初中数学概念

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学概念

初中数学概念

一、数

正数:正数大于0

负数:负数小于0

0既不是正数,也不是负数;正数大于负数

整数包括:正整数,0,负整数

分数包括:正分数,负分数

有理数包括:整数,分数/有限小数,无限循环小数

数轴:在直线上取一点表示0(原点),选取单位长度,规定直线上向右的方向为正方向

任何一个有理数(实数)都可以用数轴上的一个点表示,点和数是一一对应的

两个数只有符号不同,其中一个数为另一个的相反数;两个互为相反数

0的相反数就是0

在数轴上,表示互为相反数的两个点,位于原点两侧,且与原点距离相等

数轴上的两个点表示的数,右边的总比左边的大

绝对值:数轴上,一个数所对应的点与原点的距离

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0

两个负数比较大小,绝对值大的反而小

有理数加法法则:同号相加,不变符号,绝对值相加

异号相加,绝对值相等得0;不等,符合和绝对值大的相同,绝对值相减

一个数加0,仍是这个数

加法交换律:A+B=B+A

加法结合律:(A+B)+C=A + (B+C)

有理数减法法则:减去一个数,等于加上这个数的相反数

有理数乘法法则:两数相乘,同号得正,异号的负,绝对值相乘;任何数与0相乘,积为0

乘积为1的两个有理数互为倒数;0没有倒数

乘法交换律:AB=BA

乘法结合律:(AB)C=A (BC)

乘法分配律:A (B+C) =AB+AC

有理数除法法则:两个有理数相除,同号得正,异号的负,绝对值相除

0除以任何非0的数都得0;0不能做除数

乘方:求n个相同因数a的积的运算;结果叫幂;a是底数;n是指数;an读作a的n 次幂

有理数混和运算法则:先算乘方,再乘除,后加减;括号里的先算

无理数:无限不循环小数,有正负之分。

算数平方根:一个正数x的平方等于a,即x2=a,则x是a的算数平方根,读作“根号a”

0的算数平方根是0

平方根:一个数x的平方根等于a,即x2=a,则x是a的平方根(又叫:二次方根)

一个正数有两个平方根,且互为相反数;0只有一个,是它本身;负数没有平方根

开平方:求一个数的平方根的运算;a叫做被开方数

立方根:一个数x的立方等于a,即x3=a,则x是a的立方根(又叫:三次方根)

每个数只有一个立方根,正数的是正数;0的是0;负数的是负数

开立方:求一个数的立方根的运算;a叫做被开方数

实数:有理数和无理数的统称,包括有理数,无理数。相反数、倒数、绝对值的意义相同和有理数的。实数的运算法则和有理数相同。计算后出现带根号的无理数要化简,使被开方数不含分母和开得尽的因数

二、式

代数式:用基本运算符号连接数字或字母的式子;单独的数字或字母也是代数式

单项式:数字和字母的积;单独的数字或字母也是单项式;数字因数叫做单项式的系数

多项式:几个单项式的和;每个单项式叫做多项式的项,不含字母的叫常数项

单项式的次数:一个单项式中,所有字母的指数和;单独的一个非零数的次数是0

多项的次数:次数最高的项的次数

同类项:所含字母相同,并且相同字母的指数也相同的项

合并同类项:把同类项合并成一项;合并同类项时,系数相加,字母和字母的指数不变

去括号法则:括号前面是加号,去括号运算符号不变

括号前面是减号,去括号(一级运算)运算符号变

多重括号,由里面的括号开始去

整式:单项式和多项式的统称

整式加减运算:先去括号,再合并同类项,知道式子最简

同底数幂的乘法:同底数幂相乘,底数不变,指数相加,如am?an=am+n(m、n为正整数)

幂的乘方:幂的乘方,底数不变,指数相乘,如(am)n=amn(m、n为正整数)

积的乘方:积的乘方等于积中每个因数乘方的积,如(ab)n=anbn(n为正整数)

同底数幂的除法:同底数幂相除,底数不变,指数相减,如am÷n=am-n(m、n为正整数,a≠0,且m>n);a0=1(a≠0);a—p=1/ap(a≠0,p是正整数)

整式的乘方:单项式与单项式,把系数、相同字母的幂分别相加,其余字母连同其指数不变,作为积的因式

单项式与多项式,根据分配律用单项式去成多项式的每一项,再把积相加

多项式与多项式,先用一个多项式的每一项乘另一个的每一项,再把积相加

平方差公式:两数和与这两数差的积,等于它们的平方差(a+b)(a-b)=a2-b2

完全平方公式:(a-b)2=(b-a)2=a2-2ab+b2

(a+b)2=(-a-b)2=a2+2ab+b2

整式除法:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式

多项式除以单项式,先把多项式的每一项分别除以单项式,再把所得商相加

分解因式:把一个多项式化成几个整式的积的形式

公因式:多项式各项都含有的相同因式

提公因式:多项式的各项含有公因式,把这个公因式提出来,将多项式化成两个因式的乘积

完全平方式:形如a2-2ab+b2和a2+2ab+b2的式子

运用公式法:把乘法公式反过来,用来把某些多项式分解因式

分式:整式A除以整式B,表示成A/B。A为分式的分子;B为分式的分母(B不为0)

分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式值不变

约分:把一个分式的分子和分母的公因式约去的变形

最简分式:分子和分母没有公因式的分式

分式乘除法法则:分式相乘,分子相乘作分子,分母相乘作分母

分式相除,把除式的分子和分母颠倒位置后再与被除式相乘

分式加减法则:同分母分式加减,分母不变,分子相加;异分式先通分,再加减

通分:根据分式的基本性质,异分母分式化为同分母分式的过程;通分时常取最简公分母

分式方程:分母中含有未知数的方程

增根:使原分式方程的分母为0的原方程的根;解分式方程必须检验

相关文档
最新文档