第一章_随机事件及其概率习题

合集下载

随机事件及其概率习题

随机事件及其概率习题

第一章随机事件及其概率习题一 、填空题当A , B 互不相容时,P (A U B)=亠卩(AB )= 0_^ 当 B A 时,P(A+B = _;_RAB = 若 P(A) ,P(B) ,P(AB) , P(A B) 1P(A B)= 119 9.事件 A,B,C 两两独立,满足 ABC , P (A) P (B) P (C)-,且 P ( A+B+C )=—216则 P(A)=??10.已知随机事件 A 的概率P(A) 0.5,随机事件 B 的概率P(B) 0.6,及条件概率P(B | A) 0.8,则和事件 A B 的概率P(A B)1.设样本空间 {x|0x 2}, 事件A {x|l1x 1}, B {x|-4{x|0 x ^} U{x|-4 2x 2},- 1 AB{x|-4x 1} U{x|1 x 2.连续射击一目标,A i 表示第i 次射中,直到射中为止的试验样本空间,则=A ; A I A 2; L ; A 1 A 2 L A n 1A n ; L.3.—部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为 1、2、3、4概率为 — 124. 一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概 率是 c m c nm /c N5.某地铁车站,每5分钟有一趟列车到站, 乘客到达车站的时刻是任意的, 则乘客侯 车时间不超过3分钟的概率为 6•在区间(0, 1 )中随机地取两个数,则事件“两数之和小于 6”的概率为57. 已知 RA)= P(B)=(1) ;P(AB)12.假设一批产品中一、二、三等品各占60% 30% 10%从中随机取一件结果不是三等品,则取到一等品的概率为13. 已知 P(A) a,P (B|A) b,则卩(AB )14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率162 1 215.甲、乙、丙三人入学考试合格的概率分别是 -,1,-,三人中恰好有两人合格的概3 2 5率为2/5 .16. 一次试验中事件 A 发生的概率为 p ,现进行n 次独立试验,则A 至少发生一次的概率为 1 (1 p)n; A 至多发生一次的概率为17.甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为二、选择题3.如果事件A, B 有B A,则下述结论正确的是(C ).产品不全是合格品”,则下述结论正确的是(B ).5. 若二事件A 和B 同时出现的概率 P( AB )=0则(C ).(C ) AB 未必是不可能事件;(D ) P( A )=0或P( B )=0.a ab .(1 P)n np(1 p)n 11.以A 表示事件“甲种产品畅销,乙种产品滞销” 则其对立事件 A 为(D ).(A ) “甲种产品畅销,乙种产品滞销” (B ) “甲、乙两种产品均畅销” (C ) “甲种产品滞销”(D ) “甲种产品滞销或乙种产品畅销”2.对于任意二事件 A 和 B,与A BB 不等价的是(D ).(A) A B;(B) B A;(C) AB(D) AB(A ) A 与B 同时发生; (B) A 发生,B 必发生; (C) A 不发生B 必不发生; (D B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个(A) A B;(B) A C;(C) B C;(D) A B C.(A ) A 和B 不相容;(B ) AB 是不可能事件;6.对于任意二事件A和B有P(A B) (C ).(D) P(A) P (B) P(B) P(AB).8.设A , B 是任意两个概率不为 0的不相容的事件,则下列事件肯定正确的(D ).(A) A 与 B 不相容;(B) A 与 B 相容;(C) P( AB = P( A )P( B); (D) P( A-护P( A ). 9.当事件A B 同时发生时,事件C 必发生则(B ).(C) 事件A 和 B 互不独立;13 .设A, B 是任意二事件,且P(B) 0, P(A|B) 1 ,则必有(C ).(A) P(A B) P(A); (B) P(A B) P(B); (C) P(A B) P(A);(D)P(AB) P(B).14. 袋中有 5个球,其中2个白球和 3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D .(C ) P (A) P( AB); (A) P(C) P(A) P(B) 1;(C) P(C) P(AB);(B) P(C) P(A) P(B) 1; (D) P(C) P(A B).10.设A,B 为两随机事件,且 A ,则下列式子正确的是 (A ).(A ) P(A B) P(A);(B) P(AB) P(A); (C) P(B|A) P(B);(D)P(B A) P(B) P(A).11.设A 、B 、C 是二随机事件,且 P(C) 0,则下列等式成立的是 (B).(A) P(A|C) P(A|C) (C) P(A|C) P(A|C)1; 1;(B) P(AUB|C) P(A|C) P(B|C) P (AB|C); (D) P(AUB|C) P(A|C) P(B|C).12.设A, B 是任意两事件B,P(B) 0,则下列选项必然成立的是(B ).(A) P (A) P(A|B); (C) P(A) P(A|B);(B) P(A) P(A|B); (D) P(A) P(A| B). 1(A)1;(B) |;4(C) 1;(D) I515.设 0 P(A) 1, 0 P(B) 1, P(A|B) P(A|B) 1,则(D ).(A) 事件A 和 B 互不相容;(B)事件A 和B 互相对立;事件A 和B 相互独立.p (0 p 1),则此人第4 (D)16.某人向同一目标重复射击,每次射击命中目标的概率为次射击恰好第2次命中目标的概率为(C).三、解答题1.写出下列随机实验样本空间:(1)同时掷出三颗骰子,记录三只骰子总数之和;(2) 10只产品中有3次产品,每次从中取一只(取出后不放回) ,直到将3只次品都取 出,记录抽取的次数;⑶对某工厂出厂的产品进行检查,合格的盖上“正品” ,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题

第一章 随机事件和概率一、选择题1. 设A, B, C 为任意三个事件, 则与A 一定互不相容的事件为(A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃2.对于任意二事件A 和B, 与 不等价的是(A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3. 设 、 是任意两个事件, , , 则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤.C ()()P A P A B > .D ()()P A P A B ≥4. 设 , , , 则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立.C 事件A 与B 相互对立 .D 事件A 与B 互不独立5. 设随机事件 与 互不相容, 且 , 则 与 中恰有一个发生的概率等于( ).A p q + .B p q pq +-.C ()()11p q -- .D ()()11p q q p -+-6. 对于任意两事件 与 , ( ).A ()()P A P B - .B ()()()P A P B P AB -+.C ()()P A P AB - .D ()()()P A P A P AB +- 7. 若 、 互斥, 且 , 则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A >.C ()()()P AB P A P B = .D ()0P B A =8. 设 , 则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9. 设 、 互不相容, , 则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A >.C ()()()P AB P A P B = .D ()()P A B P A -=10. 设 、 、 为三个事件, 已知 , 则 ( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111. 设A, B 是两个随机事件, 且0<P(A)<1, P(B)>0, , 则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠(C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠12. 随机事件A, B, 满足 和 , 则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P (D )0)(=-B A P13. 设随机事件A 与B 互不相容, , , 则下面结论一定成立的是(A )A, B 为对立事件 (B ) , 互不相容 (C ) A, B 不独立 (D )A, B 独立14.对于事件A 和B, 设 , P(B)>0, 则下列各式正确的是(A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+ (D ))()(A P B A P =+15. 设事件A 与B 同时发生时, 事件C 必发生, 则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P(C ) )()(AB P C P = (D ))()(B A P C P ⋃=16. 设A,B,C 是三个相互独立的随机事件, 且0<P(C)<1。

《概率论与数理统计》第01章习题解答

《概率论与数理统计》第01章习题解答

第一章 随机事件及其概率第1章1、解:(1){}2,3,4,5,6,7S = (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P 4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。

解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48 5、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率(1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。

第一章 随机事件及其概率 模拟练习(A卷答案)

第一章 随机事件及其概率 模拟练习(A卷答案)
10.市场上供应的某种商品由甲、乙、丙三厂生产,甲厂占 50%,乙厂占 30%,丙 厂占 20%,甲厂产品的正品率为 96%,乙厂产品的正品率为 92%,丙厂产品的正品率为 86%,求: (1)从市场上任买一件这种商品是正品的概率; (2)从市场上已买一件正品 是甲厂生产的概率.
则:P A1 0.5, P A2 0.3, P A3 0.2, (1) P B P BA1 P BA2 P BA3
9. 甲乙两人独立地向同一目标各射击一次, 若甲的命中率为 p , 乙的命中率为 0.75, 已知恰好有一人击中目标的概率为 0.45,求甲的命中率 p 的值.
解:设事件A表示甲击中目标,事件B表示乙击中目标, 事件C表示恰有一人击中目标,则: P C 0.45 p 1 0.75 1 p 0.75 p 0.6.
4 .设 P( A) p , P( B) q ,且事件 A 、 B 相互独立,则 P( A B) p q pq ,
P( A B) 1 p pq .
姓名
解: P( A B) P( A)+P( B)-P( AB) P( A)+P( B)-P( A) P B p q pq.
解:( 1)P B A P B P A 0.4 0.2 0.2; (2)P B C P B P C P BC 0.4 0.3 0.1 0.6; (3)P A C P A P C P AC 0.2 0.3 0. 0.5.
解:设事件Ai 分别表示产品由甲、乙、丙厂生产,i=1,2,3.事件B表示产品为正品, P B A1 0.96, P B A2 0.92, P B A3 0.86,

概率论与数理统计教程习题(第一章随机事件与概率)

概率论与数理统计教程习题(第一章随机事件与概率)

习题1(随机事件及其运算)一.填空题1. 设A ,B ,C 是三个随机事件,用字母表示下列事件:事件A 发生,事件B ,C 不都发生为 ;事件A ,B ,C 都不发生为 ;事件A ,B ,C 至少一个发生为 ;事件A ,B ,C 至多一个发生为 .2. 某人射击三次,用A i 表示“第i 次射击中靶”(i =1,2,3).下列事件的含义是:1A 表示 ;321A A A 表示 ;321321321A A A A A A A A A ++表示 ;321A A A 表示 .3. 在某学院的学生中任选一人,用A 表示“选到的是男生”,用B 表示“选到的是二年级的学生”,用C 表示“选到的是运动员”。

则式子ABC=C 成立的条件是 .二.选择题1. 在事件A ,B ,C 中,B 与C 互不相容,则下列式子中正确的是( ).① A BC A = ; ② A BC A = ;③ Φ=BC A ; ④ Ω=BC A .2. 用A 表示“甲产品畅销,乙产品滞销”,则A 表示( ).① “甲产品滞销,乙产品畅销”; ② “甲、乙产品都畅销”; ③ “甲产品滞销或乙产品畅销”; ④ “甲、乙产品都滞销”.3. 若概率0)(=AB P ,则必有( ).① Φ=AB ; ② 事件A 与B 互斥;③ 事件A 与B 对立; ④ )()()(B P A P B A P += .三.解答题1. 将一枚骰子掷两次,记录点数之和,写出样本空间Ω及事件=A {点数之和为偶数};=B {点数之和能被3整除}.2. 将一枚骰子掷两次,观察点数的分布,写出样本空间Ω及事件=A {点数之和为6};=B {点数之差为2}.3. 某城市发行日报和晚报两种报纸。

有15%的住户订日报,25%的住户订晚报,同时订两种报纸的住户有8%,求下列事件的概率:C ={至少订一种报};D ={恰订一种报};E ={不订任何报}.4. 若已知,2.0)(,0)()(,3.0)()()(======BC P AC P AB P C P B P A P 求概率)(ABC P ;)(C B A P ;).(C B A P习题2(概率的定义及性质)一.填空题1. 掷两枚质地均匀的骰子,则点数之和为8的概率P = .2. 在10把钥匙中,有3把能开门。

随机事件及其概率习题

随机事件及其概率习题

第一章 随机事件及其概率习题一一、填空题1.设样本空间}20|{≤≤=Ωx x ,事件}2341|{ },121|{<≤=≤<=x x B x x A ,则B A Y 13{|0}{|2}42x x x x =≤<≤≤U , B A 113{|}{|1}422x x x x =≤≤<<U . 2. 连续射击一目标,i A 表示第i 次射中,直到射中为止的试验样本空间Ω,则Ω={}112121 n n A A A A A A A -L L L ;;;;. 3.一部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、2、3、4概率为 121 . 4.一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概率是 n N m n M n m M C C C /-- .5.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过3分钟的概率为 .6.在区间(0, 1)中随机地取两个数,则事件“两数之和小于56 ”的概率为 . 7.已知P (A )=, P(B )=,(1) 当A ,B 互不相容时, P (A ∪B )= ; P(AB )= 0 .(2) 当B A 时, P(A+B )= ; P (AB )= ;8. 若γ=β=α=)(,)(,)(AB P B P A P ,=+)(B A P 1γ-;=)(B A P βγ-; )(B A P +=1αγ-+.9. 事件C B A ,,两两独立, 满足21)()()(<===C P B P A P ABC ,φ,且P (A+B+C )=169, )(A P 则= . 10.已知随机事件A 的概率5.0)(=A P ,随机事件的概率6.0)(=B P ,及条件概率8.0)|(=A B P ,则和事件B A +的概率=+)(B A P .12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三等品,则取到一等品的概率为 23 . 13. 已知===)(则B A P b A B P a A P ,)|(,)( ab a - . 14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率 61 . 15. 甲、乙、丙三人入学考试合格的概率分别是52 ,21 ,32,三人中恰好有两人合格的概率为 2/5 . 16. 一次试验中事件A 发生的概率为p , 现进行n 次独立试验, 则A 至少发生一次的概率为11n p --();A 至多发生一次的概率为 11(1)n n p np p --+-() .17. 甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为 .二、选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为(D ).(A )“甲种产品畅销,乙种产品滞销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”.2. 对于任意二事件不等价的是与和B B A B A =Y ,(D ).() ; () ; () ; () .A A B B B A C AB D AB ⊂⊂=Φ=Φ3. 如果事件A ,B 有B A ,则下述结论正确的是(C ).(A ) A 与B 同时发生; (B )A 发生,B 必发生;(C ) A 不发生B 必不发生; (D )B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个产品不全是合格品”,则下述结论正确的是(B ).() ; () ; () ; .A AB B AC C B CD A B C ====-() 5. 若二事件A 和B 同时出现的概率P(AB )=0则(C ).(A )A 和B 不相容; (B )AB 是不可能事件;(C )AB 未必是不可能事件; (D )P(A )=0或P(B )=0.6. 对于任意二事件A 和有=-)(B A P (C ).(A) )()(B P A P -; (B ))()()(AB P B P A P +-;(C ))()(AB P A P -; (D ))()()()(B A P B P B P A P -++.8. 设A , B 是任意两个概率不为0的不相容的事件,则下列事件肯定正确的(D ). (A) B A 与不相容; (B)B A 与相容; (C) P(AB )=P(A )P(B ); (D) P(A −B )=P(A ).9. 当事件A 、B 同时发生时,事件C 必发生则(B ).(A)()()()1;(B)()()()1;(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+ 10. 设B A ,为两随机事件,且A B ⊂ ,则下列式子正确的是 (A ).(A ))()(A P B A P =+; (B) )()(A P AB P =;(C) )()|(B P A B P =; (D) )()()(A P B P A B P -=-.11. 设则下列等式成立的是是三随机事件,且、、,0)(>C P C B A ( B).() (|)(|)1; () (|)(|)(|)(|);() (|)(|)1; () (|)(|)(|).A P A C P A CB P A BC P A C P B C P AB C C P A C P A CD P A B C P A C P B C +==+-+==U U 12. 设B A ,是任意两事件, 且0)(,>⊂B P B A , 则下列选项必然成立的是(B ). ()()(|); ()()(|);()()(|); ()()(|).A P A P AB B P A P A BC P A P A BD P A P A B <≤>≥ 13.设B A ,是任意二事件,且()0P B >,(|)1P A B =,则必有( C ).(A) ()()P A B P A +>; (B) ()()P A B P B +>;(C) ()()P A B P A +=; (D) ()()P A B P B +=.14. 袋中有5个球,其中2个白球和3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D ).1212() ; () ; () ; () .4455A B C D15. 设则,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P (D ).(A) 事件B A 和互不相容; (B) 事件B A 和互相对立;(C) 事件B A 和互不独立; (D) 事件B A 和相互独立.16. 某人向同一目标重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为(C ).222222(A)3(1); (B)6(1);(C)3(1); (D)6(1).p p p p p p p p ----三、解答题1.写出下列随机实验样本空间:(1) 同时掷出三颗骰子,记录三只骰子总数之和; (2) 10只产品中有3次产品,每次从中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(3) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

概率 随机事件及其概率章习题

概率 随机事件及其概率章习题

第一章随机事件及其概率典型例题分析例1填空题(1)若事件A,B互斥,且,则____________。

(2)若事件A,B相互独立,且,则_____________。

(3)一个工人生产了3个零件,以事件表示他生产的第i个零件是合格品i=1, 2, 3,试用,i=1, 2, 3来表示下列事件:只有第1个零件是合格品_____________;3个零件中只有1个合格品_______________;3个零件中最多只有2个合格品______________;3个零件都是次品________________;第1个是合格品,但后两个零件中至少有1个次品_________________;3个零件中最多有1个次品________________________________________________。

(4)设,则___________;_________________;_______________________________。

(5)设A,B为两事件,且,,则___________。

解(1) 0.6。

因为A与B互斥,有。

(2) 0.125。

因为A与B独立时,有。

(3) ;;法一:考虑逆事件为“3个均为合格品”,故为,法二:直接考虑“3个零件中至少有1件次品”为;;;。

(4) ;;。

因为所以;。

而,所以。

(5) 。

由于,又且,故。

例2单选题(1) 已知且,则正确的是( )A.B.C.D.(2) 已知以及,则= ( )A. ;B. ;C. ;D.(3) 甲乙两人独立的同时对同一目标射击一次,其命中率分别为0.6和0.5,现在已知目标被命中,则它是甲射中的概率是( )A. 0.8;B. 0.65;C. 0.75;D. 0.25(4) 如果事件A与B同时发生的概率为0,即,则下列情况成立的是( )A. A与B互斥;B. AB为不可能事件;C. 或;D. AB未必为不可能事件。

解(1) B。

因为;而,故B为正确答案。

第一章:随机事件与概率(练习一)

第一章:随机事件与概率(练习一)

第一章:随机事件与概率(练习一)1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A.P (A )=1-P (B )B.P (AB )=P (A )P (B )C.P 1)(=ABD.P (A ∪B )=12.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件B .A 与A 互不相容C .Ω=⋃A AD .A A =3.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0 B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )4.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( )A .P (AB )=l B .P (A )=1-P (B )C .P (AB )=P (A )P (B )D .P (A ∪B )=15.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( )A .P (AB )=0B .P (A -B )=P (A )P (B )C .P (A )+P (B )=1D .P (A |B )=06.设A ,B 为两个随机事件,且0)(,>⊂B P A B ,则P (A |B )=( )A .1B .P (A )C .P (B )D .P (AB )7.从标号为1,2,…,101的101个灯泡中任取一个,则取得标号为偶数的灯泡的概率为( )A .10150 B .10151 C .10050 D .10051 8.设事件A 、B 满足P (A B )=0.2,P (B )=0.6,则P (AB )=( )A .0.12B .0.4C .0.6D .0.89.设每次试验成功的概率为p(0<p<1),则在3次独立重复试验中至少成功一次的概率为( )A .1-(1-p )3B .p(1-p)2C .213)1(p p C -D .p+p 2+P 310.某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为( )A .0.002B .0.04C .0.08D .0.10411.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( )A.0.125B.0.25C.0.375D.0.512.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( )A .61B .41 C .31 D .21 13.设随机事件A 与B 互不相容,P (A )=0.2,P(B)=0.4,则P (B|A )=( )A .0B .0.2C .0.4D .114.设事件A ,B 互不相容,已知P (A )=0.4,P(B)=0.5,则P(A B )=( )A .0.1B .0.4C .0.9D .115.设A 、B 为任意两个事件,则有( )A.(A ∪B )-B=AB.(A-B)∪B=AC.(A ∪B)-B ⊂AD.(A-B)∪B ⊂A16.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( ) A .151 B .51 C .154 D .31 17.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( )A .p 2B .(1-p )2C .1-2pD .p (1-p )18.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( )A .0B .0.4C .0.8D .119.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( )A .0.20B .0.30C .0.38D .0.5720.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53)A |B (P =,则P (B )=( ) A.51 B. 52 C. 53 D. 54。

概率论与数理统计第一章习题参考答案

概率论与数理统计第一章习题参考答案

概率论与数理统计第一章习题参考答案第一章随机事件及其概率1.解决方案:(1)s??2,3,4,5,67? (2) s??2,3,4,?? (3) s??h、 th,tth,??(4)s??hh,ht,t1,t2,t3,t4,t5,t6?2.解:?p(a)?14,p(b)?12,p(ab)?1814? 12? 18? 58? p(a?b)?p(a)?p(b)?p(ab)?p(ab)?p(b)?p(ab)=?p(ab)?1?p(ab)?1?1812??7818?38p[(a?b)(ab)]?p[(a?b)?(ab)]p(ab)p(ab)(abab)5818123.解决方案:使用a表示事件“获得的三位数不包含数字1”P(a)?C8C9C990011?8.9? 9900? 一千八百二十五4、解:用a表示事件“取到的三位数是奇数”,用b表示事件“取到的三位数大于330”(1)p(a)?c3c4c4ca121525111?3?4?45?5?41=0.482) p(b)?c2a5?c2c4c5a5121?2.5.4.1.2.45? 5.4=0.485、解:用a表示事件“4只中恰有2只白球,1只红球,1只黑球”,用b表示事件“4只中至少有2只红球”,用c表示事件“4只中没有只白球”(1)p(a)?c5c4c3c12132114=1204954=833(2) p(b)?1.c4c8?c8c412=202195?67165或p(b)?c4c8?c4c8?c4c41222314?67165一(3)p(c)?c7c4412?35495?7996.解决方案:使用a表示事件“在特定销售点获得的K提单”P(a)?cn(m?1)mnkn?K7、解:用a表示事件“3只球至少有1只配对”,用b表示事件“没有配对”(1)p(a)?(2)p(b)?3?13?2?12?1?13?2?1??2313或p(a)?1?2.1.13? 2.1.238、解p(a)?0.5,p(b)?0.3,p(ab)?0.1p(ab)p(b)p(ab)p(a)(1)p(ab)??0.10.30.10.5? 1315,p(ba)p(a?b)?p(a)?p(b)?p(ab)?0.5? 0.3? 0.1? 零点七p[a(a?b)]p(a?b)p(a?ab)p(a?b)p(ab)p(a?b)p(aa?b)p(ab)p(a?b)0.10.717?0.50.7?57 p(aba?b)?p[(ab)(a?b)]p(a?b)p(ab)p(ab)p(aab)?p[a(ab)]p(ab)??1(2)设定人工智能??第一次拿到白球?我1,2,3,4则p(a1a2a3a4)?p(a1)p(a2a1)p(a3a1a2)p(a4a1a2a3)?611?712?513?412?84020592?0.04089.解决方案:用a表示“两个球中至少有一个红球”,用B表示“两个都是红球”。

第1章随机事件及其概率习题解答

第1章随机事件及其概率习题解答

第1章随机事件及其概率习题解答一.选择题1.下列关系正确的是( C ).A ..B ..C .0∈∅{0}∅∈{0}∅⊂.D .{0}∅=.2.随机试验E 为:统计某路段一个月中的重大交通事故的次数,A ={无重大交通事故};B ={至少有一次重大交通事故};C ={重大交通事故的次数大于1};{重大交通事故的次数小于2},则互不相容的事件是( D ).D =A .B 与C . B .A 与. C .D B 与. D .C 与.D D 3.设{}{}2222(,)1,(,)4P x y x y Q x y x y =+==+=,则( C ).A ..B ..C .与P Q ⊂P Q <P Q ⊂P Q ⊃都不对.D ..4P Q =4.打靶3发,事件{击中发},i =0,1,2,3.那么事件i A =i 12A A A A 3=U U 表示( B ). A .全部击中.B .至少有一发击中.C .必然击中.D .击中不少于3发.5.设,,A B C 为随机试验中的三个事件,则A B C U U 等于( B ) .A .ABC U U . B .A B C I I . C ..D ..A B C I I A B C U U 6.设A 与B 互斥(互不相容),则下列结论肯定正确的是( D ) .A .A 与B 不相容. B .A 与B 必相容.C ..D .()()()P AB P A P B =()(P A B P A )−=.7.设随机事件A 、B 互斥,(), (),P A p P B q ==则()P A B =U ( D ).A ..B .1.C ..D .1q q −p p −.8.设随机事件A 、B 互斥,(), ()P A p P B q ==,则()P A B =I ( A ).A ..B .1.C ..D .1p p −q q −.9.设有10个人抓阄抽取两张戏票,则第三个人抓到戏票的概率等于( D ).A .0 .B .14.C .18.D .15.10.设,则下列公式正确的是( C ).()0, ()0P A P B >>A .[]()() 1(P A B PA PB −=−). B .( )()()P A B P A P B =⋅.C .(|)(|P AB A P B A )=.D .()(|P A B P B A =).11.随机事件A 、B 适合B A ⊂,则以下各式错误的是( B ).A ..B .()(P A B P A =U )(|)()P B A P B =.C .( )()P A B P A =.D .()()P B P A ≤.12.设A .B 为任意两个事件并适合A B ⊂,,则下结论必然成立的是( B ). ()0P B >A .. B .()(|)P A P A B <()(|)P A P A B ≤.C ..D ..()(|)P A P A B >()(|)P A P A B ≥13.已知()0.8, ()0.6, ()0.96P A P B P A B ===U ,则(|)P B A =( B ).A ..B .0.55.C .0.441115. D .. 0.4814.设,A B 相互独立,,()0.75P A =()0.8P B =,则()P A B =U ( B ).A .0.45.B .0.4.C .0.6.D .0.55.15.某类灯泡使用时数在500小时以上的概率为0.5,从中任取3个灯泡使用,则在使用500小时之后无一损坏的概率为( A ).A .18.B .28.C .38.D .48. 16.一批产品,优质品占20%,进行重复抽样检查,共取5件产品进行检查,则恰有三件是优质品的概率等于( D ).A . .B ..C . 30.230.20.8×230.210×.D . .32100.20.8××17.若,A B 相互独立,,()0.3P B =()0.6P A =,则(P B A )等于( B ).A .0.6B .0.3C .0.5D .0.1818.设,A B 相互独立且()0.7,()0.4P A B P A ==U ,则()P B =( A ).A .0.5.B .0.3.C .0.75.D .0.42.19.一批产品的废品率为0.01,从中随机抽取10件,则10件中废品数是2件的概率为( C ).A .B .210(0.01)C 22822810(0.01)(0.99)C C . D .8210(0.01)(0.99)C 8810(0.01)(0.99)C 20.每次试验的成功率为(01)p p <<,则在三次独立重复试验中,至少失败一次的概率为( B ).A .3(1)p −.B .31p −.C .3(1)p −.D .23(1)(1)(1)p p p −+−+−. 二.填空题21. 设A ={掷一颗骰子出现偶数点},B ={掷一颗骰子出现2点},则A 与B 有关系B A ⊂.22.如果A B A =U ,且AB A =,则事件A 与B 满足的关系是__ A=B ________.23.对目标进行射击,设表示恰好射中i 次的事件,(=0,1,2,3,4).那么表示事件“射中次数___i A i 23A A A A =U U 4不小于二次(或≥2)______”24.设样本空间,则{1,2,10},{2,3,4,},{3,4,5,},{5,6,7}U A B C ====L ()A B C =U {1,2,5,6,7,8,9,10}.25.已知,()0.72P AB =()0.18P AB =,则()P A =____0.90_______.26.设,A B 是两个互不相容的随机事件,且知11(),()42P A P B ==则()P A B =U ()()()()(()()1/2P A P B P AB P A P B P A P AB +−=+−+=. 27.一批产品1000件,其中有10件次品,每次任取一件,取出后不放回去,连取二次,则取得的都是正品的概率等于99098910879100099911100×=.28.已知:.则__()0.4, ()0.3, ()0.3P A P B P A B ==−=()P A B =U _0.6_______.29.已知和,则()P A (P AB )()P A B =U 1()()P A P AB −+. 30.已知:11()()() ()() ()0416P A P B P C P AB P BC P AC ======. 则(P A B C ⋅⋅=)___3/8_______.31.已知()0.5 ()0.4 ()0.7P A P B P A B ===U .则()P A B −=____0.3______.32.已知()0.1,()0.3,()0.2P A P B P A B ===,则(|)P A B =__4/70_______.33.已知11(),()24P A P B A ==,则()P AB =_____3/8_____. 34.已知1334(),(|),(|)35P A P B A P B A ===(|)P A B ,则=__2/7___. 35.已知12(),(),(|)25P A P B P B A 23===,则()P A B =U ___17/30_________. 36.设是随机试验123,,A A A E 的三个相互独立的事件,已知1()P A α=,2()P A β=,3()P A γ=,则至少有一个发生的概率是123,,A A A αβγαββγγααβγ++−−−+. 37.事件,A B 相互独立,且(),(01),()(01)P A p p P B q q =<<=<<,则{}P A B =U 1pq −.38.设,A B 相互独立,且知11(),()23P A P B ==,则()P A B =U ___2/3________. 39.从含有6个红球,4个白球和5个蓝球的盒中随机地摸取一个球,则取到的不是红球的事件的概率等于_______3/5______________.40.某车间有5台机器,每天每台需要维修的概率为0.2,则同一天恰好有一台需要维修的概率为145(0.2)(0.8)0.4096C =.41.一只袋中有4只白球和2只黑球,另一只袋中有3只白球和5只黑球,如果从每只袋中独立地各摸一只球,则事件“两只球都是白球”的概率等于___1/4______.42.设袋中有两个白球和三个黑球,从袋中依次取出一个球,有放回地连续取两次,则取得二个白球的事件的概率是220.1655⋅=.43.某产品的次品率为0.002,现对其进行重复抽样检查,共取200件样品,则查得其中有4件次品的概率的计算式是p 44196200(0.002)(0.998)C ××.44.设在一次试验中事件A 发生的概率为p ,则在5次重复独立试验中.A 至少发生一次的概率是51(1)p −−.三.应用计算题 45.已知()0.3P A =,()0.4P AB =,()0.5P B =,求(1); (2); (3); (4)(P AB )))(P B A −(P A B U (P AB ).解:(1)由 ()0.3P A =,()()()0.4P AB P A P AB =−=得,()0.P AB =3(2)()()()0.50.30.2P B A P B P AB −=−=−=(3)()()()()0.9P A B P A P B P AB =+−=U (4)(()1()0.P P A B P A B ==−U U 1= 46. 已知3.0)(=A P ,4.0)(=B P ,5.0(=B A P ,求(B A B P U .解:由()()()0.5P AB P A P AB =−=得,()0.P AB 2=[()]()()P B A B P B A B P A B =I U U U ()()()()P A B P A P B P AB =+−I 0.20.250.8== 47. 已知41)(=A P ,31)(=AB P ,21)(=B A P ,求. )(B A P U 解:由()1()()3P AB P B A P A ==,得11()()31P AB P A 2==;又由()1()()2P AB P A B P B ==, 得1()2()6P B P AB ==,由此得 ()()()()P A B P A P B P AB =+−U 111146123=+−= 48. 某门课只有通过口试及笔试两种考试才能结业.某学员通过口试的概率为80%,通过笔试的概率为65%,至少通过两者之一的概率为85%.问这名学生能完成这门课程结业的概率是多少?解:设A ={通过口试},B ={通过笔试},则这名学生能完成这门课程结业的概率为 ()()()()0.80.650.850.6P AB P A P B P A B =+−U =+−=49.一批产品总数为100件,其中有2件为不合格品,现从中随机抽取5件,问其中有不合格品的概率是多少?解:设A ={所抽取的5件没有不合格品},则其中有不合格品的概率为598510089397()1()11990990C P B P A C =−=−=−= 50. 在区间(0,1)中随机地取两个数,求这两个数只差的绝对值小于21的概率. 解:设A ={取到的两个数只差的绝对值小于21},又设取到的两个数分别为和x y ,则,{(,)|01,01}x y x y Ω=<<<<{(,)|||1/2}A x y x y =−<,则有11/43()0.7514A S P A S Ω−==== 51. 设某种动物由出生算起活20年以上的概率为0.8,活25年以上的概率为0.4.如果现在有一只20岁的这种动物,问它能活到25岁以上的概率是多少?解:设A ={某种动物由出生算起活20年以上},B ={某种动物由出生算起活25年以上},则一只20岁的这种动物,它能活到25岁以上的概率为()()0.4(|)0.5()()0.8P AB P B P B A P A P A ==== 52. 设有100件产品,其中有次品10件,现依次从中取3件产品,求第3次才取到合格品的概率.解:设{第i 次取到合格品},则第3次才取到合格品的概率为i A =123121312()()(|)(|)P A A A P A P A A P A A A =10990910099981078=××= 53. 有两个口袋,甲袋中盛有2个白球,1个黑球;乙袋中盛有1个白球,2个黑球.由甲袋中任取一球放入乙袋,再从乙袋任取一球,问从乙袋取得白球的概率是多少?解:设A={从甲袋中取白球放入乙袋},B={从乙袋取得白球},则()()(|)()(|P B P A P B A P A P B A =+22115343412=×+×= 54. 设男女两性人口之比为51:49.又设男人色盲率为2%,女人色盲率为0.25%.现随机抽到一个人为色盲,问该人是男人的概率是多少?解:设A={男},B={色盲},则()(|)()P AB P A B P B =()(|)()(|)()(|)P A P B A P A P B A P A P B A =+ 0.510.020.89280.510.020.490.0025×=≈×+× 55. 做一系列独立的试验,每次试验中成功的概率为p ,求在成功次之前已经失败次的概率.n m 解:设A={前1n m +−试验中有失败},B={n m m +次试验成功},则在成功n 次之前已经失败m 次的概率为111()()()(1)(1)m n m m n m n m n P AB P A P B C p p p C p p −+−+−==−⋅=−m56. 加工某一零件共需经过四道工序,设各道工序的次品率分别是2%, 3%,5%,3%,假定各道工序是互不影响的,求加工出来的零件的次品率.解:设{第i 道工序合格},则加工出来的零件的次品率为i A =12341234()()P P A A A A =U U U I I I 12341(P A A A A )=−I I I12341()()()()P A P A P A P A =−10.980.970.950.970.124=−×××≈。

概率第一章-随机事件-参考习题-带答案

概率第一章-随机事件-参考习题-带答案

装订线内请勿答装订线内请勿答一、填空题1.设A , B为两个随机事件,则A , B都发生的事件的表示为;其对立事件为;至少有一个发生的事件为。

2.一袋中装有3只白球,5只黑球.现从中任取2球,则2只球都是黑球的概率为.3.设A,B为两个事件, 若概率P(B)=103,P(B|A)=61, P(A+B)=54, 则概率P(A)=.4.设A,B为两个事件,且已知概率P(A)=0.4, P(B)=0.3, 若事件A,B互斥,则概率P(A+B)= ;若事件A, B相互独立,则概率P(A+B)= .5.一批商品共有100件, 次品率为0.05.连续两次有放回地从中任取一个, 则到第二次才取到正品的概率为6.设A,B,C为三个随机事件,则至少有一个事件发生记作(1)__________;(2) 至多有两个事件发生记作____7、设事件{,}A x x n n N==∈,事件{2,}B x x k k N==∈,则(1)A B+= (2) A B-=8、将一枚均匀硬币抛掷两次,若设X表示出现正面的次数则(1)P X≥=9、设A,B为三个随机事件,则至少有一个事件发生记作(1)__________ (2) 至少有两个事件不发生记作____10、设事件{1,2,3,4,5}A=,事件{2,4,6}B=,则(1)A B+=(2) A B-=11、将一颗骰子抛掷一次,则样本空间(1)S=___________(2)若A={偶数点},则()P A=__12.设A , B为两个随机事件,则A , B都发生的事件的表示为;其对立事件为;A , B都发生或都不发生可表示为;其对立事件为.13.设A,B为两个事件, 若概率P(B)=103,P(B|A)=61, P(A+B)=54, 则概率P(A)=.14.一袋中装有3只白球,5只黑球.现从中任取2球,则2只球都是黑球的概率为.15.设A,B为两个事件,且已知概率P(A)=0.4, P(B)=0.3, 若事件A,B互斥,则概率P(A+B)= ;若事件A, B相互独立,则概率P(A+B)= .16.一批电子元件共有100个, 次品率为0.05.连续两次有放回地从中任取一个, 则第二次才取到正品的概率为.17、若A,B,C为三个随机事件,则A,B,C至少有一个发生的事件记作。

习题1 随机事件及其概率

习题1  随机事件及其概率

习题一 随机事件及其概率一、填空题1.设随机试验E 对应的样本空间S ,与其任何事件不相容的事件为φ,而与其任何事件相互独立的事件为φP (A|B )=1, 则A 、B 两事件的关系为 A=B ;设E 为等可能型试验,且S 包含 10 个样本点,则按古典概率的定义其任一基本事件发生的概率为 0.1 。

2.若A 表示某甲得100分的事件,B 表示某乙得100分的事件,则(1)A 表示 甲未得100分的事件;(2)A B ⋃表示 甲乙至少有一人得100分的事件;(3)AB 表示 甲乙都得100的事件;(4)AB 表示 甲得100分,但乙未得100分的事件;(5)AB 表示 甲乙都没得100分的事件;(6)AB 表示 甲乙不都得100分的事件;3.若事件,,A B C 相互独立,则()P A B C ⋃⋃= ()()()()()()()()()()P A P B P C P A P B P A P C P B P C P A PB PC ++---+。

4.若事件,A B 相互独立,且()0.5,()0.25,P A P B ==则 ()P A B ⋃=0.625。

5.设111()()(),()()(),(),4816P A P B P C P AB P AC P BC P ABC =======则 ()P A B C ⋃⋃=167;()P ABC =169;(,,)P A B C =至多发生一个43;(,,P A B C =恰好发生一个)163;(|)P A A B C ⋃⋃=74。

6.袋中有 50 个乒乓球,其中 20 个是黄球,30 个白球,今有两人依次随机地从袋中各取1球,取后不放回,则第二个人取得黄球的概率是 0.4 。

7.将 C ,C ,E ,E ,I,N,S 七个字母随机地排成一行,则恰好排成英文单词 SCIENCE 的概率为11260。

8.10 件产品有 4 件次品,现逐个进行检查,则不连续出现 2 个次品的概率为 。

第一章_随机事件及其概率习题

第一章_随机事件及其概率习题

第一章随机事件及其概率习题一一、填空题1.设样本空间,事件,则, 、2、连续射击一目标,表示第次射中,直到射中为止得试验样本空间,则=、3.一部四卷得文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、2、3、4概率为、4.一批(个)产品中有个次品、从这批产品中任取个,其中恰有个个次品得概率就是、5.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站得时刻就是任意得,则乘客侯车时间不超过3分钟得概率为0、6 、6.在区间(0, 1)中随机地取两个数,则事件“两数之与小于”得概率为0、68 、7.已知P(A)=0、4, P(B)=0、3,(1)当A,B互不相容时, P(A∪B)= 0、7; P(AB)= 0 、(2)当B A时, P(A+B)= 0、4 ; P(AB)= 0、3 ;8、若,;;=、9、事件两两独立, 满足,且P(A+B+C )=,=0、25??、10.已知随机事件得概率,随机事件得概率,及条件概率,则与事件得概率0、7 、12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不就是三等品,则取到一等品得概率为、13、已知、14、一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品得概率、15、甲、乙、丙三人入学考试合格得概率分别就是,三人中恰好有两人合格得概率为2/5 、16、一次试验中事件发生得概率为p, 现进行次独立试验, 则至少发生一次得概率为;至多发生一次得概率为、17、 甲、乙两人独立地对同一目标射击一次,其命中率分别为0、6与0、5,现已知目标被击中,则它就是甲中得概率为 0、75 、二、选择题1.以表示事件“甲种产品畅销,乙种产品滞销”则其对立事件为(D)、(A)“甲种产品畅销,乙种产品滞销”; (B)“甲、乙两种产品均畅销”;(C)“甲种产品滞销”; (D)“甲种产品滞销或乙种产品畅销”、2、 对于任意二事件(D)、() ; () ; () ; () .A A B B B A C AB D AB ⊂⊂=Φ=Φ3、 如果事件A,B 有B ⊂A,则下述结论正确得就是(C)、(A ) A 与B 同时发生; (B)A 发生,B 必发生;(C) A 不发生B 必不发生; (D)B 不发生A 必不发生、4、 A 表示“五个产品全就是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个产品不全就是合格品”,则下述结论正确得就是(B)、() ; () ; () ; .A AB B AC C B CD A B C ====-() 5、 若二事件与同时出现得概率P()=0则(C)、(A)与不相容; (B)就是不可能事件;(C)未必就是不可能事件; (D)P()=0或P()=0、6、 对于任意二事件与有 (C )、(A) ; (B);(C); (D)、8、 设A , B 就是任意两个概率不为0得不相容得事件,则下列事件肯定正确得(D)、(A) 不相容; (B)相容; (C) P(AB )=P(A )P(B ); (D) P(A −B )=P(A )、9、 当事件A 、B 同时发生时,事件C 必发生则(B)、(A)()()()1;(B)()()()1;(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+ 10、 设为两随机事件,且 ,则下列式子正确得就是 (A )、(A); (B) ;(C) ; (D) 、11、 设( B )、() (|)(|)1; () (|)(|)(|)(|);() (|)(|)1; () (|)(|)(|).A P A C P A CB P A BC P A C P B C P AB C C P A C P A CD P A B C P A C P B C +==+-+==U U 12、 设就是任意两事件, 且, 则下列选项必然成立得就是(B)、()()(|); ()()(|);()()(|); ()()(|).A P A P AB B P A P A BC P A P A BD P A P A B <≤>≥ 13.设就是任意二事件,且,,则必有( C )、(A) ; (B) ;(C) ; (D) .14、 袋中有5个球,其中2个白球与3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球得概率为(D )、1212() ; () ; () ; () .4455A B C D15、 设(D)、(A) 事件互不相容; (B) 事件互相对立;(C) 事件互不独立; (D) 事件相互独立、16、 某人向同一目标重复射击,每次射击命中目标得概率为,则此人第4次射击恰好第2次命中目标得概率为(C)、三、解答题1、写出下列随机实验样本空间:(1) 同时掷出三颗骰子,记录三只骰子总数之与;(2) 10只产品中有3次产品,每次从中取一只(取出后不放回),直到将3只次品都取出,记录抽取得次数;(3) 对某工厂出厂得产品进行检查,合格得盖上“正品”,不合格得盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查得结果。

概率论与数理统计练习题与答案

概率论与数理统计练习题与答案

概率论与数理统计练习题与答案第一章随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A)不可能事件(B)必然事件(C)随机事件(D)样本事件2.下面各组事件中,互为对立事件的有 [ B ] (A){抽到的三个产品全是合格品}{抽到的三个产品全是废品}(B){抽到的三个产品全是合格品}{抽到的三个产品中至少有一个废品}(C){抽到的三个产品中合格品不少于2个}{抽到的三个产品中废品不多于2个}(D){抽到的三个产品中有2个合格品}{抽到的三个产品中有2个废品}3.下列事件与事件不等价的是 [C ](A)(B)(C)(D)4.甲、乙两人进行射击,A、B分别表示甲、乙射中目标,则表示 [ C](A)二人都没射中(B)二人都射中(C)二人没有都射着(D)至少一个射中5.以表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件为. [ D](A)“甲种产品滞销,乙种产品畅销”;(B)“甲、乙两种产品均畅销”;(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销6.设,则表示 [ A](A)(B)(C)(D)7.在事件,,中,和至少有一个发生而不发生的事件可表示为 [ A](A);(B);(C);(D).8、设随机事件满足,则 [ D ] (A)互为对立事件 (B)互不相容(C)一定为不可能事件 (D)不一定为不可能事件二、填空题1.若事件A,B满足,则称A与B 互不相容或互斥。

2.“A,B,C三个事件中至少发生二个”此事件可以表示为。

三、简答题:1.一盒内放有四个球,它们分别标上1,2,3,4号,试根据下列3种不同的随机实验,写出对应的样本空间:(1)从盒中任取一球后,不放回盒中,再从盒中任取一球,记录取球的结果;(2)从盒中任取一球后放回,再从盒中任取一球,记录两次取球的结果;(3)一次从盒中任取2个球,记录取球的结果。

答:(1){(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3 )}(2){(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3 ,4),(4,1),(4,2),(4,3),(4,4)}(3){(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}2.设A、B、C为三个事件,用A、B、C的运算关系表示下列事件。

概率论与数理统计教材第1章习题

概率论与数理统计教材第1章习题

47
1.20 把10本书任意地放在书架上, 求其中指定的 3本放在一起的概率。
解 基本事件的总数:
N P10 设A =“指定的3本放在一起”,
则A所包含的基本事件的数:
M P3 P8
∴ P( A) M P3 P8 8!3! 1 0.067 N P10 10! 15
48
1.21. 1~100个共100个数中任取一个数,求这个数能被2或3 或5整除的概率。
(1) (2) (3) (4)
A表示B
表示
表A示B
表示
AB
AA
; ; ; ;
解答
返回
1.3设A, B, C 表示三个事件, 试将下列事件用A, B, C 表示.
(1)A, B, C 都发生. (2)A, B, C 都不发生. (3)A, B, C 不都发生. (4)A, B, C 中至少有一个发生. (5)A, B, C 中至少有二个发生. (6)A, B, C 中恰好有一个发生. (7)A, B, C 中最多有一个发生. (8)A 发生而 B, C 都不发生. (9)A 不发生但 B, C 中至少有一个发生.
解: 设A= “被2整除”
B=“பைடு நூலகம்3整除”
C=“被5整除”
PA 50 PB 33 PC 20
100
100
100
PAB 16 PAC 10 PBC 6
100
100
100
PABC 3
100
所以所求事件的概率为
PA BC
PA PB PC PAB PBC PAC PABC
0.74
解答
返回
1.19 某工厂生产的100个产品中,有5个次品, 从这批产品中任取一半来检查,设A表示发现次品 不多于1个,求A的概率。

第一章随机事件及其概率习题

第一章随机事件及其概率习题

第一章 随机事件及其概率习题一 、填空题:1.设A ,B ,C 为三个事件,用A 、B 、C 的运算关系表示(1)A 和B 都发生,而C 不发生为 ,(2)A 、B 、C 至少有两个发生的事件为 。

2.设A ,B 为两个互不相容的事件,P(A)=0.2, P(B)=0.4, P(A+B)= 。

3.设A ,B ,C 为三个相互独立的事件,已知P(A)=a, P(B)=b, P(C)=c,则A ,B ,C 至少有一个发生的概率为 。

4.把一枚硬币抛四次,则无反面的概率为 ,有反面的概率为 。

5.电话号码由0,1,……9中的8数字排列而成,则电话号码后四位数字全都不相同的概率表示为 。

6.设公寓中的每一个房间都有4名学生,任意挑选一个房间,则这4人生日无重复的概率表示为 (一年以365天计算)。

7. 设A ,B 为两个事件,P(A)=0.4, ,P(B)=0.8,P(B A )=0.5,则P(B|A)= 。

8.设A ,B ,C 构成一个随机试验的样本空间的一个划分,且7.0)(,5.0)(==B P A P ,则P(C)= ,P(AB)= 。

9.设A ,B 为两个相互独立的事件,P(A)=0.4,P(A+B)=0.7,则P(B)= 。

10.3个人独立地猜一谜语,他们能够猜出的概率都是31,则此谜语被猜出的概率为 。

二 、选择题 :1. 设A 与B 是两随机事件,则AB 表示( )(A )A 与B 都不发生 (B )A 与B 同时发生(C )A 与B 中至少有一个发生 (D )A 与B 中至少有一个不发生 2.设A 与B 是两随机事件,则))((B A B A ++表示( ) (A )必然事件 (B )不可能事件(C )A 与B 恰好有一个发生 (D )A 与B 不同时发生3.设c B A P b B P a A P =+==)(,)(,)(,则)(B A P 为 (A )b a -(B )b c -(C ))1(b a -(D ))1(c a -4.若A ,B 是两个互不相容的事件,P (A )>0,P (B )>0,则一定有( ) (A )P (A )=1—P (B ) (B ) P (A|B )=0 (C ) P (A|B )=1 (D )P (A |B )=05. 每次试验失败的概率为p (0<p<1),则在3次重复试验中至少成功一次的概率为( )(A ))1(3p - (B)3)1(p -(C) 31p - (D)13C 3)1(p p -三、计算:1.掷两颗质地均匀的骰子,求出现的两个点数之和等于5的概率。

第一章《 随机事件及其概率》作业

第一章《 随机事件及其概率》作业

第一章 《 随机事件及其概率》作业班级 学号 姓名一、单项选择题1.若C B A ,,为三个随机事件,则C B A ,,至少有一个发生可表示为( ) )(A ABC ; )(B C B A ;)(C ABC ABC ABC ; )(D C AB C B A BC A .2. 袋中有大小形状相同的3只黑球和7只白球,从中任取2只球,则取 得球恰好是一黑一白的概率是( )(A) 157 , (B) 151 , (C) 153 , (D) 103. 3. 设B A ,为随机事件,且4.0)(,3.0)(,2.0)(===B A P B P A P ,则=)(B A P ( )).(A 5.0; ).(B 7.0;).(C 6.0; ).(D 38.0.4. 把6本中文书和4本外文书任意往书架上摆放,则4本外文书放在一起的概率为( )(A).!10!6!4 (B). 0.7 (C).!10!7!4 (D). 0.4 5. 三人独立地去破译一份密码,已知每个人能译出的概率分别为51,31,41; 问三人中至少有一人能将此密码破译的概率是( ) .(A) 0.2, (B) 0.4, (C) 0.6, (D) 0.8.6. 设A,B 为两事件,则P(A-B)=( )。

(A).P(A)-P(B) (B). P(A)-P(B)+P(AB)(C).P(A)-P(AB) (D).P(A)+P(B)-P(AB)二 .填空题1.设A,B 是两相互独立的事件,4.0)(,6.0)(==+A P B A P ,则=)(B P .2.设P(A)=21, P (AB )=52,则P(B|A)=____________。

3.袋中有大小形状相同的3只黑球和5只白球,从中取2只球,则取出两个球都是白球的概率是 ,两个球中一黑一白的概率是 。

4.加工某一零件共需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05和0.03.假设各工序是互不影响的,求加工出来的零件的次品率 .5.加工一件产品需要经过三道工序,第一、二、三道工序不出废品的概率分为0.95,0.85,0.9。

概率练习题含答案

概率练习题含答案

第一章 随机事件及其概率 练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B ) (2)事件的对立与互不相容是等价的。

(B ) (3)若()0,P A = 则A =∅。

(B )(4)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B )(5)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (6)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P {}1=3两个女孩。

(B ) (7)若P(A)P(B)≤,则⊂A B 。

(B )(8)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(9)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A )2. 选择题(1)设A, B 两事件满足P(AB)=0,则CA. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C )A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB)(3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D) A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A ) A. P(A ∪B)=P(A) B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B )A.()a c c + B . 1a c +-C. a b c +-D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D )A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

第一章_随机事件及其概率习题

第一章_随机事件及其概率习题

第一章 随机事件及其概率习题一一、填空题1.设样本空间}20|{≤≤=Ωx x ,事件}2341|{ },121|{<≤=≤<=x x B x x A ,则B A 13{|0}{|2}42x x x x =≤<≤≤ , B A 113{|}{|1}422x x x x =≤≤<< . 2. 连续射击一目标,i A 表示第i 次射中,直到射中为止的试验样本空间Ω,则Ω={}112121 n n A A A A A A A -;;;;.3.一部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、2、3、4概率为 121 . 4.一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概率是 n N m n M n m M C C C /-- .5.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过3分钟的概率为 0.6 .6.在区间(0, 1)中随机地取两个数,则事件“两数之和小于56 ”的概率为 0.68 . 7.已知P (A )=0.4, P(B )=0.3,(1) 当A ,B 互不相容时, P (A ∪B )= 0.7; P(AB )= 0 .(2) 当B ⊂A 时, P(A+B )= 0.4 ; P (AB )= 0.3 ;8. 若γ=β=α=)(,)(,)(AB P B P A P ,=+)(B A P 1γ-;=)(B A P βγ-; )(B A P +=1αγ-+.9. 事件C B A ,,两两独立, 满足21)()()(<===C P B P A P ABC ,φ,且P (A+B+C )=169, )(A P 则=0.25?? . 10.已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P ,及条件概率8.0)|(=A B P ,则和事件B A +的概率=+)(B A P 0.7 .12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三等品,则取到一等品的概率为 23 .13. 已知===)(则B A P b A B P a A P ,)|(,)( ab a - . 14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率 61 . 15. 甲、乙、丙三人入学考试合格的概率分别是52 ,21 ,32,三人中恰好有两人合格的概率为 2/5 . 16. 一次试验中事件A 发生的概率为p , 现进行n 次独立试验, 则A 至少发生一次的概率为11n p --();A 至多发生一次的概率为 11(1)n n p np p --+-() .17. 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被击中,则它是甲中的概率为 0.75 .二、选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为(D ).(A )“甲种产品畅销,乙种产品滞销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”.2. 对于任意二事件不等价的是与和B B A B A = ,(D ).() ; () ; () ; () .A A B B B A C AB D AB ⊂⊂=Φ=Φ3. 如果事件A ,B 有B ⊂A ,则下述结论正确的是(C ).(A ) A 与B 同时发生; (B )A 发生,B 必发生;(C ) A 不发生B 必不发生; (D )B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个产品不全是合格品”,则下述结论正确的是(B ).() ; () ; () ; .A AB B AC C B CD A B C ====-() 5. 若二事件A 和B 同时出现的概率P(AB )=0则(C ).(A )A 和B 不相容; (B )AB 是不可能事件;(C )AB 未必是不可能事件; (D )P(A )=0或P(B )=0.6. 对于任意二事件A 和B 有=-)(B A P (C ).(A) )()(B P A P -; (B ))()()(AB P B P A P +-;(C ))()(AB P A P -; (D ))()()()(B A P B P B P A P -++.8. 设A , B 是任意两个概率不为0的不相容的事件,则下列事件肯定正确的(D ). (A) B A 与不相容; (B)B A 与相容; (C) P(AB )=P(A )P(B ); (D) P(A −B )=P(A ).9. 当事件A 、B 同时发生时,事件C 必发生则(B ).(A)()()()1;(B)()()()1;(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+ 10. 设B A ,为两随机事件,且A B ⊂ ,则下列式子正确的是 (A ).(A ))()(A P B A P =+; (B) )()(A P AB P =;(C) )()|(B P A B P =; (D) )()()(A P B P A B P -=-.11. 设则下列等式成立的是是三随机事件,且、、,0)(>C P C B A ( B ).() (|)(|)1; () (|)(|)(|)(|);() (|)(|)1; () (|)(|)(|).A P A C P A CB P A BC P A C P B C P AB C C P A C P A CD P A B C P A C P B C +==+-+== 12. 设B A ,是任意两事件, 且0)(,>⊂B P B A , 则下列选项必然成立的是(B ).()()(|); ()()(|);()()(|); ()()(|).A P A P AB B P A P A BC P A P A BD P A P A B <≤>≥ 13.设B A ,是任意二事件,且()0P B >,(|)1P A B =,则必有( C ).(A) ()()P A B P A +>; (B) ()()P A B P B +>;(C) ()()P A B P A +=; (D) ()()P A B P B +=.14. 袋中有5个球,其中2个白球和3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D ).1212() ; () ; () ; () .4455A B C D15. 设则,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P (D ).(A) 事件B A 和互不相容; (B) 事件B A 和互相对立;(C) 事件B A 和互不独立; (D) 事件B A 和相互独立.16. 某人向同一目标重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为(C ).222222(A)3(1); (B)6(1);(C)3(1); (D)6(1).p p p p p p p p ----三、解答题1.写出下列随机实验样本空间:(1) 同时掷出三颗骰子,记录三只骰子总数之和; (2) 10只产品中有3次产品,每次从中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(3) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 随机事件及其概率习题一一、填空题1.设样本空间,事件,则}20|{≤≤=Ωx x }2341|{ },121|{<≤=≤<=x x B x x A B A , .13{|0}{|2}42x x x x =≤<≤≤ B A 113{|}{|1}422x x x x =≤≤<< 2. 连续射击一目标,表示第次射中,直到射中为止的试验样本空间,则i A i Ω=.Ω{}112121 n n A A A A A A A - ;;;;3.一部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、2、3、4概率为.1214.一批(个)产品中有个次品、从这批产品中任取个,其中恰有个个次品的N M n m 概率是 .nN m n M n m M C C C /--5.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过3分钟的概率为 0.6 .6.在区间(0, 1)中随机地取两个数,则事件“两数之和小于 ”的概率为 0.68 .567.已知P (A )=0.4, P(B )=0.3,(1)当A ,B 互不相容时, P (A ∪B )= 0.7; P(AB )= 0 .(2)当B ⊂A 时, P(A+B )= 0.4 ; P (AB )= 0.3 ;8. 若,;;γ=β=α=)(,)(,)(AB P B P A P =+)(B A P 1γ-=)(B A P βγ-=.)(B A P +1αγ-+9. 事件两两独立, 满足,且P (A+B+C )=,C B A ,,21)()()(<===C P B P A P ABC ,φ169=0.25?? .)(A P 则10.已知随机事件的概率,随机事件B 的概率,及条件概率A 5.0)(=A P 6.0)(=B P ,则和事件的概率 0.7 .8.0)|(=A B P B A +=+)(B A P 12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三等品,则取到一等品的概率为.2313. 已知 .===)(则B A P b A B P a A P ,)|(,)(ab a -14.一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率.6115. 甲、乙、丙三人入学考试合格的概率分别是,三人中恰好有两人合格的概52,21 ,32率为 2/5 .16. 一次试验中事件发生的概率为p , 现进行次独立试验, 则至少发生一次的概A n A 率为;至多发生一次的概率为 .11np--()A 11(1)nn pnp p --+-()17. 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被击中,则它是甲中的概率为 0.75 .二、选择题1.以表示事件“甲种产品畅销,乙种产品滞销”则其对立事件为(D ).A A (A )“甲种产品畅销,乙种产品滞销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”;(D )“甲种产品滞销或乙种产品畅销”.2. 对于任意二事件(D ).不等价的是与和B B A B A = ,() ; () () ; () .A AB B B AC ABD AB ⊂⊂=Φ=Φ3. 如果事件A ,B 有B ⊂A ,则下述结论正确的是(C ).(A )A 与B 同时发生; (B )A 发生,B 必发生; (C ) A 不发生B 必不发生; (D )B 不发生A 必不发生.4.A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个产品不全是合格品”,则下述结论正确的是(B ).() ; () ; () ; .A AB B AC C B CD A B C ====-()5. 若二事件和同时出现的概率P()=0则(C ).A B AB (A )和不相容;(B )是不可能事件;A B AB (C )未必是不可能事件; (D )P()=0或P()=0.AB A B 6. 对于任意二事件和B 有 (C ).A =-)(B A P(A) ; (B );)()(B P A P -)()()(AB P B P A P +- (C );(D ).)()(AB P A P -)()()()(B A P B P B P A P -++8. 设A , B 是任意两个概率不为0的不相容的事件,则下列事件肯定正确的(D ).(A) 不相容; (B)相容; (C) P(AB )=P(A )P(B ); (D) P(A−B )=P(A ).B A 与B A 与9. 当事件A 、B 同时发生时,事件C 必发生则(B ).(A)()()()1;(B)()()()1;(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+10. 设为两随机事件,且 ,则下列式子正确的是 (A ).B A ,A B ⊂ (A ); (B) ;)()(A P B A P =+)()(A P AB P = (C) ; (D) .)()|(B P A B P =)()()(A P B P A B P -=-11. 设( B ).则下列等式成立的是是三随机事件,且、、,0)(>C P C B A () (|)(|)1; () (|)(|)(|)(|);() (|)(|)1; () (|)(|)(|).A P A C P A CB P A BC P A C P B C P AB C C P A C P A CD P A B C P A C P B C +==+-+== 12. 设是任意两事件, 且, 则下列选项必然成立的是(B ).B A ,0)(,>⊂B P B A()()(|); ()()(|);()()(|); ()()(|).A P A P AB B P A P A BC P A P A BD P A P A B <≤>≥13.设是任意二事件,且,,则必有( C ).B A ,()0P B >(|)1P A B =(A) ;(B) ;()()P A B P A +>()()P A B P B +>(C) ;(D) .()()P A B P A +=()()P A B P B +=14. 袋中有5个球,其中2个白球和3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D ).1212() ; () ; () ; () .4455A B C D 15. 设(D ).则,1|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P (A) 事件互不相容; (B) 事件互相对立;B A 和B A 和 (C) 事件互不独立;(D) 事件相互独立.B A 和B A 和16. 某人向同一目标重复射击,每次射击命中目标的概率为,则此人第4)10(<<p p 次射击恰好第2次命中目标的概率为(C ).222222(A)3(1); (B)6(1);(C)3(1); (D)6(1).p p p p p p p p ----三、解答题1.写出下列随机实验样本空间:(1) 同时掷出三颗骰子,记录三只骰子总数之和;(2) 10只产品中有3次产品,每次从中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(3) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

(4) 将一尺之棰折成三段,观察各段的长度.解 1(1);}18,,5,4,3{ (2);}10,,5,4,3{ (3)查出合格品记为“1”,查出次品记为“0”,{00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111};(4)其中分别表示三段之长.}1,0,0,0|),,{(=++>>>z y x z y x z y x z y x ,,2. 设为三事件,用运算关系表示下列事件:C B A ,,C B A ,,(1)发生,和不发生; (2)与都发生, 而不发生;A B C A B C (3)均发生;(4)至少一个不发生;C B A ,,C B A ,,(5)都不发生;(6)最多一个发生;C B A ,,C B A ,,(7)中不多于二个发生; (8)中至少二个发生.C B A ,,C B A ,,解 (1)或A -(AB+AC )或A -(B +C );(2)或AB -ABC 或C B A C AB AB -C ;(3);(4);(5)或;ABC A B C ++C B A C B A ++(6);(7);(8).C B A C B A C B A C B A +++ABC BC AC AB ++3.下面各式说明什么包含关系?(1) ; (2) ; (3) A AB =A B A =+AC B A =++解 (1); (2); (3)B A ⊂B A ⊃CB A +⊃4. 设具体写出下列各事件:}7,6,5{ },5,4,3{ },4,3,2{A },10,9,8,7,6,5,4,3,2,1{====ΩC B (1) , (2) , (3) , (4) , (5). B A B A +B A BC A )(C B A +解 (1){5}; (2) {1,3,4,5,6,7,8,9,10}; (3) {2,3,4,5};(4) {1,5,6,7,8,9,10}; (5) {1,2,5,6,7,8,9,10}.5. 从数字1,2,3,…,10中任意取3个数字,(1)求最小的数字为5的概率;记“最小的数字为5”为事件A∵ 10个数字中任选3个为一组:选法有种,且每种选法等可能.310C 又事件A 相当于:有一个数字为5,其余2个数字大于5。

这种组合的种数有251C ⨯∴.1211)(31025=⨯=C C A P (2)求最大的数字为5的概率。

记“最大的数字为5”为事件B ,同上10个数字中任选3个,选法有种,且每种310C 选法等可能,又事件B 相当于:有一个数字为5,其余2数字小于5,选法有种241C ⨯.2011)(31024=⨯=C C B P 6. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少?记A 表“4只全中至少有两支配成一对”则表“4只人不配对”A ∵ 从10只中任取4只,取法有种,每种取法等可能。

相关文档
最新文档