f(x)数满足f(x+1)=﹣f(x),当x∈(0,1)时,f(x)=﹣2x,则f(log210)等于.16.给出下列命题:①存在实数x,使得sinx+cosx=;②函数y=2sin(2x+)的图象关于点(,0)对称;③若函数f(x)=ksinx+cosx的图象关于点(,0)对称,则k=﹣1;④在平行四边形ABCD中,若|+|=|+|,则四边形ABCD的形状一定是矩形.则其中正确的序号是(将正确的判断的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.已知cos(α﹣)=,sin(+β)=,且β∈(0,),α∈(,),求sin(α+β)的值.18.设幂函数f(x)=(a﹣1)x k(a∈R,k∈Q)的图象过点.(1)求k,a的值;(2)若函数h(x)=﹣f(x)+2b+1﹣b在上的最大值为3,求实数b的值.19.锐角三角形ABC的三内角A、B、C所对边的长分别为a、b、c,设向量,且(1)求角B的大小;(2)若b=1,求a+c的取值范围.20.已知函数f(x)=2﹣2cos2(+x)﹣cos2x(1)求函数f(x)在x∈时的增区间;(2)求函数f(x)的对称轴;(3)若方程f(x)﹣k=0在x∈[,]上有解,求实数k的取值范围.21.如图,△ABC中,sin=,AB=2,点D在线段AC上,且AD=2DC,BD=.(Ⅰ)求:BC的长;(Ⅱ)求△DBC的面积.22.已知=(sinωx,cosωx),=(cosωx,cosωx)其中ω>0,若函数f(x)=﹣的图象上相邻两对称轴间得距离为2π(1)求方程f(x)﹣=0在区间内的解;(2)若=+,求sinx;(3)在△AB C中,a,b,c分别是角A,B,C的对边,且满足(2a﹣c)cosB=bcosC,求函数f(A)的值域.2015-2016学年河北省衡水中学高一(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一个是符合题目要求的)1.若角α与角β终边相同,则一定有()A.α+β=180°B.α+β=0°C.α﹣β=k360°,k∈Z D.α+β=k360°,k∈Z【考点】终边相同的角.【专题】计算题;转化思想;定义法;三角函数的求值.【分析】根据终边相同的角的表示方法,直接判断即可.【解答】解:角α与角β终边相同,则α=β+k360°,k∈Z,故选:C.【点评】本题是基础题,考查终边相同的角的表示方法,定义题.2.已知集合M={x|≤1},N={x|y=lg(1﹣x)},则下列关系中正确的是()A.(∁R M)∩N=∅B.M∪N=R C.M⊇N D.(∁R M)∪N=R【考点】交、并、补集的混合运算.【专题】集合.【分析】求出M中不等式的解集确定出M,求出N中x的范围确定出N,即可做出判断.【解答】解:M中的不等式,当x>0时,解得:x≥1;当x<0时,解得:x≤1,即x<0,∴M=(﹣∞,0)∪=0,可得(﹣2)×+φ=kπ,k∈z,再结合|φ|<,∴φ=,∴y=4sin(x+),故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.8.在△ABC中,已知lgsinA﹣lgcosB﹣lgsinC=lg2,则三角形一定是()A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形【考点】三角形的形状判断.【专题】计算题.【分析】由对数的运算性质可得sinA=2cosBsinC,利用三角形的内角和A=π﹣(B+C)及诱导公式及和差角公式可得B,C的关系,从而可判断三角形的形状【解答】解:由lgsinA﹣lgcosB﹣lgsinC=lg2可得∴sinA=2cosBs inC即sin(B+C)=2sinCcosB展开可得,sinBcosC+sinCcosB=2sinCcosB∴sinBcosC﹣sinCcosB=0∴sin(B﹣C)=0∴B=C∴△ABC为等腰三角形故选:A【点评】本题主要考查了对数的运算性质及三角函数的诱导公式、和差角公式的综合应用,属于中档试题.9.已知函数f(x)=log a(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=a x+b的大致图象是()A.B.C.D.【考点】对数函数的图象与性质.【专题】压轴题.【分析】由函数f(x)=log a(x+b)的图象可求出a和b的范围,再进一步判断g(x)=a x+b 的图象即可.【解答】解:由函数f(x)=log a(x+b)的图象为减函数可知0<a<1,f(x)=log a(x+b)的图象由f(x)=log a x向左平移可知0<b<1,故函数g(x)=a x+b的大致图象是B故选B【点评】本题考查指对函数的图象问题,是基本题.10.若定义在区间D上的函数f(x)对于D上任意n个值x1,x2,…x n总满足≤f(),则称f(x)为D的凸函数,现已知f(x)=sinx在(0,π)上是凸函数,则三角形ABC中,sinA+sinB+sinC的最大值为()A.B.3C.D.3【考点】函数的值.【专题】转化思想;函数的性质及应用;三角函数的求值;不等式的解法及应用.【分析】由凸函数的性质可得:sinA+sinB+sinC≤3,即可得出.【解答】解:由凸函数的性质可得:sinA+sinB+sinC≤3==,当且仅当A=B=C=时取等号.∴sinA+sinB+sinC的最大值为.故选:C.【点评】本题考查了凸函数的性质、三角形内角和定理、不等式的性质,考查了推理能力与计算能力,属于中档题.11.已知O为△ABC内任意的一点,若对任意k∈R有|﹣k|≥||,则△ABC 一定是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定【考点】三角形的形状判断.【专题】计算题;数形结合.【分析】根据题意画出图形,在边BC上任取一点E,连接AE,根据已知不等式左边绝对值里的几何意义可得k=,再利用向量的减法运算法则化简,根据垂线段最短可得AC 与EC垂直,进而确定出三角形为直角三角形.【解答】解:从几何图形考虑:|﹣k|≥||的几何意义表示:在BC上任取一点E,可得k=,∴|﹣k|=|﹣|=||≥||,又点E不论在任何位置都有不等式成立,∴由垂线段最短可得AC⊥EC,即∠C=90°,则△ABC一定是直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有:平面向量的减法的三角形法则的应用,及平面几何中两点之间垂线段最短的应用,利用了数形结合的思想,要注意数学图形的应用可以简化基本运算.12.△ABC的内角A、B、C的对边分别为a,b,c,且a:b:c=:4:3,设=cosA, =sinA,又△ABC的面积为S,则=()A. S B. S C.S D. S【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】由题意,利用比例的性质及余弦定理可求cosA=,结合A的范围可求A的值,利用三角形面积公式可求三角形面积,由已知可求向量,,利用平面向量的数量积的运算化简即可得解.【解答】解:由题意可设:a=x,b=4x,c=3x,x>0,则由余弦定理可得:cosA===,结合A∈(0,π),可得A=.从而解得△ABC的面积为S=||||sinA=||||,可得: =cosA=, =sinA=,可得:=||||cosA=||×||×=||||=S,故选:D.【点评】本题主要考查了比例的性质,余弦定理,三角形面积公式,平面向量的数量积的运算在解三角形中的应用,考查了计算能力和转化思想,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.设是奇函数,则a+b的取值范围是.【考点】奇函数.【专题】计算题.【分析】由题意和奇函数的定义f(﹣x)=﹣f(x)求出a的值,再由对数的真数大于零求出函数的定义域,则所给的区间应是定义域的子集,求出b的范围进而求出a+b的范围.【解答】解:∵定义在区间(﹣b,b)内的函数f(x)=是奇函数,∴任x∈(﹣b,b),f(﹣x)=﹣f(x),即=﹣,∴=,则有,即1﹣a2x2=1﹣4x2,解得a=±2,又∵a≠2,∴a=﹣2;则函数f(x)=,要使函数有意义,则>0,即(1+2x)(1﹣2x)>0解得:﹣<x<,即函数f(x)的定义域为:(﹣,),∴(﹣b,b)⊆(﹣,),∴0<b≤∴﹣2<a+b≤﹣,即所求的范围是;故答案为:.【点评】本题考查了奇函数的定义以及求对数函数的定义域,利用子集关系求出b的范围,考查了学生的运算能力和对定义的运用能力.14.函数y=3sin(x+10°)+5sin(x+70°)的最大值为7 .【考点】三角函数的化简求值.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】分别把(x+10°)与(x+70°)化为(x+40°﹣30°)与(x+40°+30°),展开两角和与差的三角函数,整理后利用辅助角公式化积,则答案可求.【解答】解:y=3sin(x+10°)+5sin(x+70°)=3sin(x+40°﹣30°)+5sin(x+40°+30°)=3+5= [sin(x+40°)﹣cos(x+40°)]+ [ sin(x+40°)+cos(x+40°)]=4sin(x+40°)+cos(x+40°)=7[sin(x+40°)+cos(x+40°)]=7sin≤7.故答案为:7.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,训练了辅助角公式的应用,是中档题.15.已知奇函f(x)数满足f(x+1)=﹣f(x),当x∈(0,1)时,f(x)=﹣2x,则f(log210)等于.【考点】函数的值.【专题】函数思想;综合法;函数的性质及应用.【分析】利用奇偶性与条件得出f(x)的周期,根据函数奇偶性和周期计算.【解答】解:∵f(x+1)=﹣f(x),∴f(x+2)=﹣f(x+1)=f(x),∴函数f(x)是以2为周期的奇函数,∵3<log210<4,∴﹣1<﹣4+log210<0,∴0<4﹣log210<1.∴f(log210)=f(﹣4+log210)=﹣f(4﹣log210)=2==.故答案为:.【点评】本题考查了函数奇偶性与周期性的应用,找到函数周期是解题关键.16.给出下列命题:①存在实数x,使得sinx+cosx=;②函数y=2sin(2x+)的图象关于点(,0)对称;③若函数f(x)=ksinx+cosx的图象关于点(,0)对称,则k=﹣1;④在平行四边形ABCD中,若|+|=|+|,则四边形ABCD的形状一定是矩形.则其中正确的序号是③④(将正确的判断的序号都填上)【考点】命题的真假判断与应用.【专题】探究型;简易逻辑;推理和证明.【分析】根据正弦型函数的图象和性质,可判断①②③,根据向量模的几何意义,可判断④.【解答】解:sinx+cosx=sin(x+)∈,∉,故①为假命题;当x=时,2x+=,此时函数取最大值,故函数y=2sin(2x+)的图象关于直线x=对称,故②为假命题;若函数f(x)=ksinx+cosx的图象关于点(,0)对称,则,解得:k=﹣1,故③为真命题;在平行四边形ABCD中,若|+|=|+|,即平行四边形ABCD的两条对角线长度相等,则四边形ABCD的形状一定是矩形,故④为真命题;故答案为:③④【点评】本题考查的知识点是和差角(辅助角)公式,三角函数的对称性,向量的模,向量加法的三角形法则,难度中档.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.已知cos(α﹣)=,sin(+β)=,且β∈(0,),α∈(,),求sin(α+β)的值.【考点】两角和与差的正弦函数.【专题】计算题;整体思想;数学模型法;三角函数的图像与性质.【分析】由α、β的范围求出的范围,结合已知求出sin(α﹣)和cos(+β)的值,则sin(α+β)的值可求.【解答】解:∵α∈(,),∴,又cos(α﹣)=,∴,又∵β∈(0,),∴,sin(+β)=,∴,则sin(α+β)=sin=sin()cos()+cos()sin()=.【点评】本题考查两角和与差正弦、余弦,关键是“拆角、配角”思想方法的运用,是中档题.18.设幂函数f(x)=(a﹣1)x k(a∈R,k∈Q)的图象过点.(1)求k,a的值;(2)若函数h(x)=﹣f(x)+2b+1﹣b在上的最大值为3,求实数b的值.【考点】二次函数的性质;幂函数的单调性、奇偶性及其应用.【专题】分类讨论;换元法;函数的性质及应用.【分析】(1)根据幂函数的定义和性质进行求解即可求k,a的值;(2)若函数h(x)=﹣f(x)+2b+1﹣b在上的最大值为3,利用换元法转化一元二次函数,利用一元二次函数的性质即可求实数b的值.【解答】解:(1)设幂函数f(x)=(a﹣1)x k(a∈R,k∈Q)的图象过点.则a﹣1=1,即a=2,此时f(x)=x k,即=2,即=2,解得k=4;(2)∵a=2,k=4,∴f(x)=x4,则h(x)=﹣f(x)+2b+1﹣b=﹣x4+2bx2+1﹣b=﹣(x2﹣b)2+1﹣b+b2,设t=x2,则0≤t≤4,则函数等价为g(t)=﹣(t﹣b)2+1﹣b+b2,若b≤0,则函数g(t)在上单调递减,最大值为g(0)=1﹣b=3,即b=﹣2,满足条件.若0<b≤4,此时当t=b时,最大值为g(b)=1﹣b+b2=3,即b2﹣b﹣2=0,解得b=2或b=﹣1(舍).若b>4,则函数g(t)在上单调递增,最大值为g(4)=3b﹣15=3,即3b=18,b=6,满足条件综上b=﹣2或b=2或b=6.【点评】本题主要考查幂函数的定义和性质的应用以及一元二次函数的性质,利用换元法结合一元二次函数的性质是解决本题的关键.注意要进行分类讨论.19.锐角三角形ABC的三内角A、B、C所对边的长分别为a、b、c,设向量,且(1)求角B的大小;(2)若b=1,求a+c的取值范围.【考点】余弦定理的应用;平面向量共线(平行)的坐标表示;正弦定理.【专题】计算题;函数思想.【分析】(1)首先运用向量的平行的充要条件得出边a、b、c的一个等,通过变形为分式再结合余弦定理可得cosB=,结合B∈(0,π)得B=;(2)根据正弦定理将a+c变形为关于角A的一个三角函数式,再结合已知条件得出A的取值范围,在此基础上求关于A的函数的值域,即为a+c的取值范围.【解答】解:(1)∵∴(c﹣a)c﹣(b﹣a)(a+b)=0∴a2+c2﹣b2=ac 即三角形ABC中由余弦定理,得cosB=,结合B∈(0,π)得B=(2)∵B=∴A+C=由题意三角形是锐角三角形,得∴再由正弦定理:且b=1∴a+c==∵∴∴ 2∴【点评】本题综合了向量共线与正、余弦定理知识,解决角的取值和边的取值范围等问题,考查了函数应用与等价转化的思想,属于中档题.20.已知函数f(x)=2﹣2cos2(+x)﹣cos2x(1)求函数f(x)在x∈时的增区间;(2)求函数f(x)的对称轴;(3)若方程f(x)﹣k=0在x∈[,]上有解,求实数k的取值范围.【考点】三角函数中的恒等变换应用;正弦函数的图象.【专题】计算题;函数思想;综合法;空间位置关系与距离.【分析】(1)由条件化简得到f(x)=1+2sin(2x﹣),求出f(x)的单调递增区间,得出结论.(2)根据对称轴的定义即可求出.(3)由题意可得函数f(x)的图象和直线y=k在x∈[,]上有交点,根据正弦函数的定义域和值域求出f(x)的值域,可得k的范围.【解答】解:(1)f(x)=2﹣2cos2(+x)﹣cos2x=1+2sin(2x﹣),由2x﹣∈,k∈Z,得x∈,k∈Z,可得函数f(x)在x∈时的增区间为,[,π],(2)由2x﹣=kπ+,k∈Z,∴得函数f(x)的对称轴为x=+,k∈Z,(3)∵x∈[,],∴≤2x﹣≤,即2≤1+2sin(2x﹣)≤3,要使方程f(x)﹣k=0在x∈[,]上有解,只有k∈.【点评】本题主要考查三角函数的化简,正弦函数的图象的对称性、单调性,正弦函数的定义域和值域,属于中档题.21.如图,△ABC中,sin=,AB=2,点D在线段AC上,且AD=2DC,BD=.(Ⅰ)求:BC的长;(Ⅱ)求△DBC的面积.【考点】解三角形.【专题】计算题.【分析】(Ⅰ)由sin的值,利用二倍角的余弦函数公式即可求出cos∠ABC的值,设BC=a,AC=3b,由AD=2DC得到AD=2b,DC=b,在三角形ABC中,利用余弦定理得到关于a与b的关系式,记作①,在三角形ABD和三角形DBC中,利用余弦定理分别表示出cos∠ADB 和cos∠BDC,由于两角互补,得到cos∠ADB等于﹣cos∠BDC,两个关系式互为相反数,得到a与b的另一个关系式,记作②,①②联立即可求出a与b的值,即可得到BC的值;(Ⅱ)由角ABC的范围和cos∠ABC的值,利用同角三角函数间的基本关系求出sin∠ABC的值,由AB和BC的值,利用三角形的面积公式即可求出三角形ABC的面积,由AD=2DC,且三角形ABD和三角形BDC的高相等,得到三角形BDC的面积等于三角形ABC面积的,进而求出三角形BDC的面积.【解答】解:(Ⅰ)因为sin=,所以cos∠ABC=1﹣2=1﹣2×=.在△ABC中,设BC=a,AC=3b,由余弦定理可得:①在△ABD和△DBC中,由余弦定理可得:,.因为cos∠ADB=﹣cos∠BDC,所以有,所以3b2﹣a2=﹣6 ②由①②可得a=3,b=1,即BC=3.(Ⅱ)由(Ⅰ)知cos∠ABC=,则sin∠ABC==,又AB=2,BC=3,则△ABC的面积为ABBCsin∠ABC=,又因为AD=2DC,所以△DBC的面积为×2=.【点评】此题考查学生灵活运用同角三角函数间的基本关系及余弦定理化简求值,灵活运用三角形的面积公式化简求值,是一道中档题.22.已知=(sinωx,cosωx),=(cosωx,cosωx)其中ω>0,若函数f(x)=﹣的图象上相邻两对称轴间得距离为2π(1)求方程f(x)﹣=0在区间内的解;(2)若=+,求sinx;(3)在△ABC中,a,b,c分别是角A,B,C的对边,且满足(2a﹣c)cosB=bcosC,求函数f(A)的值域.【考点】平面向量数量积的运算;三角函数中的恒等变换应用;余弦定理.【专题】综合题;函数思想;整体思想;综合法;三角函数的图像与性质.【分析】(1)由数量积的坐标表示结合倍角公式、两角和的正弦化简f(x)的解析式,再由已知求得ω,最后求解三角方程得答案;(2)由=+,得,进一步得,转化为倍角的余弦求解;(3)由已知等式结合正弦定理求得B,由三角形内角和定理得到A的范围,则函数f(A)的值域可求.【解答】解:(1)=,∵函数f(x)的图象上相邻两对称轴间得距离为2π,∴,T=,得,∴f(x)=,由f(x)﹣=0,得=,即,∴,或.在区间内的解为;(2)若=+,则,得,∴cos(x+)=,得sinx=;(3)∵(2a﹣c)cosB=bcosC,∴由正弦定理得cosB=,则B=,∴A∈(0,),则,故函数f(A)的值域为(,].【点评】本题考查三角函数中的恒等变换应用,考查了平面向量的数量积运算,考查余弦定理在解三角形中的应用,是中档题.。