第二章 整式的加减 数学活动

合集下载

整式的加减教研活动(3篇)

整式的加减教研活动(3篇)

第1篇一、活动背景随着新课程改革的不断深入,数学教学越来越注重学生的思维能力和实践能力的培养。

整式加减作为初中数学的基础内容,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

为了提高教师对整式加减教学的理解和教学水平,我们学校数学组特组织了一次以“整式加减”为主题的教研活动。

二、活动目标1. 深入理解整式加减的基本概念和运算规则。

2. 探讨有效的教学方法,提高整式加减的教学效果。

3. 加强教师之间的交流与合作,共同提高整式加减的教学水平。

三、活动时间2023年3月15日,下午2:00-5:00四、活动地点学校会议室五、活动参与人员数学组全体教师六、活动内容1. 主题讲座由我校资深数学教师张老师主讲,主题为“整式加减的运算技巧与教学策略”。

张老师从整式加减的定义、运算规则、常见错误及解决方法等方面进行了详细的讲解,并结合实例分析了整式加减在实际教学中的应用。

2. 教学案例分析教师们分组讨论了几个典型的整式加减教学案例,分析了案例中的优点和不足,并提出了改进建议。

案例包括:- 案例一:利用数形结合的方法帮助学生理解整式加减的意义。

- 案例二:通过小组合作探究,让学生自主发现整式加减的规律。

- 案例三:运用多媒体技术辅助教学,提高学生的学习兴趣。

3. 教学观摩邀请了两位教师分别进行了整式加减的公开课展示。

课后,全体教师进行了评课,提出了中肯的意见和建议。

4. 经验分享邀请了几位在教学整式加减方面有丰富经验的教师分享了自己的教学心得,包括如何激发学生的学习兴趣、如何帮助学生克服学习困难等。

七、活动总结1. 整式加减的教学要注重学生的思维能力的培养,引导学生主动探究,发现规律。

2. 教师应善于运用多种教学方法,如数形结合、小组合作、多媒体技术等,提高教学效果。

3. 加强教师之间的交流与合作,共同提高整式加减的教学水平。

八、后续工作1. 教师们根据教研活动的收获,结合自己的教学实际,对整式加减的教学方案进行修改和完善。

数学人教版七年级上册数学活动:找规律(学案)

数学人教版七年级上册数学活动:找规律(学案)

七年级上册 第二章 整式的加减数学活动:找规律(学案)【学习目标】(1)应用整式和整式的加减运算表示实际问题中的数量关系;(2)掌握从特殊到一般,从个体到整体地观察、分析问题的方法.尝试从不同角度探究问题,培养应用意 识和创新意识;(3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑,体验获得成功的乐趣,锻炼克服困难 的意志,建立学好数学的自信心.【学习重点】应用整式表示实际问题中的数量关系,掌握数学活动从特殊到一般的探究方法【学习过程】活动1 创设情境播放儿歌《数青蛙》,找找规律.活动2 合作探究如图,用火柴棒拼成一排由三角形组成的图形.(1)观察图形,并填表:(2)如果图形中含有n 个三角形,需要多少根火柴棒?(3)当图形中含有2016个三角形时,需要多少根火柴棒?变式训练:用火柴棒按如图方式搭小正方形,思考下列问题:(1)搭2个小正方形需要 根火柴棒,搭3个小正方形需要 根火柴棒;(2)如果用n 来表示所搭小正方形的个数,那么搭n 个这样的小正方形需要 根火柴棒;(3)100根火柴棒按照如图方式可以搭 个正方形.活动3 观察归纳观察下列各组数,写出第n 个数:(1)3,5,7,9,… , ;(2)4,7,10,13…, ;(3)8,14,20,26…, ;(4)2,4,8,16…, ;(1) (2)(3)活动4 巩固提高1. 观察下列图形,它们是按一定规律排列的,依照此规律,第6个图形有______个太阳.2. 用大小相等的小正方形拼大正方形,拼第1个正方形需要1个小正方形,拼第2个正方形需要4个小正方形……,拼一拼,想一想,按照如此操作:(1)拼第3个、4个、5个…第(n-1)个、第n个正方形各需要多少个小正方形?(2)第n个正方形比第(n-1)个正方形多几个小正方形?第1个第2个第3个第4个思考:结合你所探究的规律,能快速地计算出1+3+5+7+…+997+999的结果吗?活动5 课堂小结【课后练习】1.下列图形中都是由同样大小的小圆圈按一定规律组成的,其中第1个图形中一共有6个小圆圈,第2个图形中一共有9个小圆圈,第3个图形中一共有12个小圆圈,…,按此规律排列,则第7个图形中小圆圈的个数为()A.21 B.24 C.27 D.302.下图是用火柴棒搭成的一系列三角形图案.按这种方式摆下去,第n个图案需要的火柴棒总数为。

人教版七年级数学上册教案(RJ) 第二章 整式的加减

人教版七年级数学上册教案(RJ) 第二章 整式的加减

第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。

人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。

本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。

通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。

二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。

但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。

三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。

四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。

通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。

六. 教学准备教师准备教案、PPT、练习题等教学资源。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。

2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。

例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。

同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。

3.操练(15分钟)教师布置一些练习题,让学生独立完成。

例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。

人教版七年级上册数学 第二章 整式的加减 教案

人教版七年级上册数学 第二章 整式的加减 教案

第二章 整式的加减2.1 整式第1课时 用字母表示数01 教学目标1.通过分析实际问题中的数量关系以及列式表示这些数量关系的活动过程,会用含有字母的式子表示数量关系. 2.通过例题学习和习题训练,会用字母表示几何图形的周长、面积和体积. 02 预习反馈阅读教材P54~56,完成下列内容.1.我们常用字母t 表示行驶的时间,在小学列方程解应用题时,用字母x 表示未知数. 2.用字母表示:(1)有理数减法法则:a -b =a +(-b); (2)有理数除法法则:a÷b =a·1b(b ≠0).3.客车每小时行v 千米,t 小时行的路程为vt 千米.4.衬衫原价每件x 元,若按6折出售,则现在的售价为每件0.6x 元. 03 名校讲坛例1 (1)苹果原价是每千克p 元,按8折优惠出售,用式子表示现价;(2)某产品前年产量是n 件,去年的产量是前年产量的m 倍,用式子表示去年的产量; (3)一个长方体包装盒的长和宽都是a cm ,高是h cm ,用式子表示它的体积; (4)用式子表示数n 的相反数.解:(1)现价是每千克0.8p 元. (2)去年的产量是mn 件.(3)由长方体的体积=长×宽×高,得这个长方体包装盒的体积是a·a·h cm 3,即a 2h cm 3. (4)数n 的相反数是-n.【点拨】 用字母表示数书写时“四注意”:(1)数和字母相乘或字母和字母相乘时,通常将乘号写作“·”或省略不写,数与数相乘时,乘号不能省略;数和字母相乘,在省略乘号时,要把数字写在字母的前面;带分数与字母相乘时,带分数要写成假分数的形式. (2)数和字母相除或字母和字母相除时,写成分数形式.(3)有单位时,若最后结果是积或商的形式,则式子后面直接写单位;若最后结果是和或差的形式,则把式子用括号括起来后再写单位名称.(4)±1乘字母时,1可以省略不写.【跟踪训练】1.今天中午气温为18 ℃,晚上下降了a ℃,则晚上气温为(18-a)℃. 2.一个两位数,十位数为m ,个位数为2,则这个两位数为10m +2. 例2 (教材P55例2补充例题)求下列图形中阴影部分即房间的建筑面积.解:房间的建筑面积等于四个长方形面积的和.根据图中标出的尺寸,可得出这所住宅的建筑面积是6x +2y +18. 【点拨】 用字母表示图形的面积的要点:把图形的面积转化为规则图形面积的和或差.【跟踪训练】3.如图,将长和宽分别是a ,b 的长方形纸片的四个角都剪去一个边长为x 的正方形.用含a ,b ,x 的代数式表示纸片剩余部分的面积为ab -4x 2.04 巩固训练1.下列式子中,符合书写格式的是(C)A .x +12克B .117×m 2n C.xy3D .s÷t2.某省参加课改实验区初中毕业学业考试的学生约有15万人,其中男生约有a 万人,则女生约有(B) A .(15+a)万人 B .(15-a)万人 C .15a 万人 D .(a -15)万人3.笔记本每本m 元,圆珠笔每支n 元,买x 本笔记本和y 支圆珠笔,共需(A) A .(mx +ny)元 B .(m +n)(x +y)元 C .(nx +my)元 D .mn(x +y)元 4.边长为x 的正方形的周长为4x .5.仓库里有一批水泥,运走5车,每车n 吨,还剩m 吨,这批水泥有(5n +m)吨. 6.用字母表示两个图形中阴影部分的面积.图1 图2解:(1)阴影部分的面积为ab -bx. (2)阴影部分的面积为R 2-14πR 2.05 课堂小结用字母表示数量关系:用一个(几个)字母表示问题中的某个(某些)量,然后用这个(这些)字母表示问题中的其他量.第2课时 单项式01 教学目标1.经历观察、思考、归纳一类式子的共性的过程,理解单项式的概念,能准确识别单项式.2.通过阅读教材,理解单项式的系数和次数的概念,能确定单项式的系数和次数. 02 预习反馈阅读教材P56~57,完成下列内容.1.由数与字母或字母与字母相乘组成的式子叫单项式.如:在式子1,a 2,a -b ,y ,15x ,1x 中,是单项式的有1,a 2,y ,15x .2.单项式中的数字因数叫单项式的系数.单项式中所有字母的指数的和叫单项式的次数. 如:(1)-a 的系数是-1,次数是1; (2)单项式-3x 2的系数是-3,次数是2; (3)2ab 3c 3的系数是23,次数是5.03 名校讲坛 知识点1 识别单项式例1 (教材补充例题)下列各式中,哪些是单项式? 25x ,-85a 3,3x 2y m ,a ,0.4x +3,a 2+b +7,x +y 2. 解:单项式有:25x ,-85a 3,a.【点拨】 识别单项式的要点:(1)单项式中不能含有加减运算,不能含有表示大小关系的符号,如=,≠,>等; (2)单项式的分母中不能含有字母.【跟踪训练1】 在式子3a ,x +1,-2,-b 3,0.72xy ,2π,3x -14中,单项式有(C)A .2个B .3个C .4个D .5个 知识点2 确定单项式的系数和次数 例2 写出下列各单项式的系数和次数:【点拨】 确定单项式的系数和次数的注意点:(1)单项式的系数:若一个单项式只含有字母因数,则它的系数是1或-1;若单项式是一个常数,则它的系数就是它本身.(2)单项式的次数是所有字母的指数的和,与系数的指数无关,如24x 2y 3的次数是5,而不是9. 【跟踪训练2】 若关于x ,y 的单项式23mx n y 2的系数是6,次数是5,则m =9,n =3.04 巩固训练1.下列代数式中,不是单项式的是(A)A .1xB .-12 C .t D .3a 2b 2.(《名校课堂》2.1第2课时习题)单项式2xy 3的次数是(D)A .1B .2C .3D .4 2.下列说法中,正确的是(D)A .0不是单项式B .-3abc 2的系数是-3C .-23x 2y 23的系数是-13 D.πab 2的次数是24.用单项式填空:(1)一辆汽车的速度是v 千米/时,行驶t 小时所走过的路程为vt 千米; (2)王洁同学买2本练习本花了n 元,那么买m 本练习本要mn2元;(3)边长为a 的正方体的表面积为6a 2,正方体的体积为a 3. 5.说出下列单项式的系数和次数: (1)a; (2)-6m 3n; (3)-35πx 2y.解:(1)a 的系数是1,次数是1. (2)-6m 3n 的系数是-6,次数是4.(3)-35πx 2y 的系数是-35π,次数是3.6.列代数式,如果是单项式,请分别指出它们的系数和次数:(1)某中学组织七年级学生春游,有m 名师生租用45座的大客车若干辆,且刚好坐满,那么租用大客车的辆数是多少?(2)一个长方体的长和宽都是a ,高是h ,它的体积是多少? 解:(1)m 45,它是单项式,系数是145,次数是1.(2)a 2h ,它是单项式,系数是1,次数是3. 05 课堂小结 1.字母表示数. 2.单项式的概念.3.单项式的系数及次数的概念.第3课时 多项式及整式01 教学目标1.经历观察、思考、归纳一类式子的共性的过程,理解多项式、整式的概念,能准确识别多项式、整式. 2.通过阅读教材,交流讨论,理解多项式的项、常数项和次数. 02 预习反馈阅读教材P57~58,完成下列内容.1.几个单项式的和叫做多项式,每个单项式叫做多项式的项,次数最高项的次数叫做多项式的次数,不含字母的项叫做多项式的常数项.如:多项式3x 2y -4xy -1由单项式3x 2y ,-4xy ,-1组成,它是三次三项式,其中二次项是-4xy ,最高次项的系数为3,常数项是-1. 2.单项式和多项式统称为整式. 03 名校讲坛知识点1 识别整式、单项式及多项式例1 (教材补充例题)下列式子中,哪些是整式?哪些是单项式?哪些是多项式? a ,ax 2+bx +c ,-5,π,x -y 2,2xx -1.解:单项式:a ,-5,π. 多项式:ax 2+bx +c ,x -y2.整式:a ,ax 2+bx +c ,-5,π,x -y2.【点拨】 (1)单项式不含加减运算,多项式必含加减运算.(2)多项式是几个单项式的和,单项式和多项式都是整式.【跟踪训练】1.把下列各式填在相应的集合里.①0.②x 2;③-x 2-2x +5;④94;⑤xy.⑥8+b7;⑦-5;⑧x +y 5.整式:{①②③④⑤⑥⑦⑧,…} 多项式:{③⑥⑧,…} 单项式:{①②④⑤⑦,…} 知识点2 确定多项式的项和次数例2 (教材补充例题)指出下列多项式的次数与项: (1)23xy -14; (2)a 2+2a 2b +ab 2-b 2; (3)2m 3n 3-3m 2n 2+53mn.解:(1)2次,23xy ,-14.(2)3次,a 2,2a 2b ,ab 2,-b 2. (3)6次,2m 3n 3,-3m 2n 2,53mn.【点拨】 确定多项式的项和次数“六注意”: (1)多项式的各项应包括它前面的符号;(2)多项式没有“系数”这一概念,但每一项均有系数,每一项的系数应包括它前面的符号; (3)次数最高项的次数就是多项式的次数; (4)一个多项式的最高次项可以不唯一;(5)区分多项式的次数与单项式的次数,不能误认为多项式的次数是各个单项式的次数之和;(6)多项式的“项”与“项数”是不同的概念,“项”是指组成多项式的单项式,包括它前面的符号,“项数”是指项的个数.例3 (教材补充例题)若多项式-72x 2y 2n +1z +34x 2y +4是八次三项式,则n =2.【思路点拨】 由题意可知,多项式的最高次项为-72x 2y 2n +1z ,所以2+2n +1+1=8.解得n =2.【跟踪训练】2.指出下列多项式的项和次数. (1)a 3-a 2b +ab 2-b 3; (2)3n 4-2n 2+1.解:(1)a 3,-a 2b ,ab 2,-b 3,3次.(2)3n 4,-2n 2,1,4次. 3.指出下列多项式是几次几项式: (1)x 3-x +1; (2)x 3-2x 2y 2+3y 2.解:(1)三次三项式.(2)四次三项式. 知识点3 多项式的应用例4 如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积(π取3.14).解:外圆的面积减去内圆的面积就是圆环的面积,所以圆环的面积是πR 2-πr 2. 当R =15 cm ,r =10 cm 时,圆环的面积(单位:cm)是 πR 2-πr 2=3.14×152-3.14×102 =392.5.答:这个圆环的面积是392.5 cm 2. 【跟踪训练】4.a ,b 分别表示梯形的上底和下底,h 表示梯形的高,则梯形的面积S =12(a +b)h ,当a =2 cm ,b =4 cm ,h =5 cm时,S =15__cm 2. 04 巩固训练1.下列各式中,不属于整式的是(D)A .abB .x 3-2yC .-a 3 D.a b2.(《名校课堂》2.1第3课时习题)多项式3x 2-2x -1的各项分别是(D)A .3x 2,2x ,1B .3x 2,-2x ,1C .-3x 2,2x ,-1D .3x 2,-2x ,-1 3.多项式2a 2b -ab 2-ab 的项数及次数分别是(A)A .3,3B .3,2C .2,3D .2,2 4.如果x n +x 2-1是五次多项式,那么n 的值是(C)A .3B .4C .5D .65.多项式3x 4+5x 3y +8-2x 2y 4-10xy ,次数最高的项是-2x 2y 4;常数项是8;它的次数是6.6.一个关于x 的多项式,它的一次项系数是1,二次项系数和常数项都是-13,则这个多项式是-13x 2+x -13.7.如图,用式子表示图中阴影部分的面积.当x =4时,求阴影部分的面积(π取3.14).解:图中阴影部分的面积为x 2-π4x 2. 当x =4时,π取3.14,阴影部分的面积为3.44.05 课堂小结 1.多项式的概念.2.项、常数项、多项式的次数.2.2 整式的加减 第1课时 合并同类项01 教学目标1.了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项. 2.能先合并同类项化简后求值. 02 预习反馈阅读教材P62~65,完成下列内容.1.把多项式中的同类项合并成一项叫做合并同类项. 如:判断下列各题中的两个项是否是同类项. (1)4与-12;(是)(2)32与a 2;(不是) (3)2x 与2x ;(不是)(4)3mn 与3mnp ;(不是) (5)2πr 与-3x ;(不是) (6)3a 2b 与3ab 2.(不是)2.合并同类项的法则:系数相加,字母和字母指数不变. 如:合并同类项:-3a +2ab -4ab +2a =-a -2ab . 03 名校讲坛 知识点1 同类项的概念例1 (教材补充例题)下列各组中的两个单项式是同类型的是(C) A .3x 2y 与2xy 2 B .a 2b 与12a 2c C.13x 4y 与12yx 4 D .a 2与b 2【点拨】 识别同类项的方法:一看字母是否相同,二看相同字母的指数是否相同,只有这两者都相同时,它们才是同类项,特别是,几个常数也是同类项.【跟踪训练1】 若2x 2y n 与-3x m y 4是同类项,则m =2,n =4. 知识点2 合并同类项例2 合并同类项:(1)4a 2+3b 2+2ab -4a 2-3b 2; (2)3x -2x 2+5+3x 2-2x -5; (3)a 3+a 2b +ab 2-a 2b -ab 2-b 3; (4)6a 2-5b 2+2ab +5b 2-6a 2. 解:(1)2ab.(2)x 2+x.(3)a 3-b 3.(4)2ab. 【点拨】 合并同类项的“三注意”: (1)合并同类项时,不要漏掉系数的符号;(2)若一个多项式中含有若干个不同的同类项,则可用交换律、结合律和分配律将同类项进行合并; (3)不是同类项的不能合并,不能合并的项在运算的每一步中都要写上,直至化简的最后结果. 【跟踪训练2】 合并同类项: (1)3x 2-2xy +y 2-x 2+2xy ; (2)2a 2b -3a 2b +12a 2b ;(3)a 3-a 2b +ab 2+a 2b -ab 2+b 3; (4)4x 2-8x +5-3x 2+6x -2.解:(1)2x 2+y 2.(2)-12a 2b.(3)a 3+b 3.(4)x 2-2x +3.知识点3 化简求值例3 求多项式5x 2+4x -6x 2-x +2x 2-3x -1的值,其中x =-3. 解:原式=x 2-1.当x =-3时,原式=8. 【点拨】 多项式化简求值的“三个步骤”:“一化、二代、三求值”,即(1)化简所给多项式,使其不再含有同类项;(2)将所给的值代入化简后的式子,若是负数,则需添加括号;(3)计算第(2)步所得的算式.【跟踪训练3】 求多项式3a +abc -13c 2-3a +13c 2的值,其中a =-16,b =2,c =-3.解:3a +abc -13c 2-3a +13c 2=(3-3)a +abc +(-13+13)c 2=abc.当a =-16,b =2,c =-3时,原式=(-16)×2×(-3)=1.知识点4 合并同类项的应用例4 (1)水库水位第一天连续下降了a h ,每小时平均下降2 cm ;第二天连续上升了a h ,每小时平均上升0.5 cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,上升的水位变化量记为正.第一天水位的变化量是-2a cm ,第二天水位的变化量是0.5a cm.两天水位的总变化量(单位:cm)是 -2a +0.5a =(-2+0.5)a =-1.5a.这两天水位总的变化情况为下降了1.5a cm. (2)把进货的数量记为正,售出的数量记为负. 进货后这个商店共有大米(单位:kg) 5x -3x +4x =(5-3+4)x =6x.【跟踪训练4】 国家规定初中每班的标准人数为a 人,某中学七年级共有六个班,各班人数情况如下表用含a 的代数式表示该中学七年级学生总人数为(6a +5)人.04 巩固训练1.在下列单项式中,与2xy 是同类项的是(C)A .2x 2y 2B .3yC .xyD .4x 3.计算2m 2n -3m 2n 的结果为(C)A .-1B .-5m 2nC .-m 2nD .不能合并 3.下列各组中的两个单项式能合并的是(D) A .4和4x B .3x 2y 3和-y 2x 3 C .2ab 2和100ab 2c D .m 和m24.当a =-5时,多项式a 2+2a -2a 2-a +a 2-1的值为(B)A .29B .-6C .14D .24 5.已知3x 5y 2和-2x 3m y n 是同类项,则m =53,n =2.6.合并下列各式的同类项:(1)15x +4x -10x; (2)-p 2-p 2-p 2;(3)2a+6b-7a-b; (4)5x2-7xy+3x2+6xy-4x2.解:(1)原式=9x.(2)原式=-3p2.(3)原式=-5a+5b.(4)原式=4x2-xy.7.求多项式7a2b-4a2b+5ab2-4a2b+6ab2的值,其中a=-1,b=2.解:原式=-a2b+11ab2.当a=-1,b=2时,原式=-46.05课堂小结1.同类项:(1)所含字母相同;(2)相同字母的指数也相同.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项法则.第2课时去括号01教学目标1.探究去括号法则,并且利用去括号法则将整式化简.2.发现去括号时的符号变化的规律,归纳出去括号法则.02预习反馈阅读教材P65~67,完成下列内容.1.去括号时,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2.下列去括号过程是否正确?若不正确,请改正.(1)a-(-b+c-d)=a+b+c-d;(不正确)a+b-c+d;(2)a+(b-c-d)=a+b+c+d;(不正确)a+b-c-d;(3)-(a-b)+(c-d)=-a-b+c-d.(不正确)-a+b+c-d.03名校讲坛知识点1先去括号,再合并同类项例1去括号,再合并同类项:(1)x-(3x-2)+(2x+3);(2)(3a2+a-5)-(4-a+7a2);(3)(2m-3)+m-(3m-2);(4)3(4x-2y)-3(-y+8x).解:(1) 5.(2)-4a2+2a-9.(3)-1.(4)-12x-3y.【点拨】去括号的三种不同情况:1.+():括号前是正号时,去掉括号及正号后,括号里面各项的符号均不变.(2)-():括号前面是负号时,去掉括号及负号后,括号里面各项的符号都要改变.注意:“都”即每一项的符号都要改变.(3)-n():括号前面有因数时,根据分配律去括号,即将括号前面的数与括号里面各项系数分别相乘.注意:每项系数都包括其前面的符号.【跟踪训练1】去括号,并合并同类项:(1)-(5m+n)-7(m-3n);(2)-2(xy-3y2)-[2y2-(5xy+x2)+2xy].解:(1)-12m+20n.(2)xy+4y2+x2.知识点2利用去括号解决实际问题例2两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2 h后两船相距多远?(2)2 h后甲船比乙船多航行多少千米?解:顺水航速=船速+水速=(50+a)km/h,逆水航速=船速-水速=(50-a)km/h.(1)2 h后两船相距(单位:km)2(50+a)+2(50-a)=100+2a+100-2a=200.(2)2 h后甲船比乙船多航行(单位:km)2(50+a)-2(50-a)=100+2a-100+2a=4a.【跟踪训练2】船在静水中的速度为a km/h,水速为10 km/h,船顺流航行5 h的行程比逆流航行3 h的行程多(80+2a)__km.04巩固训练1.-(x-2y+3z)去括号后的结果为(B)A.x-2y+3z B.-x+2y-3zC.x+2y-3z D.-x+2y+3z2.化简5(2x-3)+4(3-2x)的结果为(A)A.2x-3 B.2x+9 C.8x-3 D.18x-33.下列各式中,去括号正确的是(D)A.x2-(x-y+2z)=x2-x+y+2zB .x -(-2x +3y -1)=x +2x +3y +1C .3x +2(x -2y +1)=3x -2x -2y -2D .-(x -2)-2(x 2+2)=-x +2-2x 2-44.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树(4x +6)棵.5.化简:(1)5a -(2a -4b); (2)2x 2+3(2x -x 2);(3)6a 2-4ab -4(2a 2+12ab); (4)-3(2x 2-xy)+4(x 2+xy -6).解:(1)原式=3a +4b.(2)原式=-x 2+6x.(3)原式=-2a 2-6ab.(4)原式=-2x 2+7xy -24.6.先化简,再求值:(4a 2-3a)-(2a 2+a -1)+(2-a 2)+4a ,其中a =-2.解:原式=a 2+3.当a =-2时,原式=(-2)2+3=7.05 课堂小结去括号法则.第3课时 整式的加减01 教学目标1.经历列式、去括号、合并同类项,代入求值等解题过程,能熟练地进行整式的加减运算.2.经历用整式的加减解决简单实际问题的过程,掌握整式加减运算的应用.02 预习反馈阅读教材P67~69,完成下列内容.1.整式加减混合运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.2.化简下列各题:(1)-3(2x -y)-2(4x +12y)+2 018; (2)-[2m -3(m -n +1)-2]-1.解:(1)-14x +2y +2 018.(2)m -3n +4.03 名校讲坛知识点1 整式的加减与化简求值例1 (教材补充例题)求多项式-x 3-2x 2+3x -1与-2x 2+3x -2的差.解:-x 3-2x 2+3x -1-(-2x 2+3x -2)=-x 3-2x 2+3x -1+2x 2-3x +2=-x 3+1.【点拨】 整式加减运算的注意点:(1)计算多项式的和与差是整个多项式参与和差运算,所以要用括号将多项式括起来,然后再去括号、合并同类项;(2)去括号时,若括号前面是“-”号,把括号和前面的“-”号去掉,括号里的各项要改变符号.例2 (教材补充例题)已知A =12x ,B =x -13y 2,C =-32x +13y 2,(x -2)2+|y -23|=0,求2A -B +C 的值. 解:2A -B +C =2·12x -(x -13y 2)-32x +13y 2=x -x +13y 2-32x +13y 2=-32x +23y 2. 因为(x -2)2+|y -23|=0, 所以x =2,y =23. 所以原式=-32×2+23×(23)2 =-3+827=-21927. 【点拨】 整式化简求值的“三个步骤”:一化:去括号,合并同类项;二代:将字母的值代入化简后的式子;三计算:按指定的运算顺序进行计算.【跟踪训练1】 在解“当x =-2,y =23时,求12x -2(x -13y 2)+(-32x +13y 2)的值”时,甲同学不小心把“y =23”写成“y =-23”,但计算结果也是正确的,这是为什么? 解:原式=12x -2x +23y 2-32x +13y 2=-3x +y 2. 因为数的平方的结果是相同的,所以代入互为相反数的结果值相等.知识点2 整式加减的应用【例3】 做大小两个长方体的纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?解:小纸盒的表面积是(2ab +2bc +2ca)cm 2,大纸盒的表面积是(6ab +8bc +6ca)cm 2.(1)做这两个纸盒共用料(单位:cm 2)(2ab+2bc+2ca)+(6ab+8bc+6ca)=2ab+2bc+2ca+6ab+8bc+6ca=8ab+10bc+8ca.(2)做大纸盒比做小纸盒多用料(单位:cm2)(6ab+8bc+6ca)-(2ab+2bc+2ca)=6ab+8bc+6ca-2ab-2bc-2ca=4ab+6bc+4ca.【点拨】解决整式加减运算应用题的“三步法”:列式→根据实际问题的题意列出算式↓计算→运用整式的加减法则进行计算↓结论→计算出最后需要的结果【跟踪训练2】某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?解:B小组学生人数为3(x+2y)名,C小组学生人数为[(x+2y)+3]名.所以A,B,C三个课外活动小组人数共有(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3(名).答:A,B,C三个课外活动小组共有(5x+10y+3)名学生.04巩固训练1.设M=2a-3b,N=-2a-3b,则M-N等于(B)A.4a-6b B.4aC.-6b D.4a+6b2.当x=2时,(x2-x)-2(x2-x-1)的值等于(D)A.4 B.-4 C.1 D.03.减去-2x等于-3x2+2x+1的多项式是(C)A.-3x2+4x+1 B.3x2-4x-1C.-3x2+1 D.3x2-14.一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是(B)A.12a+16b B.6a+8b C.3a+8b D.6a+4b5.一个十位数字是a,个位数字是b的两位数可表示为10a+b,交换这个两位数的十位数字和个位数字,又得一个新的两位数,新数与原数的差是9b-9a.6.计算:(1)3a+2-(-4a);(2)2(x2+3)-(5-x2);(3)(ab-3a2)-2b2-5ab-(a2-2ab);(4)2(3b2-a3b)-3(2b2-a2b-a3b)-4a2b.解:(1)原式=7a+2.(2)原式=3x2+1.(3)原式=-4a2-2b2-2ab.(4)原式=a3b-a2b. 05课堂小结通过本节课的学习,你有哪些收获?。

整式的加减数学教案优秀5篇

整式的加减数学教案优秀5篇

整式的加减数学教案优秀5篇《整式的加减》教学设计篇一教学目标:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

过程与方法:通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

分层次教学,讲授、练习相结合。

情感、态度、价值观:培养学生观察、归纳、概括及运算能力教学重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

教学难点:单项式概念的建立。

教学过程:一、复习引入:1、列代数式(1)若正方形的边长为a,则正方形的面积是;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方形棱长,则正方形的体积是(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。

(让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。

)2、请学生说出所列代数式的意义。

3、请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。

然后教师补充,单独一个数或一个字母也是单项式,如a,5。

2.练习:判断下列各代数式哪些是单项式?(1)x?12;(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5。

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)3.单项式系数和次数:直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。

2.2整式的加减---数学活动

2.2整式的加减---数学活动
小棒呢
教师打图片:
2.当图形中含有2017个三角形时,需要多少根小棒
呢?
2.教师发现优秀作品及
时展示。
3.教师及时给予鼓励加

同学们准备好我们熟悉的月历了吗?
参照课本73页月历中圈出的阴影方框,思考下列问题:(教师投影图片和问题)
1.带阴影的方框中9个数的
和与方框正中心的数有什么关系?
2.如果将带阴影的方框移至
抢答式学生积极性很高,更激发了他们的求知欲。
意在提高学生独立分析问题的能力。老师要及时发现差生,予以辅导。
四、课堂小结(师生完成)5分钟
1.我们如何发现规律?
2.本节课用了那些知识来解决?
3.我们要有合作探究意识,要大胆创新。
1.由特殊到一般,个体到整体。
2.用到整式加减知识。
3.团结合作。
引导学生有独立思考,合作创新的精神。
表达式:3+2(n-1)= 2n+1
(2)从第一个图形起,以1根小棒为基础,每增加1个三角三角形就增加2根小棒。
三角形个数:1、2、3、4、…n
小棒根数:1+2、1+2+2、1+2+2+2、1+2+2+2+2、…1+2n
表达式:2n+1
(3)小棒根数与三角形的个数的对应关系得:
1、2、3、4、…n
3、5、7、9、…2n+1
五、课后作业
1.课本72页活动1中的(2)。
2.72页数学活动2。
板书设计
2.2整式的加减—数学活动
---找规律
一、用字母表示数量关系。
二、活动(1)的表达式:2n+1

人教版第二章 《整式的加减》单元教学设计

人教版第二章 《整式的加减》单元教学设计

人教版第二章《整式的加减》单元教学设计掌握单项式、多项式、整式的概念及其加减法则,能够运用化归思想合并同类项、去括号等方法解决实际问题。

2.过程与方法:培养学生的逻辑思维和分析问题的能力,提高学生的数学素养和解决问题的能力。

3.情感态度:通过合作研究、探究式研究等方式,激发学生的研究兴趣,培养学生的自主研究能力和团队合作精神。

二)本章重难点:1.单项式、多项式、整式的概念及其区别。

2.同类项的概念及合并同类项的方法。

3.去括号法则及其应用。

4.整式的加减法则及应用。

三)关键环节:1.问题导入环节:通过生活中的实际问题引入本章知识,激发学生的研究兴趣。

2.合作探究环节:通过小组合作探究同类项的概念及合并方法,培养学生的团队合作精神和分析问题的能力。

3.巩固提高环节:通过练、讨论、演示等方式巩固本章知识,提高学生的数学素养和解决问题的能力。

改写:本单元教学设计采用PowerPoint软件为制作平台,利用多媒体手段,以问题为主线,活动为载体,根据课标要求,从学生已有的生活经验和认知基础出发,让学生积极参与研究。

通过“设计问题化,问题活动化,活动练化,练要点化,要点目标化,目标课标化”的要求,将教学过程设计为有一定梯次的递进式活动序列。

本章内容属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域,是在学生研究了有理数的基础上,引入了用字母表示有理数,实现了从具体的数到比较抽象的整式的过渡。

本章将单项式、多项式和整式及相关概念引入,并以“所含字母及相同字母指数”是否相同为标准建构同类项的概念,类比小学已有的“同单位量相加减单位不变”和前一章研究“相反数的概念”知识经验探究合并同类项、去括号法则等。

最后将这些知识应用于本章的重点——整式的加减,知识体系井然有序、层层深入、结构分明、重点突出。

材把整式的乘除运算,后移到八年级的上册的第15章中去阐述,这样处理比较符合初一学生的年龄特征和心理特点,达到了有效地降低教学难度这一目的,这样既有利于学生接受和掌握知识,又不失整个知识结构体系的完整性。

第二章-整式的加减-数学活动-新人教版七年级数学上册精品PPT课件

第二章-整式的加减-数学活动-新人教版七年级数学上册精品PPT课件
学习重点: 应用整式表示实际问题中的数量关系,掌握数学活动中从特
殊到一般ห้องสมุดไป่ตู้探究方法.
数学活动1 如图1所示,用火柴棍拼成一排由三角形
组成的图形,如果图形中含有个三角形,需要 多少根火柴棍?
图1
数学活动1
图1 每增加一个三角形,火柴棍根数增加2. 如果图形中含有1个三角形,需 3 根火柴棍. 如果图形中含有2个三角形,需(3+2)根火柴棍. 如果图形中含有3个三角形,需(3+2+2)根火柴棍. 如果图形中含有n个三角形,需3+2(n-1)根火柴棍. 应用整式的加减化简可得:3+2( n-1) 2 1
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
数学活动1
小结:
图1
1.基本步骤:
提出问题→动手实践→寻求规律→归纳总结
2.探究规律:特殊→ 一般 → 特殊
3.数学知识:用字母表示数、整式的加减 4.重点关注: 三角形的个数与火柴棍的根数之间的对应关系
数学活动2 图2是某月的月历.
图2 (1)带阴影的方框中的9个数之和与方框正中心的 数有什么关系?
图3 图3中带阴影的方框中9个数之和为144, 是正中心数16的9倍.
数学活动2
(3)不改变带阴影的方框的大小,将方框移动几个位置
试一试,你能得出什么结论?你能证明这个结论吗?
12 3456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2.2整式的加减:去括号教案

2.2整式的加减:去括号教案
2.通过解决实际问题时运用去括号法则,培养学生的模型思想,提升数学应用能力。
3.在分析去括号过程中可能出现的错误时,发展学生的逻辑思维和批判性思维。
4.引导学生合作交流,培养团队协作能力和表达交流能力。
5.激发学生主动探索和解决问题的兴趣,培养数学学习的积极情感和自主学习能力。
这些目标与新教材的要求相符,注重培养学生的学科素养,提高其综合素质。
举例:对于表达式2x + (3x - 4y + 5) - (x - 3y),先去括号得到2x + 3x - 4y + 5 - x + 3y,再合并同类项得到4x - y + 5。
(3)实际问题中的去括号应用:通过实际问题,让学生学会运用去括号法则解决具体问题,体会数学的应用价值。
举例:计算长方形面积时,长为(x + 3)厘米,宽为(x - 2)厘米,引导学生先去括号得到面积表达式x^2 + x - 6。
最后,我认识到在整式的加减中去括号这一部分,学生们容易出现的错误主要集中在符号处理、分配律运用和括号嵌套等方面。为了帮助学生更好地克服这些困难,我计划在接下来的课程中增加一些针对性的练习,并结合学生的实际水平,适当调整教学进度。
3.成果展示:每个小组将向全班展示他们的0分钟)
1.讨论主题:学生将围绕“去括号在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.通过实例讲解去括号的方法,包括分配律的应用。
3.练习不同类型的去括号题目,让学生掌握解题技巧。
4.分析和讨论在去括号过程中可能出现的错误,提高学生的运算准确性。

人教版数学七年级上册 第二章 整式的加减 数学活动 找规律及月历中的数学问题 同步练习(无答案)

人教版数学七年级上册 第二章  整式的加减  数学活动 找规律及月历中的数学问题 同步练习(无答案)

第二章 整式的加减 数学活动 找规律一、数与式的规律例1.按照如下所给数的规律,分别写出第n 个数:(1)1,3,5,7,9,…, ; (2)2,4,6,8,10,…, ; (3)4,7,10,13,16,…, ;(4)2,4,8,16,32,…, ; (5)11111,,,,,...,24816; (6)2,6,18,54,…, ;(7)2,4,10,28,…, ; (8)1,4,9,16,25,…, ;例2.(1) 观察下列单项式:0,23x ,38x -,415x ,524x -,⋯按此规律第10个单项式为A .1099xB .1099x -C .10100xD .10100x -(2)一组按规律排列的式子:()25811361224 0b b b b ab a a a a--≠,,,,,其中第7个式子是 ,第n 个式子是 (n 为正整数).例3.观察“田”字中各数之间的关系:则c b d a --+的值为A .52B .52-C .51D .51-例4.观察下列等式:90+1=1,91+2=11,92+3=21,93+4=31⨯⨯⨯⨯,根据以上规律得出92019+2020⨯的结果是( )A. 20181B. 20191C. 20201D. 20211例5.观察下列各式:222222151(11)1005225252(21)1005625353(31)10051225=⨯+⨯+==⨯+⨯+==⨯+⨯+=依此规律,第n 个等式(n 为正整数)为 . 例6.观察下列等式,()()()11231336211234144102112345155152++=⨯+⨯=+++=⨯+⨯=++++=⨯+⨯=根据你所发现的规律,写出:123(1)n n ++++-+= .例7.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.…………12, 3, 45, 6, 7, 8, 910, 11, 12, 13, 14, 15, 1617, 18, 19, 20, 21, 22, 23, 24, 2526, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36… … … … … … … …(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;第10行从左边第9个数是;(2)用含n的代数式表示:第n行的第一个数是,最后一个数是,第n行共有个数;(3)求第n行各数之和.二、图形规律例1.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有个.例2.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到条折痕.如果对折n次,可以得到条折痕.例3. 如图,下面是按照一定规律画出的一行“树形图”,经观察可以发现:图A2比图A1多出了2个“树枝”,图A3比图A2多出了4个“树枝”,图A4 比图A3多出了8个“树枝”,…,照此规律,则图A6比图A2多出个“树枝”.例4.如图所示,小王玩游戏:一张纸片,第一次将其撕成四小片,手中共有4张纸片,以后每次都将其中一片撕成更小的四片.如此进行下去,当小王撕到第n次时,手中共有S张纸片.根据上述信息回答下列问题:(1)用含n的代数式表示S.(2)当小王撕到第几次时,他手中共有76张纸片?(3)小王说:“我撕了若干次后,手中的纸片有2012张”.小王说得对不对?若不对,请说明理由;若对,请求出小王撕了多少次.三、循环规律例1. 观察下列等式:177=,2749=,37343=,472401=,5716807=,67117649=,⋯, 那么:12320197777+++⋯+的末位数字是( )A .9B .7C .6D .0例2.如图,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第()例3.有这样一组数据n a a a a a ..........4321、、、,满足以下规律: 1342312111..........11111121--=-=-=-==n n a a a a a a a a a ;;;(n ≥2且n 为正整数) 则2020a 的值为 (结果用数字表示)例4. 如图,将全体自然数按图中的方式进行排列:按照这样的排列规律,2020应位于( ) A. A 位 B. B 位 C. C 位 D.D 位四、借助运算解释规律和现象例1.有一种游戏规则是:你想一个数,乘3,加上9,除以3,最后减去你所想的数,我就知道结果,那么结果是( )A.1B.2C.3D.4例2. 破译密码“L dp d vwxghqw ”,现在给你一把破译它的“钥匙”:x -3,即把26个英文字母按顺序排成一排,x -3代表“把一个字母换成字母表中从它向左移动3位的字母”,那么“L dp d vwxghqw ”的意思是 (填英文、中文均可).例3.小明在研究数学问题时发现一个有趣的现象:请你用不同的三位数再做做,发现什么有趣的现象?用你所学过的知识解释.例4.点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位长度,再向右移动2个单位长度;第二次先向左移动3个单位长度,再向右移动4个单位长度;第三次先向左移动5个单位长度,再向右移动6个单位长度……(1)第一次移动后这个点在数轴上表示的数为;(2)第二次移动后这个点在数轴上表示的数为;(3)第五次移动后这个点在数轴上表示的数为;(4)第n次移动后这个点在数轴上表示的数为;(5)若第m次移动后这个点在数轴上表示的数为56,则m的值为.数学活动月历中的数学问题日历表中的规律例1.如图是某月的日历,任意画出一竖列上相邻的三个数,设最小的一个数为a,则这三个数的和为.例2.王涵同学在某月的日历上圈出了三个数a,b,c,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是()例3.如图①,观察某年1月份的日历,在日历上用正方形任意圈画出3×3个数.(1)如果圈出来的9个数的和是153,求圈出来的分别是哪些数?(2)圈出来的9个数的和能是175吗?为什么?(3)如果将正方形框改为如图①所示的十字形框,且圈出的五个数之和为75,求圈出的最中间的数.日一二三四五六1 2 3 4 5 67 8 9 10 11 12 1314 15 16 17 18 19 2021 22 23 24 25 26 27例4 如图是某月的月历,是否存在像灰色框中的4个数的和为26?能否为60?能否为94?如果能请求出这样的4个数,若不能请说明理由。

初中数学人教七年级上册第二章 整式的加减去括号教案

初中数学人教七年级上册第二章 整式的加减去括号教案

整式的加减——去括号教学设计
教学目标:
1、知识目标:1)学生经过观察、合作交流、体会去括号的必要性,讨论总结出去括号的法则,并较为牢固地掌握。

2)能正确且较为熟练地运用去括号法则化简代数式。

2、能力目标:1)培养学生的观察、分析、归纳能力。

2)锻炼学生的语言概括能力和表达能力。

3)培养学生的知识分解、知识整合能力。

3、情感目标:1)让学生感受知识的产生、发展及形成过程,培养其勇于探索的精神。

2)通过学生间的相互交流、沟通,培养他们的协作意识。

教学重点:去括号法则及其运用。

教学难点:括号前面是“—”号,去括号时,应如何处理。

教学方法:引导探索法
课型:新授课
教具:课件、小棒
课时:一课时
设计理念:1、本节课借助多媒体及动画演示,设置问题情境,通过学生们动脑、动口、让他们主动参与到教学活动中,不仅培养了学生数学直觉能力,还启发了学生的探索灵感,从中获得数学的“思想、方法、能力、素质”,同时也获取对学习数学的积极情感。

2、学生为主体,教师为主导
在课堂教学中,教师的责任是为学生的发展创造一个和谐、开放的思考、讨论、探讨的气氛,要为他们创造“海阔凭鱼跃、天高任鸟飞”的课堂境界,学生从中获得知识、方法、科学精神。

最大限度地体现学生的主体地位。

整式加减教学设计

整式加减教学设计

整式加减教学设计初中七年级数学《整式的加减》教案大全篇一设计理念建立平等合作,互相尊重的师生关系,创设一种师生交流的互动、互学的学习氛围。

重视学生的学习进程,关注个体差异,让不同的人在数学学习中得到不同的发挥,利用课件,帮助学生理解和学习数学。

通过观察、分析、动手、动脑等活动,让学生在“做中学”、“学中做”进而达到“我要学”。

教学内容本节课是沪科版义务教育课程实验教科书七年级数学上册第二章第三节《2.3整式的加减——1.合并同类项》(第71~73页)。

学情分析七年级年龄段的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,因而在教学素材的选取与呈现方式以及学习活动的安排上要设置学生感兴趣的并且具有挑战性的内容,让学生感受到数学来源于生活又回归生活实际,无形中产生浓厚的学习兴趣和探索热情。

学生主要通过对教学中生活情景的分析,感受数学与生活的密切联系,通过对几个问题的分析、探讨、相互交流,用类比、迁移的方法,提高对课本知识的运用能力,从而认识归纳合并同类项的法则,在练习中巩固和熟悉合并同类项的技能。

最后,通过回顾与反思以及谈感受谈收获,把所学知识升华成理性认识。

教材分析合并同类项是一堂探究活动课,是在结合学生已有的生活经验,引入字母表示数、继而介绍了代数式,以及代数式求值的基础上对同类项的定义,同类项如何进行合并的探索、研究。

合并同类项是本章的一个知识重点,其法则的应用,是以后学习解方程、整式的运算、解不等式的基础。

因此学好本节知识是学好后续知识的主要纽带,同时在合并同类项过程中不断运用数的运算,又合并同类项是建立在数的运算律的基础上,让学生体会到认识事物是一个由特殊到一般,又由一般到特殊的过程,从而培养学生初步的辩证唯物主义思想。

教学目标:1、基础知识目标:(1)在具体的情景中理解同类项的定义,并能识别同类项。

(2)在具体情景中探索合并同类项的法则,并能熟练进行合并同类项的运算。

人教版七年级数学上册整式的加减数学活动《月历中的数学》教学设计

人教版七年级数学上册整式的加减数学活动《月历中的数学》教学设计

《月历中的数学》活动课的教学设计一、教材分析本节课是人教版七年级上册第二章《整式的加减》中的数学活动3—月历中的数学。

用字母表示数,并探索规律是本章的重要内容,也是考查的难点内容。

在此之前,学生已经学习了有理数的基本运算、整式及整式的加减等相关知识,为本节活动课奠定了基础。

探究月历中的数学这节活动课给学生提供了一个创新思维空间,示范了一个探究规律的基本流程,为后续学习“数阵”、其他找规律的数学问题提供了一个研究方向和方法,是培养学生数学思维能力的有效载体。

二、学情分析七年级的学生学习积极性高,好奇心强,但学习数学的方法、学习习惯,以及个人数学素养却各有不同。

学生已经学习了有理数、整式的加减等相关基础知识,已经具备了初步的数学符号表达能力,知道用字母可以表示数字。

但对用字母表示数字的优越性与必要性还不是很理解,只是处于一个懵懂的模仿阶段。

对数学是一门严谨的科学的认识不够,所积累的数学经验也不够丰富,等……,都是本节活动课需要提前考虑的。

三、教学目标分析(1)知识技能目标:1、会用字母表示月历中的数字,并感受用字母表示数字的优越性与必要性;2、学会用数学符号语言表述月历中的数学发现与问题;3、通过用字母来验证规律的过程,进一步巩固整式的加减法则;(2)数学思考目标:1、在自主发现探究月历中的规律活动中,学会用数学的思维思考问题;2、经历从月历中探究数学的过程,感受数学来源于生活,并会用数学的眼光观察世界;3、通过对月历中的数学探究过程,培养学生的观察、计算、分析、抽象、归纳的能力,体验规律的产生过程,积累数学活动经验;(3)问题解决目标:1、经历对月历中的数字观察、计算,发现月历中数字是含有规律的,并提出猜想;2、在对月历中规律进行验证的过程中,学会用数学的手段去处理问题;3、应用月历中数学规律进行游戏和解决相关的数学问题;(4)情感态度目标:1、在自主探究月历中数学的过程中,鼓励学生从多角度观察、思考,并适时地表扬和引导,让学生获得积极参与活动的情感体验,从而增强学习数学的兴趣;2、经历用数学规律玩游戏和解决问题,体会数学的应用价值,让学生乐于学习;3、在探究月历中的数学规律时,通过动手操作,互相交流,分享经验,提高学生交流合作的意识,培养学生的探究精神;四、教学重难点《数学课程标准》指出“积累数学活动经验,培养学生应用意识和创新意识是数学课程的重要目标”。

整式的加减数学活动教案

整式的加减数学活动教案

数学《整式的加减》活动教案一、教学目标:1、培养幼儿学习对整式的加减的课程中涉及到的知识的和认识,体验课程的情境,并有感情的朗诵。

2、利用图片让幼儿理解整式的加减故事内容,通过这一堂课程让幼儿了解相关知识。

3、从整式的加减这堂课的讲解中,引导幼儿对课程知识的思考,培养幼儿养成良好的听读习惯,提高幼儿识字、语言表达能力。

4、领会故事蕴含的寓意和哲理,知道课程所传达的的乐趣。

二、教学准备:教学CD、幼儿用书、教学卡片和教学视频、教学手工艺品、幼儿认读。

三、教学过程:1、引入好奇,请幼儿积极表达之前对整式的加减的理解2、故事导入:“小朋友之前了解过整式的加减吗?”、“今天,老师给大家讲一讲(整式的加减的故事。

”《整式的加减》讲的是一个什么样的故事呢?《整式的加减》里你说了什么,为什么?3、根据整式的加减里面涉及的内容逐一讲解,对课程提到的重点内容做详解。

4、结合整式的加减作出模仿的类似动作。

5、教师引导幼儿根据已经学习到的知识,自己创作故事,编排动作。

6、教师整合幼儿创编的动作,结合讲解练习,并在幼儿讲解、述说的过程拍手鼓励。

7、教师引导幼儿自我表达通过学习整式的加减,所了解到的知识,并要求幼儿通过所学的知识结合日常生活中的真实案例,进行再次创编。

四、教学的互动1、教师作出关于整式的加减的相关动作,并让幼儿分辨。

2、说说通过课程整式的加减给我们的启发。

3、引导幼儿根据整式的加减的课程所学到的知识勇于表达自我的想法,动作。

(1)身体表达—如:拍手、拍腿等动作进行(2)生活表演—地板、桌子、等物体为借助物表演。

4、结合整式的加减的课程内容,让幼儿进行相关课后练习。

四、教学反思:1、教师在给幼儿教学整式的加减的过程中,幼儿能很好地配好老师的教学教学内容进行完成。

2、教师与幼儿一起学习关于整式的加减的故事,课后幼儿能从中将所学习理解到的知识进行很好的表达出来。

3、教师引导鼓励幼儿自我表达通过学习整式的加减所获得的知识和思考。

第二章整式的加减(教案)

第二章整式的加减(教案)
第二章整式的加减(教案)
一、教学内容
第二章整式的加减
1.教学章节:本章主要围绕整式的加减进行讲解,包括单项式与单项式的加减,单项式与多项式的加减,多项式与多项式的加减。
2.教学内容:
(1)单项式的加减:同类项的概念,合并同类项的方法。
(2)单项式与多项式的加减:去括号法则,合并同类项。
(3)多项式与多项式的加减:合并同类项,简化表达式。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整式的加减在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
三、教学难点与重点
1.教学重点
(1)掌握单项式与单项式、单项式与多项式、多项式与多项式的加减法则。
(2)理解同类项的概念,能够准确识别同类项并进行合并。
(3)熟练运用去括号法则,简化整式表达式。
(4)通过实例分析,培养学生将实际问题转化为整式加减问题的能力。
举例解释:
-重点一:讲解如何将两个单项式(如3x和4x)相加,使学生理解同类项的概念,并掌握合并同类项的方法。
3.重点难点解析:在讲授过程中,我会特别强调同类项的合并和去括号法则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何快速准确地合并同类项和简化表达式。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式加减相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示整式加减的基本原理。

整式的加减数学教研活动(3篇)

整式的加减数学教研活动(3篇)

第1篇一、活动背景随着新课程改革的不断深入,小学数学教学也在不断地更新和优化。

整式加减是小学数学教学中的重要内容,它不仅是学生进一步学习代数的基础,也是培养学生逻辑思维能力和解决问题的能力的关键。

为了提高整式加减的教学质量,我校数学组于2021年10月15日开展了以“整式加减”为主题的教研活动。

本次活动旨在通过集体备课、课堂观摩、教学反思等形式,提升教师对整式加减教学的理解和教学能力。

二、活动目标1. 提高教师对整式加减教学法的认识,明确教学目标。

2. 通过集体备课,优化整式加减的教学设计。

3. 通过课堂观摩,提升教师的教学实施能力。

4. 通过教学反思,促进教师对整式加减教学的理解和改进。

三、活动内容1. 集体备课- 主题:整式加减的教学设计与实施- 流程:首先,由备课组长介绍本次教研活动的主题和目标,然后,各教师根据自己的教学经验,提出整式加减教学中的难点和困惑。

接着,针对这些问题,进行集体讨论,共同探讨有效的教学策略和方法。

最后,由备课组长总结讨论成果,形成整式加减的教学设计方案。

2. 课堂观摩- 观摩课教师:张老师- 观摩课题:五年级上册《整式加减》- 观摩内容:张老师通过创设情境、小组合作、练习巩固等环节,引导学生理解和掌握整式加减的运算规则和技巧。

- 观摩反思:观摩课后,全体教师对张老师的课堂进行了点评和反思。

大家一致认为,张老师的课堂设计合理,教学方法灵活,能够有效地激发学生的学习兴趣,提高学生的学习效果。

3. 教学反思- 反思主题:整式加减教学中的问题与改进- 反思内容:各教师结合自己的教学实践,对整式加减教学中的问题进行了深入反思。

主要问题包括:学生对整式加减运算规则的理解不够深入,计算错误率高,课堂气氛不够活跃等。

针对这些问题,教师们提出了以下改进措施:1. 加强对整式加减运算规则的教学,通过多种方式帮助学生理解和掌握。

2. 适当增加练习量,提高学生的计算能力。

3. 创设有趣的课堂情境,激发学生的学习兴趣。

七年级数学《整式的加减》教案

七年级数学《整式的加减》教案

七年级数学《整式的加减》教案七年级数学《整式的加减》教案一数学活动一、内容和内容解析1.内容活动1 用火柴棍摆放图形,探究火柴棍的根数与图形的个数之间的对应关系;活动2 探究月历中数之间所蕴含的关系和变化规律.2.内容解析本节课的数学活动将第二章“整式的加减”所学知识应用于实际,进一步用整式表示数量关系,用整式的加减运算进行化简,是整式与整式加减的应用.两个数学活动综合运用整式和整式的加减运算,表示具体情境中的数量关系和变化规律.活动1中的核心问题是寻求三角形的个数与火柴棍根数之间的对应关系,问题的本质是变化与对应.由于观察图形时入视的角度不同,规律的显现方式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯一确定的.活动1先从图形的特殊情况入手,体现由特殊到一般地观察、分析、判断、归纳的思维活动过程.在探究的过程中体现借助于图形的变化规律进行思考和推理的过程,体现借助于图形的变化规律来解决实际问题的优越性.活动2应用整式的加减探究月历中数之间的规律:(1)月历中数的排列规律;(2)由数的排列规律引出运算规律,应用整式的加减进行化简,表示出一般规律;(3)如何设字母可以简化表示方法和运算.基于以上分析,可以确定本节课的教学重点:用整式表示实际问题中的数量关系,掌握数学活动中由特殊到一般的探究方法.二、教材解析本套教科书专门设计了“数学活动”专栏,旨在为学生提供探索的空间,发展学生的思维能力.本节课安排了两个有趣的数学活动.其中活动1从一个开放性的问题入手“如图1所示,用火柴棍拼成一排由三角形组成的图形.如果图形中含有n个三角形,需要多少根火柴棍?”引发学生的思索和探究.问题中并没有先问“图形中含有2,3,4个三角形,分别需要多少根火柴棍?”而是直接问“如果图形中含有n个三角形,需要多少根火柴棍?”目的在于让学生自己发现要解决一般性问题应先从特殊值入手,给学生充分的时间思考和探究,让学生自己寻求解决问题的策略,最终掌握从特殊到一般,从个体到整体地观察、分析问题的方法.之后又设计了一个问题“当图形中含有2012个三角形时,需要多少根火柴棍?”目的在于让学生体会由特殊一般特殊的分析问题的方法,体会一般性规律的实际意义.活动2设计了一个问题串,6个问题循序渐进地引导学生发现月历中数的排列规律,引导学生应用本章所学的整式的加减探究方框里数之间的关系.这两个活动有一定的趣味性,也有较强的探索性.两个活动的侧重点不同,活动1的重点是让学生能够用整式准确地表示数量关系;活动2的重点是让学生能够应用整式的加减探究月历中的数量关系.通过这两个数学活动检验学生对于第二章内容的掌握情况.本节数学活动课教师要注意改进教学方式,充分相信学生,尽可能为学生留出探索的空间,发挥学生的主动性和积极性,力求使得数学结论的获得是通过学生思考、探究活动而得出的.三、教学目标和目标解析1.教学目标(1)用整式和整式的加减运算表示实际问题中的数量关系;(2)掌握从特殊到一般,从个体到整体地观察、分析问题的方法.尝试从不同角度探究问题,培养应用意识和创新意识;(3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑,体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心.2.目标解析达成目标(1)的标志:学生用整式表示出火柴棍的根数与三角形的个数之间的对应关系,用整式表示出月历中不同位置上的数字的一般表达式并探寻规律;目标(2)是内容所蕴含的思想方法,学生需要体会在较为复杂的图形中寻找一般规律的方法,先把复杂图形分解,从其中的特殊图形入手,先就个体观察特征,再扩展到一般,最后由整体总结规律,感受由特殊到一般的探究模式.在活动2中,分析月历中数字之间的数量关系时,经常先将月历分解,分别从横、纵、对角线等不同的方向入手观察特征,再推广到一般,用整式表示出数的一般规律;学生体验解决问题策略的多样性;让学生尝试评价不同方法之间的差异,从而得出最优方案.学生体会进行数学活动的基本方法:提出问题动手实践寻求规律归纳总结.学生经历发现问题、独立思考、猜想验证,归纳总结这些数学活动,提高应用意识和创新意识;达成目标(3)的标志:学生对数学有好奇心和求知欲,在小组合作活动中积极思考,勇于质疑,敢于发表自己的想法.在自主探究两个数学活动的过程中,小组成员合作克服困难,解决数学问题,感受成功的快乐,建立学好数学的信心.四、教学问题诊断分析本章学生已经学习用整式表示实际问题中的数量关系及整式的加减运算.但是正确理解字母的真正含义,熟悉用符号表示具体情境中的数量关系,对学生而言有一定难度.在拼图的过程中,学生比较容易发现火柴棍根数的变化情况,但要借助观察图形的变化寻找火柴棍的根数与三角形的个数n之间的对应关系,还是有一定困难,在总结变化量与n的对应关系时学生也容易出错.所以用整式准确地表示出这种对应关系是本节课的一个难点.在活动2中,探索月历中数字的排列规律比较容易,但要从不同角度,运用不同方法探究月历中隐含的数量关系及其规律,对学生来说具有一定的挑战性.本节课的教学难点:利用整式和整式的加减运算准确表示出具体情境中的数量关系.五、教学支持条件分析根据活动课的特点,学生准备一盒火柴棍、若干张大小相等的正方形纸片、一张月历.教师准备几何画板软件供学生使用,同时采用多媒体课件辅助教学.六、教学过程设计1.数学活动1问题1 如图1所示,用火柴棍拼成一排由三角形组成的图形.图1(1)如果图形中含有n个三角形,需要多少根火柴棍?(2)当图形中含有2012个三角形时,需要多少根火柴棍?师生活动:学生分成小组,利用已准备好的火柴棍动手摆放图形进行自主探究.学生代表(利用几何画板软件)展示小组讨论的过程与结果.教师重点关注学生自主探究的步骤和方法.学生在探究的过程中会从不同角度观察图形,会用不同的表达形式呈现规律,会从数和形两个方面进行探究.教师引导学生借助于“形”进行思考和推理,加强对图形变化的感受.在活动的过程中,整理数据,观察火柴棍的根数与n之间的对应关系,有助于突破难点.问题1的解决方法很多,下面列出几种常见方法仅供参考.①从第二个图形起,与前一图形比,每增加一个三角形,增加两根火柴棍,可得三角形个数1 2 3 4 … n 火柴棍根数 3 3+2 3+2+2 3+2+2+2 … 表达式:3+2(n-1)=2n+1.②每个三角形由三根火柴棍组成,从第一个图形起,火柴棍根数等于所含三角形个数乘3,再减去重复的火柴棍根数,可得三角形个数1 2 3 4 … 火柴棍根数1×3 2×3-1 3×3-2 4×3-3 … 3×n-(n-1) 表达式:3n-(n-1)=2n+1.③从第一个图形起,以一根火柴棍为基础,每增加一个三角形,增加两根火柴棍,可得三角形个数1 2 3 4 … n 火柴棍根数1+2 1+2+2 1+2+2+2 1+2+2+2+2 … 表达式:1+2n.④从火柴棍的根数与三角形的个数的对应关系观察可得三角形个数1 2 3 4 … n 火柴棍根数3=1×2+1 5=2×2+1 7=3×2+19=4×2+1 … n×2+1 表达式:2n+1.⑤将组成图形的火柴棍分为“横”放和“斜”放两类统计计数,可得三角形个数1 2 3 4 … n 火柴棍根数1+2 2+3 3+4 4+5 … n+(n+1) 表达式:n+(n+1)=2n+1.七年级数学《整式的加减》教案二教学目标知识与技能理解同类项的概念,在具体情景中,认识同类项.过程与方法通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.情感、态度与价值观初步体会数学与实际生活的密切联系,从而激发学生学好数学的信心.教学重难点重点理解同类项的概念.难点根据同类项的概念在多项式中找同类项.教学过程一、复习引入师:同学们,在上新课之前,我们先来做几个题目.1.教师读题,指名回答.(1)5个人+8个人=;?(2)5只羊+8只羊=.?2.师:观察下列各单项式,把你认为相同类型的式子归为一类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2.由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.要求学生观察归为一类的式子,思考它们有什么共同的特征.请学生说出各自的分类标准,并且对学生按不同标准进行的分类给予肯定.二、讲授新课1.同类项的定义:师:在生活中我们常常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a 可以归为一类,还有、0与也可以归为一类.8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项)(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结)板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项.三、例题讲解教师读题,指名回答.例1判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”.(1)3x与3mx是同类项.()(2)2ab与-5ab是同类项.()(3)3x2y与-yx2是同类项.()(4)5ab2与-2ab2c是同类项.()(5)23与32是同类项.()(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项.一部分学生可能会单看指数不同,误认为不是同类项)例2游戏.规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.要求出题同学尽可能使自己的题目与众不同.可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念.例3指出下列多项式中的同类项:(1)3x-2y+1+3y-2x-5;(2)3x2y-2xy2+xy2-yx2.答案(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项.例4k取何值时,3xky与-x2y是同类项?答案要使3xky与-x2y是同类项,这两项中x的次数必须相等,即k=2.所以当k=2时,3xky与-x2y是同类项.例5若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.(1)(s+t)-(s-t)-(s+t)+(s-t);(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪给出书面解答,为合并同类项做准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体)通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.四、课堂练习请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?(学生先在课本上解答,再回答,若有错误请其他同学及时纠正)答案改变2ab2c3的系数即可,与其本身也是同类项.五、课堂小结理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.第2课时合并同类项教学目标知识与技能理解合并同类项的概念,掌握合并同类项的法则.过程与方法经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法.培养观察、归纳、概括能力,发展应用意识.情感、态度与价值观在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.教学重难点重点正确合并同类项.难点找出同类项并正确的合并.教学过程一、情境引入师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:(1)他们两次共买了多少本软面抄和多少支水笔?(2)若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?学生完成,教师点评.二、讲授新课合并同类项的定义.学生讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.由此可得:把多项式中的同类项合并成一项,叫做合并同类项.三、例题讲解例1找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.答案原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+2.根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.例2下列各题合并同类项的结果对不对?若不对,请改正.(1)2x2+3x2=5x4;(2)3x+2y=5xy;(3)7x2-3x2=4; (4)9a2b-9ba2=0.(通过这一组题的训练,进一步熟悉法则)例3求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.答案3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)2-1=17.试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?(通过比较两种方法,使学生认识到在求多项式的值时,常常先合并同类项,再求值,这样比较简便)课堂练习.课本P71练习第1~4题.答案略四、课堂小结1.要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误.2.从实际问题中类比概括得出合并同类项法则并能运用法则正确地合并同类项.第3课时去括号、添括号教学目标知识与技能去括号与添括号法则及其应用.过程与方法在具体情境中体会去括号和添括号的必要性,能运用运算律去括号和添括号.情感、态度与价值观让学生接受“矛盾的对立双方能在一定条件下互相转化”的辩证思想和概念.教学重难点重点去括号和添括号法则.难点当括号前是“-”号时的去括号和添括号.教学过程一、创设情境,引入新课还记得我们前面用火柴棒摆的正方形吗?记录正方形的个数与所用火柴棒的根数.1.若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为4+3(n-1).?2.若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为n+n+(n+1).?3.若每个正方形都摆4根,除第1个外,其余的都多1根,则n个正方形所用的火柴棒的根数为4n-(n-1).?4.若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为1+3n.?搭n个正方形所需要的火柴棒的根数,用的计算方法不一样,所用火柴棒的根数相等吗?生:相等.师:那么我们怎样说明它们相等呢?学生讨论、回答.师评:4+3(n-1)用乘法的分配律把3乘到括号里,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,而-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+1.活动一去括号师:在代数式里,如果遇到括号,那么该如何去括号呢?我们再看看以前做过的习题.七年级数学《整式的加减》教案三一、教学内容解析:1.本节课选自:新人教版数学七年级上册§2.2.1节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章整式的加减——数学活动
一、内容和内容分析
1.内容
活动1:用火柴棍摆放图形,探究火柴棍的根数与图形的个数之间的对应关系;
活动2:探究月历中数字之间所蕴含的关系和变化规律。

2.内容解析
本节课的数学活动将第二章“整式的加减”所学知识应用于实际,进一步用整式表示数量关系,用整式的加减运算进行化简,是整式与整式加减的应用.
两个数学活动综合运用整式和整式的加减运算,表示具体情境中的数量关系和变化规律.活动1中的核心问题是寻求三角形的个数与火柴棍根数之间的对应关系,问题的本质是变化与对应,由于观察图形时的角度不同,规律的显现方式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯一确定的.活动1先从图形的特殊情况入手,体现特殊到一般地观察、分析、判断、归纳的思维活动过程.活动2应用整式的加减探究月历中数字之间的规律:①月历中数字的排列规律;
②由数字的排列规律引出运算规律,应用整式的加减进行化简,表示出一般规律;③如何设字母可以简化表示方法和简化运算。

基于以上分析,确定本节课的教学重点:用列代数式表示实际问题中的数量关系进而建立数学模型,体会应用从特殊到一般的探究方法。

二、目标和目标解析
1.目标
(1)列代数式表示关系和用数学模型及整式的加减运算解决实际问题中的数量关系。

(2)掌握从特殊到一般、从个体到整体地观察、分析问题的方法,尝试从不同角度探究问题,培养应用意识和创新意识,体会数学模型的抽象性和一般性。

2.目标解析
达成目标(1)的标志是:学生能够列出代数式表示实际问题中的数量关系,用不同代数式表示同一问题,化简后结论一致。

用整式表示出月历中不同位置上的数字的一般表达式,并探寻一些规律;
达成目标(2)的标志是:从特殊到一般,最后由整体总结规律,感受由特殊到一般的探究模式。

学生需要体会进行数学活动的基本方法:提出问题→动手实践→寻求规律→归纳总结,经历发现问题、独立思考、猜想验证、归纳总结这些数学活动,从不同视角观察问题、发现规律,提高应用意识和创新意识。

三、教学问题诊断分析
本章学生已经学习用整式表示实际问题中的数量关系及整式的加减运算,但是正确理解字母的含义,熟悉用符号表示具体情境中的数量关系,对学生而言有一定难度.在拼图的过程中,学生比较容易发现火柴棍根数的变化情况,但要借助观察图形的变化寻找火柴棍的根数与三角形的个数n之间的对应关系,还是有一定困难,在总结变化量与n的对应关系时学生也容易出错,所以用整式准确地表示出这种对应关系是本节课的一个难点。

在活动2中,探索月历中数字的排列规律比较容易,但要从不同角度,运用不同方法探究月历中隐含的数量关系及其规律,对学生来说具有一定的挑战性,本节课的教学难点:是利用整式和整式的加减运算准确表示出具体情境中的数量关系。

四、教学支持条件分析
根据活动课的特点,利用多媒体具体的特点,逐步展示三角形形成的过程,领会过程中体现出来的规律并予以整理、总结归纳,采用PPT、白板、微课等多媒体课件辅助教学。

五、教学过程设计
1.创设情境、引入新课
问题1
如图1所示,用火柴棍拼成一排由三角形组成的图形.
图1
(1) 如果图形中含有2、3、4个三角形,需要多少根火柴棍?
(2) 当图形中含有n 个三角形时,需要多少根火柴棍?
师生活动:
学生分成小组,利用已准备好的火柴棍动手摆放图形进行自主探究。

学生在探究的过程中会从不同角度观察图形,会用不同的表达形式呈现规律,会从数和形两个方面进行探究。

教师利用多媒体结合学生讲解将学生摆放过程呈献给大家,教师引导学生借助于“形”进行思考和推理,加强对图形变化的感受。

在活动的过程中,整理数据,观察火柴棍的根数与n 之间的对应关系,有助于突破难点。

问题2
学生小组讨论,整理总结并展台展示小组结论,提高学生分析、探究解决问题的能力,并予以整理与总结。

问题3
拓展提高:
通过微课的学习让同学们学会由三角形转变至正方形时,利用思考三角形的方法思考四边形,进行巩固提高。

设计意图:以小组讨论的形式从不同角度整理出三角形个数和所用火柴棍的根数的对应关系。

让学生体会由特殊到一般、由个体到整体地观察、分析问题的方法。

【说明】通过这个活动发现火柴棍的根数与三角形个数的关系是关键,在第一个方法中第一个三角形需要3根火柴棍,以后每增加一个三角形,火柴棍根数增加2.接下来,就可以运用这种方法和策略解决问题;不同方法探究问题的角度不同,但是得到的结论经化简后是一致的。

2.探究月历问题,建立数学模型
图1和图2是某月的月历.
图1 图2
问题4
通过观看微课,使同学们理解、掌握正确设出未知数,并能用含未知数的代数式表示周边的数,进而转化为整式形式。

问题5
(1)带阴影的方框中的9个数之和与方框正中心的数有什么关系?
(2)如果将带阴影的方框移至图3的位置,(1)中的关系还成立吗?
(3)不改变带阴影的方框的大小,将方框移动几个位置试一试,你能得出什么结论?你能证明
这个结论吗?
师生活动:这3个问题表面上看,要求计算特殊位置上的9个数的和,而实质需要寻求这9个
数的排列规律,用整式表示出月历中任意位置上的数字。

学习了微课后,学生能够从三个层次进行探究:①月历中数字的排列规律:“横”看,从左到右,数字依次递增1;“纵”看,从上到下,数字依次递增7;从对角线左上到右下看,数字依次递增8等;②由数字的排列规律引出运算规律,利用整式的加减进行化简,表示出一般的规律。

学生选择用字母表示数,可能设哪个数为字母a情况各不相同,这时可让学生尝试评价不同方法之间的差异,从而得出最优方案:用字母a表示正中间的数(如下表)
设计意图:在数学活动合作交流的过程中使学生体会解决问题策略的多样性,积累数学活动经
验,进一步培养学生的创新意识,增强学生应用数学知识解决实际问题的能力。

3、拓展提升
问题6、阴影部分为2*2形,有什么结论?
问题7、阴影部分为如图所示图形,有什么结论?
问题6和问题7大部分学生会从几个数的和差之间的关系入手讨论,得到结论a+(a 十8)=(a+1)+(a+7),a+(a+7)=(a+1)+(a+6)等。

4.归纳小结
教师与学生一起回顾本节课内容,并请学生回答以下问题
(1)解决本节课中的问题,用到了什么知识?
(2)解决本节课中的问题,用到了什么思想方法?
设计意图:通过小结,使学生认识本节课内容与本章内容的联系,体会从特殊到一般地探究规律的思想方法.
5.布置作业
(1)能力培养相关练习
(2)若干个偶数排列如图7所示,探究方框中数之间的关系:
设计意图:让学生应用本节课所学的方法和策略解决同类问题。

检测学生用整式表示实际问题中的数量关系的能力和从不同角度探究问题的能力.。

相关文档
最新文档