人教版【说课稿】 等腰三角形的性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形的性质

.一、教材分析

1、教学内容:

本节课是新人教版八年级数学上册第十三章第三节《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质以外,还具有一些特殊的性质。它是轴对称图形,具有对称性。本节课就是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。

2、在教材中的地位与作用:

本节课是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。

3、教学重点与难点:

重点:等腰三角形的性质的探索和应用。

难点:等腰三角形的性质的验证。

二、教学目标:

知识技能:1、理解掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。

数学思考:1、观察等腰三角形的对称性发展形象思维。

2、通过实践、观察、证明等腰三角形的性质,发展学生合情推

理能力和演绎推理能力。

解决问题:1通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。

2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和

技能解决问题的能力,发展应用意识。

情感态度:通过引导学生对图形的观察、发现激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的

自信心。

教学准备:CAI课件,长方形的纸片,剪刀,常用画图工具。

三、教法及学法分析

1、教法设想

——让学生参与教学过程,注重培养学生的建构习惯,提高学生的数学素质。

《新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此,在本节课的教学设计中,我采用了“问题情境——建立模型——解释、应用与拓展”的教学模式,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识和基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心。

在教学中,遵循因材施教的原则,坚持以学生为主体,灵活运用教具直观教学、联想发现教学、设疑思考和逐步渗透等教学方法,充分发挥学生的主观能动性,注重学生探究能力的培养让学生去亲身体验知识的产生过程,拓展学生的创造性思维,加强对学生的启发、引导和鼓励培养学生大胆猜想、小心求证的科学研究思想,为学生创设情境,激发学生的求知欲和学习兴趣,促使他们不断克服学习中的被动心理,让学生在轻松愉快的学习中掌握知识、发展智力、受到教育。

采用多媒体辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。

2、学法设计

《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。教学中,让学生在教师的引导下,一边进行折叠重合的模型演示,一边进行阅读讨论,通过看、想、议、练等活动,自己“发现”等腰三角形的性质;从而避免了传统教学中的灌输式、注入式。这样做有利于活跃学生的思维,帮助他们探本求源,体现了“学习任何东西的最好途径是自己去发现”和“学问之道,问而得,不如求而得之深固也”的思想。把重点放在学生如何学这一方面,通过直观演示得到感性认识,在实践、观察、讨论、交流等活动中,让学生经历由验证归纳到推理论证的认知过程,掌握知识和技能,形成思想和方法,培养学生的造性思维。

四、教学过程设计

(一)回顾与思考(2′)

1、课件出示人字型屋顶的图象,提问:(1)、屋顶设计成了哪种几何图形?

(2)、它有什么特征?它是轴对称图形吗?对称轴是哪一条?(由日常生活中的等腰三角形引出课题,目的在于让学生体会数学来源于生活,培养学生从实际问题中抽象出数学问题的能力,同时,为学习新知创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题(2 ),其实就是等腰三角形三线合一性质的伏笔。)

2、学生思考回答后,教师再提问引入课题:等腰三角形还有其他的特殊性质吗?这节课我们就来研究等腰三角形的性质。(现代教学论认为:在正式进行探索和发现前,要让学生对探索的目标、意义有十分明确的认识,做好探索前的

物质准备和精神准备。)

(二)设计情境(4′)

剪一剪:教师引导学生将课前准备的长方形纸片按教材要求对折后剪下,再把它展开,看得到了一个什么图形?(通过让学生动手剪纸,获得图形的直观感受,并为下面的折纸操作做好铺垫,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲。)

想一想:剪纸过程中得到的△ABC 有什么特点?

学生思考并交流意见,教师归纳并板书:在△ABC 中,AB=AC,像这样有两边相等的三角形叫等腰三角形。

再让学生找一找生活中的等腰三角形。

(三)自主探究(14′)

1、提问:刚才剪出的等腰三角形ABC 是轴对称图形吗?它的对称轴是什么?

学生思考、回顾剪纸过程,动手把等腰三角形ABC 沿折痕对折,容易回答出ABC 是轴对称图形,折痕AD 所在的直线是它的对称轴。(让学生认识到动手操作也是一种验证方式。)

2、把剪出的等腰三角形ABC 沿折痕对折,找出其中重合的线段和角,并填在小黑板的表格中,你发现了什么现象?能猜一猜等腰三角形ABC 有哪些性质吗?

①∠B=∠C →两个底角相等

②BD=CD →AD 为底边BC 上的中线

③∠BAD=∠CAD →AD 为顶角∠BAC 的平分线

④∠ADB=∠ADC=90°→AD 为底边BC 上的高

教师在学生猜想的基础上,引导学生观察、完善、归纳出性质 1 和性质2:性质 1 等腰三角形的两个底角相等(简写成“等边对等角”);

性质 2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”)

(通过教师的引导,学生利用等腰三角形的对称性,讨论、归纳出等腰三角的两条性质,在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维。)

3、用全等三角形的知识验证等腰三角形的性质

(1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?用数学符号如何表达条件和结论?如何证明?

教师引导学生根据猜想的结论画出相应的图形,写出已知和求证,师生共同分析证明思路,强调以下两点:

相关文档
最新文档