统计学平均指标47页PPT

合集下载

第3章 统计学51页PPT

第3章 统计学51页PPT
4元
加权调和平均数
实际上是加权算术平均数的变形。
只掌握每组某标志的数值总和而缺少总 体单位数的资料,不能直接采用加权算 术法计算平均数。
什么时候用调和平均数
1、由相对数计算平均数 2、由平均数计算平均数 P60
例如;某商品在三个市场数据, 求其平均价格。
市场
单价(元) 贸易额(元) 贸易量(元)
有名数和无名数
种类和计算方法
1、计划完成相对指标 2、结构相对指标 3、比例相对指标 4、比较相对指标 5、强度相对指标 6、动态相对指标
1、计划完成相对指标
计划完成相对数=实际完成数/计划数 ×100%
(1)根据总量指标 (2)根据相对指标计算计划完成相对
数 (3)根据平均指标
平均得分均为16分,标准差分别为5.09
和3.72,则甲、乙两同学在这次篮球比
赛活动中,发挥得更稳定的是( )B
A.甲
B.乙
C.甲、乙相同
D.不能确定
平均数相同,看谁的标准差小,
标准差小的就稳定,选B.
补充内容一
总量指标;反映社会现象在一定时间、 地点、条件下的总规模或水平的统计指 标。绝对指标或绝对数。
(四)幂平均数
一般; 调和平均数﹤几何平均数﹤算术平均数 什么时候三者相等?
三、众数、中位数和其他分位数
(一)众数 社会经济现象总体中最普遍出现的标志
值。 具有最多次数的标志值是众数值。
1、单项式分配数列
2、组距式分配数列
1、单项式分配数列
最多次数的标志值是众数值。 P63
95
92
D10
83
84
86
87
88
84
86
81

第五章平均指标ppt课件(全)

第五章平均指标ppt课件(全)
• 其他求和的法则或公式 P62-63
第二节算术平均数
• 一、 算术平均数的基本公式
• 平均数是社会经济统计中最常用的一种平均指标。
▪计算公式
总体标志总量 算术平均数= ————————
总体单位总数
• 该基本公式具有两个特点: • ①分子和分母必须属于同一个总体。 • ②分子和分母有一一对应的数量关系。
• 在统计实践中,直接应用调和平均数的情况较少,大 多数情况下是将调和平均数作为算术平均数的变 形来应用的,即在计算平均指标时,由于掌握资料的 原因,不能直接按算术平均数的方法计算出平均数, 而以调和平均数的形式计算平均指标。
• 二、调和平均数的计算公式
• 调和平均数的计算公式也分为简单调和平均数 和加权调和平均数两种。
第五节中位数和众数
• 前面所讲的几种平均指标,都是根据统计总体中的 全部标志值或变量值计算的。当数列中出现极大 值或极小值时,它们最易受到极端值的影响,从而减 弱了平均指标在总体中的代表性。
• 众数和中位数则是另一种类型的平均指标,它们是 根据其在总体中所处的位置或地位确定的,故不受 数列中极端值的影响。
• 二、几何平均数的计算方法 • 1.简单几何平均数
• 简单几何平均数是n个变量值连乘积的n次方根
G nX 1•X 2•X 3• •X n n X
• 式中: 【Xi —数列中第i个变量值(i=1,2,…,n)

n —变量值个数

∏—连乘符号】 例如P72
• 2.加权几何平均数 • 当各个变量值出现的次数不相同时,计算几何
n —— 总体单位总数;
∑ —— 总和符号。
• 三、加权算术平均数
• 当总体单位数量较多时,统计资料 就需要整理成变量分配数列,或在 已编制好分配数列的条件下,计算 平均数就应采用加权算术平均数 的方法。

统计学原理平均指标

统计学原理平均指标
合计
工人数f
5 6 20 4 5 40
组中值x
1500 2500 3500 4500 5500 ——
工资总额 (元)xf
7500 15000 70000 18000 27500 138000
工人比重 (%)f/∑f
12.5 15.0 50.0 10.0 12.5 100.0
Xf/∑f
187.5 375 1750 450 687.5 3450
统计学原理
各种平均指标的计算方法
5. 调和平均数的特点
数值平均数
① 如果数列中存在等于0的标志值,则无法计算; ② 易受极端值的影响,且受极小值的影响比受极
大值的影响更大,但影响程度小于算术平均数; ③ 调和平均数应用的范围较小。
统计学原理
各种平均指标的计算方法
数值平均数
(三)几何平均数 X G
统计学原理
平均指标概述
(四)平均指标的种类
算术平均数
数值平均数 调和平均数
几何平均数
平 静态平均数
均 指
众数
位置平均数 中位数

简单平均数: 未分组资料
加权平均数: 分组资料
动态平均数:同一现象在不同时期上发展水平的平均
统计学原理
二、各种平均指标的计算方法
一、算术平均数 二、调和平均数 三、几何平均数 四、众数 五、中位数
(1)由平均数计算调和平均数
例:某车间各班组劳动生产率和实际产量
计算栏
班组
甲 乙 丙 合计
平均劳动生产率 (件/工时)X 10 11 12 ——
实际产量(件) m
4000 2200 2400 8600
实际工时m/X
400 200 200 800

统计学(本科)教学课件第五章平均指标

统计学(本科)教学课件第五章平均指标
全距=最大的标志值-最小标志值
(二)平均差
平均差是指各标志值与其算术平均数离 差的绝对值的算术平均数。常用A.D表示。 其计量单位与标志值的计量单位相同。
1.对未分组资料,采用简单算术平均式 2.对分组资料,采用加权算术平均式
(五)简单算术平均数与加权算术平 均数的关系
二者的区别: 1.二者掌握总体单位资料的详尽程度不同。 2.二者的计算精确程度不同。用简单算术
平均数计算的平均数是精确值,而用加权算 术平均数计算的平均数是近似值。 二者的联系是:当各组的权数相同时,加 权算术平均数就变成了简单算术平均数。
三、调和平均数
(二)标志变异指标的作用
1.标志变异指标是衡量平均指标代表性大小 的重要尺度
2.标志变异指标是反映社会经济活动过程的 均衡性与协调性的重要指标
3.标志变异指标是抽样方案设计的依据之一
二、标志变异指标的计算
(一)全距
全距也叫极差,通常用R表示。它是测定标志 变动度最简单的方法,计算总体各单位标志 值中最大值与最小值之差。它表示总体各单 位标志变动度的大小,也反映了总体分散与 集中的程度。一般说来,全距大,总体各单 位变异程度大;全距小,总体各单位变异程 度小。
一、标志变异指标概述
(一)标志变异指标的概念 标志变异指标是用来说明总体单位标志值之间差
异大小和程度的指标,也称为标志变动度。常用 的标志变异指标有全距、平均差、标准差和离散 系数等。 平均指标与标志变异指标的区别主要是: (1)前者是抽象变量值之间的差异而成的结果,后 者则是反映变量之间差异而成的结果; (2)前者反映了总体分布的集中趋势,后者反映了 总体分布的离中趋势。
第二节 标志变异指标
在统计研究中,一方面要计算平均指标。平均指 标是将总体各单位某一数量标志值的差异抽象化, 只反映总体的一般水平与共性,反映的是总体的 集中趋势,但它同时也掩盖了总体各单位的数量 差异,不能全面描述总体分布的特征。因此另一 方面也要计算标志变异指标,用以反映总体各单 位标志值的差异程度。从另一方面说明总体分布 的特征,反映总体分布的离中趋势。因此,两者 紧密联系,分别从不同角度分析现象的特征。

统计学-统计指数.ppt课件

统计学-统计指数.ppt课件
总指数:工业总产量指数、零售物价总指数
组指数
2.按所反映现象的数量特征不同分为
数量指标指数
质量指标指数
商品销售量指数、工业产品产量指数
物价指数、产品成本指数
指数的种类
3.按总指数的计算方法不同分为
综合指数
平均指数
先综合,后对比
先对比,后平均
指数的种类
4.按所采用基期不同分为
定基指数
平均指数的编制思路是“先对比,后平均”
基本编制原理
平均指数的计算形式和常用公式
1)基期加权算术平均法 —采用基期总值为权数
拉式综合指数的变形
平均指数的计算形式和常用公式
2)报告期加权调和平均法 —采用报告期总值为权数
帕式综合指数的变形
一般编制原则和方法
指数起源于人们对价格动态的关注。
今天的面包价格
昨天的面包价格
个体价格指数
今天的面包、鸡蛋、牛奶等等价格
昨天的面包、鸡蛋、牛奶等等价格
综合价格指数
统计指数的历史与应用
钢产量上升2%
煤产量下降1%
水泥产量上升5%
电视机产量上升3%
机床产量下降8%
指数是解决多种不能直接相加的事物动态对比的分析方法
例如:消费品价格指数,生活费用价格指数,同人们的日常生活休戚相关; 生产资料价格指数,股票价格指数等,直接影响人们的投资活动,成为社会经济的晴雨表。 空气污染指数、紫外线等级指数
350 480 530
150 120 200
180 150 180
4.65 5.28 9.40
6.30 7.20 9.54
5.58 6.60 8.46
合计
411.28
451.76

统计学(6)平均指标

统计学(6)平均指标
• U为众数所在组组距的上限,L为众数所在组组距的下限,f 为众数所在组的次数,f-1 为众数所在组前一组次数, f+1 为众数所在组后一组次数,i 为组距。
例 现检测某厂生产的一批电子产品的耐用时间, 得到资料如下表所示:
耐用时间 600以下 600-800 800-1000 产品个数(个) 84 161 244
令M xf
则x
M 1 x M
xf 1 x xf
H
三、 几何平均法
(一)什么是几何平均法?
• 几何平均法是n个变量连乘积的n次根。 • 几何平均法一般适用于各变量值之间存在环比关系的事物。如:银行平均利率、 各年平均发展速度、产品平均合格率等的计算就采用几何平均法。 • 1、简单几何平均法
解答:
H
f 1 xf

200 200 200 600 25.2 (公里/小时) 1 1 1 23.81 200 200 200 30 28 20
x
xf f
30 2 28 2 20 2 156 26(公里/小时) 222 6
xf f
• 其中: X 代表算术平均数,Xn 代表各单位标志值(变量值),fn代表各组单 位数(项数)。
• (1)根据单项数列计算加权算术平均 • 例2:
零件数(件) 工人数(人) 产量=零件数*工人数
xi
30 32 34 35 36
fi
20 50 76 40 14
Xi*fi
600 1600 2584 1400 504
四、众数和中位数
(一)众数
• 1.众数是指变量数列中出现次数最多或频率最大的变量值。 • 2.适用条件:只有集中趋势明显时,才能用众数作为总体的代表值。 • 3.众数的计算方法

统计学原理 第四章 第三节 平均指标

统计学原理 第四章 第三节 平均指标

某班学生统计学考试平均成绩计算表
按成绩分 组中 学生人 比重 (%) 组 (分 ) 值 x 数 (人 )f 60以下 60-70 70-80 80-90 90以上 合 计 55 65 75 85 95 — 2 6 10 19 3 40 5.0 15.0 25.0 47.5 7.5 100.0 xf 110 390 750 1615 285 3150
【例】
某生产班组有10名工人,日产量 15件有1人,16件有2人,17件有3人, 18件有4人,则平均每人日产量为:
Σxf x Σf 15 1 16 2 17 3 18 4 10 17 (件)
某车间100名工人日产零件数资料如下:
日产量 工人数 x(件 ) f(人 ) 5 10 6 20 7 35 8 19 9 16 合 计 100
x•
f
f
2.750 9.750
18.750 40.375 7.125 78.750
Σxf Σx kf kxf Σxf x Σf Σkf kf Σf


简单算术平均数实际上是权 数相等的加权算术平均数,是加 权算术平均数的特例。
Σxf fx Σx x Σf nf n
组距数列计算平均数:
假定各组内的标志值是均匀分布 的,先求出各组的组中值,并以组中 值代替各组的组平均数,再计算平均 数。计算结果可能有些偏差,只是平 均数的近似值。通常,组距越小,越 接近于实际的平均数。
第四章
综合指标
第三节 平均指标
一、平均指标概述 二、平均指标的计算 三、各种平均数的比较
一、平均指标概述
平均指标:又称为平均数,它是表 明同类社会经济现象(或同质总 体)各单位某一数量标志在一定 时间、地点、条件下所达到的一 般水平的综合指标。

统计学第三章平均指标与变异指标及习题课堂课资

统计学第三章平均指标与变异指标及习题课堂课资

国内生产总值 78345.2 82067.5 89468.1 97314.8 104790.6
求这几年间国内生产总值的平均发展速度。
章节内容
23
第一节 平均指标
(四)中位数(median) 将总体各单位标志值按大小顺序排列,居于 中点位置的那个标志值就是中位数。它是位 置平均数,不受极端值的影响。 1. 由未分组资料计算中位数
1
18
2
90
3
180
4
72
合计
360
向上累计频数(户)
18 108 288 360
章节内容
26
3. 由组距式分组资料计算中位数 确定中位数位次的方法同上,然后按下限公式或上限 公式计算中位数。
按奖金分组(元) 调查户数(户)
500元以下
40
500~800
90
800~1100
110
1100~1400
章节内容
16
例1:2001-2005年我国工业品的产量分别是上年的 107.6%、102.5%、100.6%、102.7%、102.2%,计 算这5年的平均发展速度。
章节内容
17
X X X X n ...
G
1
2
n
5 1.076 1.025 1.006 1.027 1.022
1.031 103.1%
众数与中位数的距离约为中位数与算术平均数距离 的
2倍。 M e M 0 2 (x M e )
章节内容
31
例:根据某城市住户家庭月工资的抽样调查资 料计算得到众数为2300元,中位数为2100元, 问算术平均数为多少?其分布呈何种形态?
章节内容
32
第一节 平均指标

第六章 平 均 指 标

第六章  平 均 指 标

二、 中位数




1.中位数的概念 中位数是将标志值按大小顺序排成数列后,处在 该数列中点位置的标志值,用 表示。 Me 2.中位数的确定方法 1)由未分组资料确定中位数 排序 确定中位数位次:当总体单位数为奇数时,用来 确定中位数的位次;当总体单位数为偶数时,数 列中间两个位置的标志值的平均数才是中位数。 根据中于计算平均比率和平均速
应用条件:
①若干个比率或速度的连乘积等于总比率 或总速度。②相乘的各比率或速度不得为 负值。
一、 简单几何平均数

简单几何平均数适用于计算未分组资料的 平均比率或平均速度,其公式为:
G x1 x2 xn x
n
n
式中 G
——几何平均数; x1 , x2 , , xn ——总体各单位标志值; n ——标志值的个数; ——连乘符号。
总体标志总量 算术平均数 = 总体单位总量
二、 简单算术平均数
简单算术平均数是根据总体各单位标志值的原 始资料,通过直接加总的方式计算总体标志总 量,进而计算算术平均数的方法。简单算术平 均数主要适用于未分组资料。
x1 x2 x3 xn x= = n

x
n
式中

——算术平均数; x1 , x2 , x3 , , xn ——各单位的标志值; n——总体单位数。
平均月收入(元)
800以下 800-1000 1000-1200 1200-1400 1400-1600 1600以上 合计
人数
60 110 150 500 130 50 1000
1 350 M0 L d 1200 200 1297 .22 (元) 1 2 350 370

统计学第四章_平均指标和变异指标

统计学第四章_平均指标和变异指标
x
=
f
=
A
x
nA
=
x
n
简单算均数是加权 算均数的一个特例
cyz
14
※关于加权算术平均数的几点说明
⑶权数作用的实质,不在于各组次数多少,
而在于各组次数占总次数的比重即权重系数 的大小。因此,加权算术平均数可采用权重 系数作权数。 x f x f xn f n x1 f1 x2 f 2 xn f n 公式: x = 1 1 2 2 = n
x = x n
cyz
=
20+21+22+24+25 5
= 22.4(件)
9
3.加权算术平均数(资料已分组)!
每人日产零件 数(件)X 16 17 工人数(人) f 12 20 权重系数 f/∑f 0.12 0.20
18 19
20
30 23
15
0.30 0.23
0.15
合计
cyz
100
1.00
21
代表水平,反映数据分布的集中趋势。
一是根据各项数据来计算的平均指标,它能够概括反映所
有各项数据的平均水平,这种平均指标称为数值平均数。 二是把总体中处于特殊位置上的数据看做平均数,这种平 均值称为位置平均数。 数值平均数:算术平均数、调和平均数、几何平均数 位置平均数:众数、中位数
cyz
5
二.平均数的种类及计算
志总量,可用基本公式。
cyz 8
2.简单算术平均数(资料未分组)
若所给资料是总体各单位的标志值,则先将
各标志值简单相加得出标志总量,再除以标 志值的个数,求得平均数。 x1 x2 ... xn x 公式: x= = n n

统计学平均指标

统计学平均指标
A. 简单几何平均数
G n x1 x2 xn n xi
式中:G为几何平均数; 为n 变量值的个 数; 为xi第 个变i 量值。
【例】某流水生产线有前后衔接的五道工序。 某日各工序产品的合格率分别为95﹪、92﹪、 90﹪、85﹪、80﹪,求整个流水生产线产品 的平均合格率。
分析:
设经过第一道工序生产出A个单位 ,则 第一道工序的合格品为A×0.95; 第二道工序的合格品为(A×0.95)×0.92;
成绩(分)
x
60 100 合计
人数(人)
f
甲班 乙班 丙班
39
1
20
1
39
20
40
40
40
思考题:依据下例,分析说明算术平均数的影响因素
成绩(分)
x
60 100
人数(人)
f
甲班 乙班 丙班
39
1
20
1
39
20
平均成绩(分) 61
99
80
加权算术平均数的计算方法归纳
变量数列中各组标志值出现的次数 权数 (频率),反映了各组的标志值对
…… 第五道工序的合格品为 (A×0.95×0.92×0.90×0.85)×0.80;
因该流水线的最终合格品即为第五道工序 的合格品, 故该流水线总的合格品应为
A×0.95×0.92×0.90×0.85×0.80; 则该流水线产品总的合格率为:
总合格品 总产品
A
0.95 0.92 0.90 0.85 0.80 A
x1 f1 x2 f2 xm fm f1 f2 fm
xi fi
i 1 m
fi
i 1
式中:
m
为X算术平均数; 为第fi 组的i次数; 为组 数X;i 为第i组的标志值或组中值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档