新鲁教版八年级下册数学 《一元二次方程》章节复习教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章一元二次方程

一、学生知识状况分析

学生的知识技能基础:学生在之前已经学习了一元一次方程、二元一次方程以及一次函数的相关知识及应用,在本章中,又学习了一元二次方程的相关解法,初步体会了一元二次方程在解决实际问题中的具体应用,具备了利用数学知识解决实际问题的能力;

学生活动经验基础:在相关知识的学习过程中,学生已经经历了由具体问题抽象出数学模型的过程,初步积累了一定的数学建模方法;同时在以往的数学学习中学生已经经历了很多合作学习的机会,具有一定的合作学习经验,具备了一定的合作与交流的能力.

二、教学任务分析

本节课是一元二次方程的复习课,对于本章的基础知识,学生已大致掌握.本节课以梳理、巩固基础知识为起点,重点解决在学生中存在的易错点与混淆点;实际应用是方程建模思想的具体体现,学生往往感到有一定的难度,本节课以此为重点,从简单的实际问题入手,逐步加深对建模思想的理解.为此,设置本节课的教学目标如下:

1、知识与技能:

①经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;

②能够利用一元二次方程解决有关实际问题,帮助学生认识到运用方程解决实际问题的关键是确定题目中蕴含的等量关系;并且能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;

③了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想;

2、过程与方法:

①通过让学生经历将多种实际问题抽象成数学问题的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;

②通过小组合作学习,经历一题多解等过程,发展学生多角度思考问题的方法.

情感与态度:

①通过对方程的认识、一题多解的思维展示,发展学生勇于展示自己的品质;

②在解决富有挑战性的问题的过程中,培养学生敢于直面困难、勇于挑战的良好品质,鼓励学生大胆尝试,体会成功的喜悦,激发学生学习数学的兴趣.

三、教学过程分析

本节课设计了六个教学环节:第一环节:课前准备---构建知识结构;第二环节:基础知识重现;第三环节:情境中合作学习;第四环节:巩固提高;第五环节:课堂小结;第六环节:布置作业.

第一环节:课前准备----构建知识结构

活动内容:在授完本章新课知识后,让学生重新回顾本章内容,整理出本章的知识结构网络,理清各板块内容间的联系.此活动内容在上课前一天布置,让每一位学生都提前做好准备.上课时,选取有代表性的知识结构网络进行全班展示,其他同学对照自己的总结查缺补漏.同时,教师展示一下本章的框架,指出本节课的重点是:利用一元二次方程解决实际问题.

活动目的:学生在整理本章知识结构的同时,可以回顾本章的重点内容,细细体会解一元二次方程的“转化”思想,找寻利用方程解决实际问题的关键.

活动的实际效果:基于对学生两年来的不间断训练,绝大分学生可以对本章的主要内容以及注意点详细地总结出来,只是呈现形式略微不同.但也有少数同学只是泛泛地停留在书本上的定义、黑体字上,对于更深入的内容总结不到位,这部分同学在教学中往往也是需要特别关注的同学,需要我们教师从各方面来激发他们对数学学习的兴趣.

附部分学生的作业:

学生A 的本章知识结构

㈡本章的重点:一元二次方程的解法和应用.

㈢本章的难点:应用一元二次方程解决实际问题的方法.

学生B 的本章知识结构:

本章的知识体系包括三大部分:

(一)一元二次方程的定义:只含有一个未知数x 的整式方程,并且都可以化成ax 2+bx+c=0(a ,b ,c 为常数,a≠0)的形式,这样的方程叫做一元二次方程.在这里应注意的问题是:⑴只含有一个未知数;⑵未知数的最高指数必须是2;(3)二次项系数不为0)

(二)一元二次方程的解法:一元二次方程的常用解法有:⑴ 直接开平方法;⑵ 配方法;⑶ 公式法;⑷ 分解因式法.(注意:在运用配方法解一元二次方程时,一般先将二次项系数化为1;在运用公式法解一元二次方程时,必须先将方程化为ax 2+bx+c=0 (a≠0)的形式,同时判断b 2-4ac 是否≥0,如果b 2-4ac≥0,才可用公式

a

ac b b x 242-±-=求解) (三)一元二次方程的应用:花边、道路宽度(P 50 引例);梯子滑动(P 50 引例);增长率问题(P 75 例1);古算题(P 65 1);简单动点问题(P 78 例3);利润问题(P 76 例

2)(其关键是能找出题目中的等量关系,列出方程)

问题情景---- —元二次方程 1、定义:只含有一个未知数x 的整式方程,并且都可以化成ax 2+bx+c=0(a,b,c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程. ⑴ 直接开平方法 ⑵ 配方法 ⑶ 公式法 ax 2+bx+c=0 (a ≠0,b 2-4ac ≥0)的解为: a ac b b x 242-±-= ⑷ 分解因式法 2、解法: 3、应用 :其关键是能根据题意找出等量关系.

本章的重点和难点是:一元二次方程的解法和应用.

第二环节:基础知识重现

内容:以投影形式展示一组基础题目,内容涉及一元二次方程的定义和解法.其中,1、2小题采取口答形式,第3、4小题对比来做,体会其中的方法,第5小题采取3个同学分别板演、其他同学纠错、教师集中规范的方式来解决.

1、当m 时,关于x 的方程(m -1)12 m x +5+mx=0是一元二次方程.

2、方程(m 2-1)x 2+(m -1)x+1=0,当m _____ 时,是一元二次方程;当m 时,是一元一次方程.

3、将一元二次方程x 2-2x-2=0化成(x+a)2=b 的形式是 ;此方程的根是 .

4、用配方法解方程x 2+8x+9=0时,应将方程变形为 ( )

A.(x+4)2=7

B.(x+4)2=-9

C.(x+4)2=25

D.(x+4)2=-7

5、解下列一元二次方程

(1) 4x 2-16x+15=0 (用配方法解)

(2) 9-x 2=2x 2-6x(用分解因式法解)

(3) (x +1)(2-x)=1 (选择适当的方法解)

目的:上述这一组题目主要目的是巩固对一元二次方程定义的理解、熟练地解一元二次方程.其中,第1、2小题对比,加深学生对一元二次方程和一元一次方程定义的理解;第3、4小题均是对一元二次方程配方法掌握程度的检验,同时,这部分内容所涉及的方法也是后续“二次函数”学习的基础,此处,也为二次函数的学习奠定一定的基础;第5小题设置三道小题,分别限定方法让学生来解一元二次方程,让学生熟练方程的解法.

实际效果:对于第1题,学生普遍掌握比较好,但对于与之对比的第2题,有部分同学存在一定的问题,尤其是对于何时是一元一次方程,更是没有思路,通过这两道题的对比,使学生对方程的定义更加深了理解,也明确了判断一个方程是何类方程时,不仅要关注未知数的次数,还要注意系数;对于第5小题中的第(3)小题,部分学生直接用分解因式法来做,这也是本题设置的一个重要意图:当方程中等式右侧

相关文档
最新文档