高频电子线路第六章PPT课件
合集下载
高频电子线路完整章节完整课件(胡宴如版)
第2章 小信号选频放大器
主要内容:
LC谐振回路
小信号谐振放大器
集中选频放大器
2.1 LC谐振回路—概述
LC 谐振回路是高频电路里最常用 的无源选频网络,包括并联回路和串联回路 两种结构类型。
利用LC谐振回路的幅(度)频(率) 特性和相(位)频(率)特性,不仅可以进 行选频,即从输入信号中选择出有用频率分 量而抑制掉无用频率分量或噪声(例如在选 频放大器和正弦波振荡器中),而且还可以
1.1、通信与通信系统
4)信道:信息的传送通道,又称传输媒介。信道 可分为无线信道和有线信道两大类;
5)接收机:把由信道传送过来的已调信号取出并 进行处理,得到与发送相对应的原基带信号, 把这一过程称为解调;
6)输出变换器:把基带信号恢复成原来形式的信 息。
1.1、通信与通信系统
通信系统按传输的基带信号不同,分为模拟通信系统和 数字通信系统两大类。 1)模拟通信系统:直接传输模拟信号(即基带信号为 模拟信号)的通信系统,称为模拟通信系统。 典型的模拟通信系统的发送设备的组成框图和接收 设备的组成框图分别如图2和图3所示。 图2为调幅发射机的组成框图。 图3为超外差式调幅接收机的组成框图。 2)数字通信系统:传输数字信号(即基带信号为数字 信号)的通信系统,称为数字通信系统。
2.1.1 并联谐振回路的选频特 性
谐振回路
谐振回路由电感线圈和电容器组成,它具有选择 信号及阻抗变换作用。
LC并联谐振回路
图2.1.1是电感L、电容C和外加信号源组成的
并联谐振回路。r是电感L的等效损耗电阻,电容的
.
损耗一般可以忽略。 I
S
为电流源,U
为并联回路两
O
端输出电压。
高频电子技术6.ppt
高频功放:将高频信号进行功率放大的电路,实质是在输入 高频信号的控制下,将电源的直流功率转变成高频功率。
主要功用: 放大高频信号, 以高效率输出大功率,并且尽量保 证非线性失真小。
分类:低频功放:甲类(3600导通,效率50%) 乙类(1800导通,效率78.5%) 甲乙类(大于 1800导通,效率75%)
欠压状态。电压利用率低但可变, 临界状态。 A点在临界饱和线上;
临界状态时的负载电阻 记为:ROPT。
过压状态 A点在饱和区;
Rp 斜率gd 谐振放大器的工作状态由欠压 过压 逐步过渡。
临界
U,I Ic1m Ic0
o 欠压
U cm
P,
临界 过压 Rp
o
ROPT
欠压
Pd P0
Pc 临界 过压 Rp ROPT
6.1 高频功率放大概述
因为工作频率很高,相对频带却很窄,因此一般 都采用选频网络作为负载回路,工作状态选用丙 类、丁类。对于需要在很宽的范围内变换工作频 率的情况,还可采用宽带高频功率放大电路,它 不采用选频网络作负载,而是以频率响应很宽的 传输线变压器作负载。由于受功放管的限制,单 个功率放大电路输出功率是有限的,在大功率无 线电信号发射装置中,采用功率合成技术来增大 输出功率。
结论: 随着负载的增大,电路的工作状态经历了从欠压状
态到临界状态又到过压状态的变化 ; 临界状态:效率与输出功率最佳,是谐振放大器的
最佳工作状态; 欠压状态:效率低,恒流源; 过压状态:效率高,损耗小,恒压源。
图6-12 谐振功率放大电路的测试电路
例6.1 某高频谐振功率放大电路工作于临界状态,输出 功率为15W,且UCC=24V,导通角θ=70°,ξ=0.91。试 问:
高频电子线路(第六章 功率放大器)
0(当vB VBZ )
gC (vB VBZ )(当vB VBZ )
VBZ
近似为
iC
VBZ 是晶体管特征“折线化”后的截止电压
g C 是跨导(即第2段折线的斜率)
设vB VBB Vbm cost
考虑在流通角内 iC
vB
得iC g c (VBB Vbm cost VBZ )
低频功率放大器的负载为无调谐负载,工作在甲类或乙 类工作状态; 谐振功率放大器通常用来放大窄带高频信号(信号的通 带宽度只有其中心频率的1%或更小),其工作状态通常选为 丙类工作状态(c<90),为了不失真的放大信号,它的负 载必须是谐振回路。 12
(7)高频功放的主要技术指标
主要指标:
输出功率 效率(将电源能量转换成输出信号能量的能力)
38
第三步: 分析效率hC
仅与C 有关(后面将给大家证明 ,可记为g1 (C ) )
1 V I PO 2 cm cm1 1 Vcm I cm1 1 I cm1 hC P VCC I c 0 2 VCC I c 0 2 I c0
记为
VCC
vC
VCC
Vcm
1 g1 ( C ) 2
功放输出交流信号的功率为PO 晶体管集电极消耗的功率为PC 根据能量守恒定律,有P PO PC
PO PO 效率hC P PO PC
不难看出,设法降低Pc可以提高功放的效率
14
Pc与ic和Vc的关系
ic
+
Vc -
Pc的瞬时功率为ic和Vc的乘积
15
甲类、乙类、丙类放大器的演示
特点是负载是传输线变压器,可在很宽的频带
内对高频信号进行功率放大; 功率增益有限,一般用于中小功率级。
gC (vB VBZ )(当vB VBZ )
VBZ
近似为
iC
VBZ 是晶体管特征“折线化”后的截止电压
g C 是跨导(即第2段折线的斜率)
设vB VBB Vbm cost
考虑在流通角内 iC
vB
得iC g c (VBB Vbm cost VBZ )
低频功率放大器的负载为无调谐负载,工作在甲类或乙 类工作状态; 谐振功率放大器通常用来放大窄带高频信号(信号的通 带宽度只有其中心频率的1%或更小),其工作状态通常选为 丙类工作状态(c<90),为了不失真的放大信号,它的负 载必须是谐振回路。 12
(7)高频功放的主要技术指标
主要指标:
输出功率 效率(将电源能量转换成输出信号能量的能力)
38
第三步: 分析效率hC
仅与C 有关(后面将给大家证明 ,可记为g1 (C ) )
1 V I PO 2 cm cm1 1 Vcm I cm1 1 I cm1 hC P VCC I c 0 2 VCC I c 0 2 I c0
记为
VCC
vC
VCC
Vcm
1 g1 ( C ) 2
功放输出交流信号的功率为PO 晶体管集电极消耗的功率为PC 根据能量守恒定律,有P PO PC
PO PO 效率hC P PO PC
不难看出,设法降低Pc可以提高功放的效率
14
Pc与ic和Vc的关系
ic
+
Vc -
Pc的瞬时功率为ic和Vc的乘积
15
甲类、乙类、丙类放大器的演示
特点是负载是传输线变压器,可在很宽的频带
内对高频信号进行功率放大; 功率增益有限,一般用于中小功率级。
高频电子线路第6章.ppt
第六章 反馈控制电路
2.AGC控制电压的产生-电平检测电路 (1)平均值型AGC电路 平均值型AGC电路适应于被控信号中含有一个不 随有用信号变化的平均值的情况。如调幅广播信号, 其平均值是未调载波的幅度。调幅接收机的自动增 益控制广泛采用这种电路。
第六章 反馈控制电路
图6.2-4 平均值型电平检测电路
第六章 反馈控制电路
6.3-1 自动频率微调系统方框图
第六章 反馈控制电路
自动频率控制过程是利用误差信号的反馈作用来控制 被稳定的振荡器频率,使之稳定。误差信号是由鉴频 器产生的,它与两个比较频率源之间的频率差成比例。 因而达到最后稳定状态时,两个频率不能完全相等, 必须有剩余频差。
第六章 反馈控制电路
第六章 反馈控制电路
控制放大器增益的方法主要有:控制放大器本身的某些参 数和在放大器级间插入可控衰减器。
利用控制放大器本身的参数改变增益的方法有改变发射 极电流,改变放大器负载,改变差分对电流分配比以及改 变负反馈等多种形式。
在放大器各级之间插入由二极管和电阻网络构成的电控 衰减器来控制增益,也是增益控制的一种较好的方法。
AFC电路应用较广,下面就以接收机中的自动频率微调电 路为例,简要介绍其工作原理。图6.3-2为带AFC电路的 调频接收机方框图。
图6.3-2调频接收机的AFC系统方框图
第六章 反馈控制电路
接收机是以额定中频为鉴频器的中心频率,亦作为 AFC系统的标准频率。
其中,高放为可调放大器,本振与之统调。因为调频 接收机本身有鉴频器,该AFC系统无需再另加鉴频器。 但是,必须考虑到接收机的鉴频器输出不仅含有AFC的 反馈控制电压,还有调频解调信号的电压,它也会控制 本振频率的改变。为了消除这一影响,在鉴频器后必须 加入低通滤波器。本振频率漂移和接收调频信号的中心 频率漂移均为缓慢变化,由此引起的电压变化可以通过 低通滤波器转变为电压的变化。
高频电子线路上课ppt
还原
所传送信息
3. 传输信道(无线信道、有线信道)
下面主要介绍无线信道
电磁波谱
无线电波、红外线、可见光、紫外线、X射线、γ射线都是电 磁波,按波长或频率的不同顺序排列起来,称做电磁波谱. 可见光 无线电波 微波 红外线 X射线 紫外线 射线 f/HZ /m
104 106 108 1010 1012 1014 1016 1018 -4 10-6 10-8 10-10 104 102 100 10-2 10
本书涉及的频率范围:几百kHz ~ 几百MHz 例:300KHz~300MHz 对应波长 1000m ~1m
无线电频谱
课程性质:
电子、通信类专业的重要专业基础课。 与相关课程之间的关系:
先修课程:电路分析、模拟电子线路、信号与系统。 电路(是基础) 模拟电子线路(低频电路) 信号与系统(分析工具)
100~1000m
300~3000KHz
中频 (MF)
高频 (HF)
地波,天波
广播,通信, 导航
广播, 中距离通信 移动通信,电视广播, 调频广播,雷达导,航 等 通信,中继通信,卫星 通信,电视广播,雷达 中继通信,雷达,卫星 通信 微波通信,雷达
10~100m
3~30MHz
天波,地波
1~10m
30~300MHz
信 道 解 码
同 步
保 密 解 码
压 缩 解 码
信 宿
信源编码
噪 声
信源解码
发送端
接收端
数字通信系统模型
(3)按传输媒介(信道)的物理特征可分为: 有线通信系统和无线通信系统
有线(包括光纤)通信系统——利用导线(光导 纤维) 传送信息; 无线通信系统——利用电磁波传送信息; 在无线模拟通信系统中,信道便是指自由空间。
高频电路第六章课件
u AM
uc (b)
uc (b)
Department of P.&E.I.S
(b)
高频电子线路
调幅波的频谱和带宽
常数 (a)
u
+
× uc
u AM
将式(6―5)用三角公式展开,可得
m m u AM (t ) UC cos ct U cos(c + )t ×U C cos(u AM )t c uC 2 2
(d)
过调幅
(e)
为保证不出现过调制,要求m ≤1 。
0 m>1 t
Department of P.&E.I.S
高频电子线路
调幅波的表达式
一般传送的信号并非为单一频率的信号,例如是一 连续频谱信号f(t),这时,可用下式来描述调幅波:
u AM (t ) UC [1 mf (t )]cos ct
若将调制信号分解为
f (t ) U n cos( n t n )
n 1
(6―6 )
则调幅波表示式为
u AM (t ) U C [1 U n cos( n t n )]cos c t
n 1
(6―7)
Department of P.&E.I.S
由于双边带调幅信号 的包络不能反映调制信 号, 所以包络检波法不 适用, 而同步检波是进 行双边带调幅信号解调 的主要方法。
调幅度ma反映了调幅的强弱程度。
Department of P.&E.I.S
高频电子线路 u (t)
AM
(b) m<1
0
t
mU c Uc
调幅波的波形
0
(c)
u AM (t)
高频电子线路第六章PPT课件
coqsc
VBBVBZ Vbm
iC costcoqsc iCmax 1coqsc
当t=0时,iC= iC max = gcVbm(1–cos qc)
取决于脉冲高度iC max与通角qc
iC costcoqsc iCmax 1coqsc
iCIc0Icm 1cotsIcm c2o2st Icm ncon st
2. 要解决的问题
提高输出功率 减小失真(线性度) 管子的保护 提高效率
直流电输源出提功供率的直 率流 = PP功 o
3. 提高效率的途径
直流电输源出提功供率的直 率流 = PP功 o =
Po
Po
PT
P (直流)电 = P o(交 源 流 )功 P T ( 功 直 率 率 流 ) 功
P
1 T
1. 掌握高频功率放大器的工作原理
2. 掌握高频功率放大器的折线近似分析法 3. 熟悉高频功率放大器的电路组成原则与匹配
网络的计算 4. 掌握传输线变压器的工作原理 5. 了解倍频器的工作原理
6. 理解放大器的欠压、临界、过压三种工作状态
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
由傅里叶级数求系数,得
q IC 02 1 π qqcciC dtiC ma0 x(c)
ic m ax
o
t
2qc
图6.3.3 尖顶余弦脉冲
q Icm n 1 π q q c c iC co n ω s dt ω iC man x (c)
其中:尖顶余弦脉冲的分解系数
0(qc)siqn(1c cqcocqcso)qcs
1 0 2
0.1 0
3
1
0
高频电子线路 第六章 2
m 1
高频电子线路
第6章
振幅调制、解调及混频
第一节
振幅调制
已调波信号的幅度随调制信号而变化。因此,调幅信 号幅度的包络线近似为调制信号的波形。只要能取出这 个包络信号就可实现解调。
U
高频电子线路
第6章
振幅调制、解调及混频
第一节
(2)普通调幅波的频谱与带宽 (a)
Uc
0 F
振幅调制 f
uAM (t ) U m (t ) cos c t U C [1 m cos t ]cos c t
R Ri 2
高频电子线路
第6章
振幅调制、解调及混频
第一节
振幅调制
根据能量守恒
θ 很小时,
Uo Kd cos 1 Um
2 2 Um Uo 2 Ri R
R Ri 2
高频电子线路
第6章
振幅调制、解调及混频
第一节
振幅调制
3.检波器的失真 二极管峰值包络检波器存在两种失真。 (1) 惰性失真
(3)
的导通角 很小,所以工 作在输入信号的峰值附近
i
高频电子线路
第6章
振幅调制、解调及混频
第一节
振幅调制
(4)输出电压接近于高频正弦
波的峰值, Uo≈Um (5)二极管电流iD包含平均 分量Iav及高频分量。
高频电子线路
第6章
振幅调制、解调及混频
第一节
振幅调制
2、输入AM波
ui (t ) Um (1 m cos t ) cos c t
3
3 gD R
高频电子线路
第6章
振幅调制、解调及混频
第一节
Kd 1 .0 0 .8 0 .6 0 .4 0 .2 0 gDR 20 40 60 80 1 00
高频电子线路第六章 高频功率放大器
对于欠压和临界状态,由于集电极电流为脉冲, 其直流分量和基波分量可按脉充分解系数求得。
6.3.4 高频功放的负载特性(输出特性) 高频功放工作于非线性状态,负载特性是指在晶体 管及VCC,VBB Ubm一定时,改变负载电阻RP,功放的各 处电压、功率及效率η随RP变化的关系。 1. Ico 、Icm1与RP关系曲线 在欠压状态,随Rp增大,ICO、ICm1基本不变,在 过压区,随着Rp增大,ic出现下凹,ICO、IC1m减小, 如图6-5(a)。
图 6-5 高频功放的负载特性
2. UCm与RP的关系曲线 如图6-5(a),欠压区内,Icm1变化很小;UCm1 =Icm1RP随RP增大而上升; 在过压区,RP线性增 加,Icm1减小较慢,UCm稍有上升。
3.功率,效率P= 、PO、 ηc与RP的关系曲线 在欠压状态,随Rp增大,P=基本保持不变,PO线性 增大,ηc逐渐增大。进入过压状态,随Rp增大,P= 减少。由此看出,临界状态输出功率最大。而集 电极效率在弱过压区由于PO下降较P=下降缓慢,ηc 略增,在临近临界线的弱过压区,ηc出现最大值。图 6-5(b)是随Rp变化的规律。
=g1(θc)ξ/2 (g1(θc)= α1 (θc)/ α0 (θc),称为波形系数)
6.3.2 高频功放的uBE~uCE的关系
图6-3 高频功放uBE~uCE的关系
动特性是指当加上激励信号及接上负载阻抗时, 晶体管集
电极电流iC与电压uCE的关系曲线,它在ic~uCE坐标系中是
一条曲线。图6-3表示在动态特性一定时uBE~uCE的关系。
(6-10)
直流输入功率与集电极输出高频功率之比就是集 电极定义集电极效率。
由式(6 -7)、(6-8)可以得到输出功率Po和集电极损 耗功率Pc之间的关系为:
6.3.4 高频功放的负载特性(输出特性) 高频功放工作于非线性状态,负载特性是指在晶体 管及VCC,VBB Ubm一定时,改变负载电阻RP,功放的各 处电压、功率及效率η随RP变化的关系。 1. Ico 、Icm1与RP关系曲线 在欠压状态,随Rp增大,ICO、ICm1基本不变,在 过压区,随着Rp增大,ic出现下凹,ICO、IC1m减小, 如图6-5(a)。
图 6-5 高频功放的负载特性
2. UCm与RP的关系曲线 如图6-5(a),欠压区内,Icm1变化很小;UCm1 =Icm1RP随RP增大而上升; 在过压区,RP线性增 加,Icm1减小较慢,UCm稍有上升。
3.功率,效率P= 、PO、 ηc与RP的关系曲线 在欠压状态,随Rp增大,P=基本保持不变,PO线性 增大,ηc逐渐增大。进入过压状态,随Rp增大,P= 减少。由此看出,临界状态输出功率最大。而集 电极效率在弱过压区由于PO下降较P=下降缓慢,ηc 略增,在临近临界线的弱过压区,ηc出现最大值。图 6-5(b)是随Rp变化的规律。
=g1(θc)ξ/2 (g1(θc)= α1 (θc)/ α0 (θc),称为波形系数)
6.3.2 高频功放的uBE~uCE的关系
图6-3 高频功放uBE~uCE的关系
动特性是指当加上激励信号及接上负载阻抗时, 晶体管集
电极电流iC与电压uCE的关系曲线,它在ic~uCE坐标系中是
一条曲线。图6-3表示在动态特性一定时uBE~uCE的关系。
(6-10)
直流输入功率与集电极输出高频功率之比就是集 电极定义集电极效率。
由式(6 -7)、(6-8)可以得到输出功率Po和集电极损 耗功率Pc之间的关系为:
《高频电子线路》课件
《高频电子线路 》PPT课件
目录
• 高频电子线路概述 • 高频电子线路基础知识 • 高频电子线路中的信号传输 • 高频电子线路中的放大器 • 高频电子线路中的滤波器 • 高频电子线路中的混频器与变频
器
01
高频电子线路概述
高频电子线路的定义与特点
总结词
高频电子线路是研究高频信号传输、处理和应用的电子线路。其特点包括信号频率高、频带宽、信号传输速度快 、信号失真小等。
02
高频电子线路基础知识
高频电子线路的基本元件
电阻器
用于限制电流,调节电 压,起到分压、限流的
作用。
电容器
用于存储电荷,实现信 号的滤波、耦合和旁路
。
电感器
用于存储磁场能量,实 现信号的滤波、选频和
延迟。
晶体管
高频电子线路中的核心 元件,用于放大和开关
信号。
高频电子线路的基本电路
01
02
03
04
混频器与变频器的应用实例
混频器的应用实例
在无线通信中,混频器常用于将信号从低频转换为高频,或者将信号从高频转 换为低频。例如,在接收机中,混频器可以将射频信号转换为中频信号,便于 后续的信号处理。
变频器的应用实例
在雷达系统中,变频器可以将发射信号的频率改变,从而实现多普勒测速或者 目标识别。在电子对抗中,变频器可以用于干扰敌方雷达或者通信系统。
传输。
音频系统中的扬声器驱动电路
02
利用音频放大器将音频信号放大后驱动扬声器,实现声音的重
放。
测量仪器中的前置放大器
03
利用电压或电流放大器将微弱信号放大后传输至后续电路,实
现信号的处理和分析。
05
高频电子线路中的滤波器
目录
• 高频电子线路概述 • 高频电子线路基础知识 • 高频电子线路中的信号传输 • 高频电子线路中的放大器 • 高频电子线路中的滤波器 • 高频电子线路中的混频器与变频
器
01
高频电子线路概述
高频电子线路的定义与特点
总结词
高频电子线路是研究高频信号传输、处理和应用的电子线路。其特点包括信号频率高、频带宽、信号传输速度快 、信号失真小等。
02
高频电子线路基础知识
高频电子线路的基本元件
电阻器
用于限制电流,调节电 压,起到分压、限流的
作用。
电容器
用于存储电荷,实现信 号的滤波、耦合和旁路
。
电感器
用于存储磁场能量,实 现信号的滤波、选频和
延迟。
晶体管
高频电子线路中的核心 元件,用于放大和开关
信号。
高频电子线路的基本电路
01
02
03
04
混频器与变频器的应用实例
混频器的应用实例
在无线通信中,混频器常用于将信号从低频转换为高频,或者将信号从高频转 换为低频。例如,在接收机中,混频器可以将射频信号转换为中频信号,便于 后续的信号处理。
变频器的应用实例
在雷达系统中,变频器可以将发射信号的频率改变,从而实现多普勒测速或者 目标识别。在电子对抗中,变频器可以用于干扰敌方雷达或者通信系统。
传输。
音频系统中的扬声器驱动电路
02
利用音频放大器将音频信号放大后驱动扬声器,实现声音的重
放。
测量仪器中的前置放大器
03
利用电压或电流放大器将微弱信号放大后传输至后续电路,实
现信号的处理和分析。
05
高频电子线路中的滤波器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丙类(C类) 放大器的效 率最高,但 是波形失真 也最严重。
i C I c 0 I c 1 s m t i I c n 2 s m 2 i t n I c n s m n i t n
low 0 ω 2ω 3ω
nω high
通过谐振负载,从丙类余弦周期脉冲里恢复 基波完整周期信号。
窄带谐振放大器
高频(射频): 高频窄带信号 (以调幅为例 )
已调信号 v o ( t) V o1 m m fco tc so t s
low
ω
high
AM广播信号: 535kHz~1605kHz,BW=10kHz
f max 3 f min
BW 10k 1 f0 100k0 100
7. 功放设计中各方面的折中关系
高频区:0.2fTf fT
故直接进行高频区或中频区的分析 和计算是相当困难的。本节将从低频区 的静态特性来解析晶体管的高频功放的 工作原理。
0.5fβ fβ 0.2fT fT
为了对高频功率放大器进行定量分析与计算, 关键在于求出电流的直流分量Ic0与基频分量Icm1。 最好能有一个明确的数学表达式来显示二者与通角 θc的关系,以便于电路设计和调试时,对放大器工 作状态的选择指明方向。
提高输出功率 减小失真(线性度) 管子的保护 提高效率 遗留问题:(1) 丙类导通角<180o,何时最优? (2) 放大、临界、饱和,何处最优?
直流电输源出提功供率的直 率流 = PP功 o =
Po
Po
Pc
Pc T1
T
0 iCvCEdt
丙类工作状态。
i B / iC 转移
特性
iC 图 6.2.1 高频功率放大器的基本电路
vCE V CC V cm cots
iCIc0Icm 1cotsIcm c2o2st Icm ncon st
直流功率:P==VCC Ic0
输出交流功率:
Po
12Vcm
Icm1
Vc2m 2Rp
1 2
Ic2m1Rp
集电极效率:
vCE V CC V cm co ts
c
Po P
12Vcm Icm1 VCCIc0
考虑到谐振功率放大器工作于丙类(非线性、 大信号)状态,采取图解法与数学解析分析相折中 的办法:折线近似分析法。
iC=gcrvCE 图 6.3.1 晶体管的输出特性及其理想化
iC =gc(vBE–VBZ) (vBE >VBZ) 图 6.3.2 晶体管静态转移特性及其理想化
i B / iC 转移
vBE V BB V bm cots
(b)
iC
v bEmax
t
1. iC 与vBE同相,与vCE反相;
2. iC 脉冲最大时,vCE最小;
1
Pc T
T
0 iCvCEdt
3. 导通角和vCEmin越小,Pc越小;
电路正常工作(丙类、谐振)时, 外部电路关系式:
vBE V BB 出功率 减小失真(线性度) 管子的保护 提高效率
直流电输源出提功供率的直 率流 = PP功 o
3. 提高效率的途径
直流电输源出提功供率的直 率流 = PP功 o =
Po
Po
PT
P (直流)电 = P o(交 源 流 )功 P T ( 功 直 率 率 流 ) 功
P
1 T
有源器件 丙类
谐振回路
输入回路
晶体管
输出回路
3
5
Tr1
T
2
L1
4
C
yL
Tr2
6. 谐振(高频)功放与非谐振(低频)功放的比较
相同: 要求输出功率大,效率高 线性(大信号)
不同:工作频率与相对频宽不同,谐振与非谐振
低频(音频): 20Hz~20kHz
fmax 1000 f m in
BW 20k 2 f0 10k
VBB
理想化
t
- qc
o V BZ
vbe - qc 0 +qc
+ q0c
vbe
V bm
t
vBE V BB V bm cots
电流、电压波形
vCE
V cm vv CC E E V CC V cm cots
或电压 电流
iC i vCE min
c max
0 qc
V BZ
V CC
-V BB
V bm vBE
coqsc
VBBVBZ Vbm
iC costcoqsc iCmax 1coqsc
当t=0时,iC= iC max = gcVbm(1–cos qc)
取决于脉冲高度iC max与通角qc
iC costcoqsc iCmax 1coqsc
iCIc0Icm 1cotsIcm c2o2st Icm ncon st
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
1. 功率放大电路的主要特点 非线性(大信号)
⑴ 允许轻微非线性波形失真。
输出功率
Po Vo2mIo2m12Vom Iom
要想Po大,应使Vom 和Iom都要大。 ABQ 功率三角形
⑵ 管子工作在接近极限状态。
12g1(qc)
电压利用系数 V cm V CC
波形系数
g1(qc )
Icm1 Ic0
一般利用晶体管的静态特性曲线,但由于晶体管的 静态特性曲线与频率有关,如右图所示了 与 f 之间的 关系。而通常所说的静态特性曲线是指低频区:
低频区: f 0.5fβ
中频区: 0.5fβf 0.2fT
β0
1. 掌握高频功率放大器的工作原理
2. 掌握高频功率放大器的折线近似分析法 3. 熟悉高频功率放大器的电路组成原则与匹配
网络的计算 4. 掌握传输线变压器的工作原理 5. 了解倍频器的工作原理
6. 理解放大器的欠压、临界、过压三种工作状态
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
T
0 VCCiCdt
vi= 0
vi= V0sinωt
降低静态功耗,即减小静态电流。
4. 工作状态分类
(a)甲类 class-A amplifier
(b)乙类 class-B amplifier
(c)甲乙类 class-AB amplifier
(d)丙类 class-C amplifier
5. 效率与失真矛盾的解决
特性
iC
集电极余弦脉冲电流:
iC =gc(vBE–VBZ) (vBE >VBZ)
t
VBB
理想化
t
-
q c
0 V BZ
0
+q c
v be
-
q c
o
+q c
v
be
V bm
vBE V BB V bm cots
=gc(Vbmcosωt–VBZ-VBB)
=gcVbm (cosωt–cos qc)
当t= qc时,iC= 0
i C I c 0 I c 1 s m t i I c n 2 s m 2 i t n I c n s m n i t n
low 0 ω 2ω 3ω
nω high
通过谐振负载,从丙类余弦周期脉冲里恢复 基波完整周期信号。
窄带谐振放大器
高频(射频): 高频窄带信号 (以调幅为例 )
已调信号 v o ( t) V o1 m m fco tc so t s
low
ω
high
AM广播信号: 535kHz~1605kHz,BW=10kHz
f max 3 f min
BW 10k 1 f0 100k0 100
7. 功放设计中各方面的折中关系
高频区:0.2fTf fT
故直接进行高频区或中频区的分析 和计算是相当困难的。本节将从低频区 的静态特性来解析晶体管的高频功放的 工作原理。
0.5fβ fβ 0.2fT fT
为了对高频功率放大器进行定量分析与计算, 关键在于求出电流的直流分量Ic0与基频分量Icm1。 最好能有一个明确的数学表达式来显示二者与通角 θc的关系,以便于电路设计和调试时,对放大器工 作状态的选择指明方向。
提高输出功率 减小失真(线性度) 管子的保护 提高效率 遗留问题:(1) 丙类导通角<180o,何时最优? (2) 放大、临界、饱和,何处最优?
直流电输源出提功供率的直 率流 = PP功 o =
Po
Po
Pc
Pc T1
T
0 iCvCEdt
丙类工作状态。
i B / iC 转移
特性
iC 图 6.2.1 高频功率放大器的基本电路
vCE V CC V cm cots
iCIc0Icm 1cotsIcm c2o2st Icm ncon st
直流功率:P==VCC Ic0
输出交流功率:
Po
12Vcm
Icm1
Vc2m 2Rp
1 2
Ic2m1Rp
集电极效率:
vCE V CC V cm co ts
c
Po P
12Vcm Icm1 VCCIc0
考虑到谐振功率放大器工作于丙类(非线性、 大信号)状态,采取图解法与数学解析分析相折中 的办法:折线近似分析法。
iC=gcrvCE 图 6.3.1 晶体管的输出特性及其理想化
iC =gc(vBE–VBZ) (vBE >VBZ) 图 6.3.2 晶体管静态转移特性及其理想化
i B / iC 转移
vBE V BB V bm cots
(b)
iC
v bEmax
t
1. iC 与vBE同相,与vCE反相;
2. iC 脉冲最大时,vCE最小;
1
Pc T
T
0 iCvCEdt
3. 导通角和vCEmin越小,Pc越小;
电路正常工作(丙类、谐振)时, 外部电路关系式:
vBE V BB 出功率 减小失真(线性度) 管子的保护 提高效率
直流电输源出提功供率的直 率流 = PP功 o
3. 提高效率的途径
直流电输源出提功供率的直 率流 = PP功 o =
Po
Po
PT
P (直流)电 = P o(交 源 流 )功 P T ( 功 直 率 率 流 ) 功
P
1 T
有源器件 丙类
谐振回路
输入回路
晶体管
输出回路
3
5
Tr1
T
2
L1
4
C
yL
Tr2
6. 谐振(高频)功放与非谐振(低频)功放的比较
相同: 要求输出功率大,效率高 线性(大信号)
不同:工作频率与相对频宽不同,谐振与非谐振
低频(音频): 20Hz~20kHz
fmax 1000 f m in
BW 20k 2 f0 10k
VBB
理想化
t
- qc
o V BZ
vbe - qc 0 +qc
+ q0c
vbe
V bm
t
vBE V BB V bm cots
电流、电压波形
vCE
V cm vv CC E E V CC V cm cots
或电压 电流
iC i vCE min
c max
0 qc
V BZ
V CC
-V BB
V bm vBE
coqsc
VBBVBZ Vbm
iC costcoqsc iCmax 1coqsc
当t=0时,iC= iC max = gcVbm(1–cos qc)
取决于脉冲高度iC max与通角qc
iC costcoqsc iCmax 1coqsc
iCIc0Icm 1cotsIcm c2o2st Icm ncon st
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
1. 功率放大电路的主要特点 非线性(大信号)
⑴ 允许轻微非线性波形失真。
输出功率
Po Vo2mIo2m12Vom Iom
要想Po大,应使Vom 和Iom都要大。 ABQ 功率三角形
⑵ 管子工作在接近极限状态。
12g1(qc)
电压利用系数 V cm V CC
波形系数
g1(qc )
Icm1 Ic0
一般利用晶体管的静态特性曲线,但由于晶体管的 静态特性曲线与频率有关,如右图所示了 与 f 之间的 关系。而通常所说的静态特性曲线是指低频区:
低频区: f 0.5fβ
中频区: 0.5fβf 0.2fT
β0
1. 掌握高频功率放大器的工作原理
2. 掌握高频功率放大器的折线近似分析法 3. 熟悉高频功率放大器的电路组成原则与匹配
网络的计算 4. 掌握传输线变压器的工作原理 5. 了解倍频器的工作原理
6. 理解放大器的欠压、临界、过压三种工作状态
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
T
0 VCCiCdt
vi= 0
vi= V0sinωt
降低静态功耗,即减小静态电流。
4. 工作状态分类
(a)甲类 class-A amplifier
(b)乙类 class-B amplifier
(c)甲乙类 class-AB amplifier
(d)丙类 class-C amplifier
5. 效率与失真矛盾的解决
特性
iC
集电极余弦脉冲电流:
iC =gc(vBE–VBZ) (vBE >VBZ)
t
VBB
理想化
t
-
q c
0 V BZ
0
+q c
v be
-
q c
o
+q c
v
be
V bm
vBE V BB V bm cots
=gc(Vbmcosωt–VBZ-VBB)
=gcVbm (cosωt–cos qc)
当t= qc时,iC= 0