对数的运算性质教案(供参考)
高中数学对数的运算性质优秀教案
对数的运算性质教学目标:知识与技能:(1) 理解对数的运算性质;(2)用换底公式能将一般对数转化成自然对数或常用对数;过程与方法:通过对数的运算性质、换底公式的推导,进一步理解对数的概念,掌握对数的运算性质。
情感、态度与价值观:培养学生的观察、猜测、归纳、类比能力.教学重点:对数的运算性质,用换底公式将一般对数转化成自然对数或常用对数。
教学难点:对数的运算性质的熟练运用.教学过程:一、复习回忆1、对数的定义2、指数式与对数式的互化3、指数运算法则二、创设情景,揭示课题的值。
试求:6lg ,4771.03lg ,3010.02lg == 显然,要解决这个问题,就得知道lg6与lg2和lg3之间的关系。
我们知道6=2×3。
那么lg6=lg2×lg3吗?我们只知道对数的定义和性质还不能解决有关对数的运算问题,还得学习对数的运算性质。
这节课我们研究对数的运算性质。
三、新知探索1、判断以下每组数是否相等?〔1〕11lg100lg,lg(100)1010+⨯ 〔2〕2221log 8log ,log 24+ 通过计算,同学们看出它们有什么共同点吗?2、请同学们证明这一猜测如果a >0且a ≠1,M >0,N >0,证明log log log a a a MN M N =+证明:假设设r M a =,s N a =则r s MN a +=写成对数式得log ()a M N r s ⋅=+………①又由r M a =得log a M r =;由sN a =得log a N s =代入①得log ()log log a a a M N M N ⋅=+其中a>0且 a ≠1,M>0,N>0。
由此我们得到对数的运算性质1:log ()log log a a a M N M N ⋅=+其中a>0且 a ≠1,M>0,N>0。
3、你能用文字语言描述出对数运算性质1的意思吗?可以简记为两个正数的积的对数等于它们的对数的和。
对数的运算性质教案
对数的运算性质教案篇一:对数的运算性质(公开课教案)2.7.2 对数的运算性质教学目标(一)教学知识点1. 对数的基本性质.2. 对数的运算性质.(二) 能力训练要求1. 进一步熟悉对数的基本性质.2. 熟练运用对数的运算性质.3. 掌握化简,求值的技巧. 教学重点对数运算性质的应用.教学难点化简,求值技巧.教学方法启发引导法教学过程.一、复习回顾上节课,我们学习对数的定义,由对数的定义可得:Nab?N?b?log (a?0且a?1,N?0)a本节课,我们将在这基础上,结合幂的运算性质,推导出对数的运算性质.二、讲授新课1 . 对数的基本性质a? 1 (a?0且a?1)由对数的定义可得:loga1?0 loga把b?logaN 代入ab?N 可得alog形式。
aN?N(a?0且a?1,N?0)上式称为对数恒等式,通过上式可将任意正实数N转化为以a 为底的指数bb把a?N 代入b?logaN 可得b?logaa (a?0且a?1)通过上式可将任意实数b转化为以a为底的对数形式。
例如:2?aloga2?logaa2(a?0且a?1)2 . 对数的运算性质接下来我们用指对数互化的思想,结合指数的运算性质来推导有关对数的运算性质。
指数的运算性质ap?aq?ap?q在上式中设ap?M,aq?N 则有MN?ap?q 将指数式转化为对数式可得:p?log M q?logN p?q?logMNaaa∴logM?loagN?alaoMgN(M?0 N?0 a?0且a?1)这就是对数运算的加法法则,用语言描述为:两个同底对数相加,底不变,真数相乘。
请同学们猜想:两个同底对数相减,结果又如何?logaM?logaN?logaMN证明如下:∵logaMN?Mloa?laNog?Nlo gaNM?log?N?)laoNg aNM?loNg ?logaa对数运算的减法法则:两个同底对数相减,底不变,真数相除。
根据上述运算法则,多个同底对数相加,底不变,真数相乘,N1?loagN2???即logalaoNgN?laNo1gN?2N n若N1?N2???NN?MM?则上式可化为nlogaloMgann?N?若将n的取值范围扩展为实数集R,上式是否还会成立?M?下证nlogaloMgan(M?0 a?0且a?1 n?R)pM?p 则有M?a 证明:设loga∴Mn?anp ∴logaMn?npnM?nloMg (M?0 a?0且a?1 n?R)即logaa对数的乘法法则:M的n次方的对数会等于M的对数的n倍。
初中数学《对数的基本性质》教案范文
初中数学《对数的基本性质》教案范文一、教学目标1.理解对数的定义,掌握对数的运算性质。
2.能够运用对数的性质解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1.对数的定义与性质2.对数的运算性质3.对数在实际问题中的应用三、教学重点与难点1.重点:对数的定义与性质,对数的运算性质。
2.难点:对数的运算性质的应用。
四、教学过程1.导入:通过生活中的例子,如“一个数乘以2,再乘以3,结果是多少?”引导学生思考,引出对数的定义。
2.新课讲解:(1)对数的定义:如果a的x次方等于N,那么数x就叫做以a为底N的对数,记作x=log_aN。
(2)对数的性质:①对数的底数必须大于0且不等于1。
②对数的真数必须大于0。
③对数的相反数等于对数的相反数。
④对数的乘法等于对数的加法。
⑤对数的除法等于对数的减法。
⑥对数的幂等于对数的乘法。
(3)对数的运算性质:①log_aM+log_aN=log_a(MN)②log_aMlog_aN=log_a(M/N)③log_aM^n=nlog_aM④log_a(M/N)=log_aMlog_aN⑤log_a(M^n)=nlog_aM3.例题讲解:通过例题,讲解对数的运算性质的应用。
例1:已知log_24=3,求log_28。
解:根据对数的性质,log_24=3可以转化为2^3=4,所以2^32=8,即2^(3+1)=8,所以log_28=4。
例2:已知log_39=2,求log_327。
解:根据对数的性质,log_39=2可以转化为3^2=9,所以3^23=27,即3^(2+1)=27,所以log_327=3。
4.练习与巩固:让学生独立完成练习题,巩固对数的性质和运算性质。
五、课后作业1.完成练习册的相关练习题。
2.收集生活中的对数例子,下节课分享。
六、教学反思通过本节课的教学,学生应该掌握了对数的定义和性质,能够运用对数的运算性质解决实际问题。
在教学过程中,要注意引导学生思考,激发学生的学习兴趣。
对数运算性质的应用教案设计
对数运算性质的应用教案设计一、教学目标1. 理解对数运算的基本性质,包括对数的定义、对数的性质及对数运算的法则。
2. 掌握对数运算的技巧,能够运用对数运算性质解决实际问题。
3. 培养学生的逻辑思维能力,提高学生解决数学问题的能力。
二、教学内容1. 对数的定义及性质:回顾对数的定义,探讨对数的性质,如对数的单调性、对数的换底公式等。
2. 对数运算的法则:学习对数运算的基本法则,包括对数的加法、减法、乘法和除法。
3. 对数运算技巧:讲解对数运算的技巧,如利用对数运算性质简化计算过程,快速求解对数问题。
4. 实际问题应用:通过具体例子,展示如何运用对数运算性质解决实际问题,如测量问题、增长率问题等。
三、教学方法1. 讲授法:讲解对数运算的基本性质和法则,阐述对数运算技巧及其应用。
2. 案例分析法:通过具体例子,引导学生运用对数运算性质解决实际问题。
3. 小组讨论法:组织学生分组讨论,共同探讨对数运算的性质和应用,提高学生的合作能力。
四、教学步骤1. 引入对数运算的概念,回顾对数的定义和性质。
2. 讲解对数运算的基本法则,包括加法、减法、乘法和除法。
3. 引导学生运用对数运算性质简化计算过程,巩固对数运算技巧。
4. 举例说明如何运用对数运算性质解决实际问题,如测量问题、增长率问题等。
5. 组织学生进行小组讨论,分享各自的对数运算心得和应用经验。
五、教学评价1. 课堂讲解:评价学生对对数运算性质的理解程度和对数运算技巧的掌握情况。
2. 课后作业:布置相关对数运算题目,检验学生对课堂所学知识的应用能力。
3. 小组讨论:评价学生在讨论中的参与程度和对实际问题解决能力的提升。
4. 综合测试:通过笔试或口试等形式,全面评估学生对对数运算性质及其应用的掌握情况。
六、教学活动1. 互动游戏:设计一些关于对数运算的互动游戏,如对数运算接力赛、对数运算猜谜等,激发学生的学习兴趣,巩固所学知识。
2. 练习与反馈:布置针对性的练习题,让学生在课后巩固所学知识。
《对数的运算》示范课教学设计【高中数学】
《对数的运算》教学设计 1.理解对数的运算性质,体会对数对简化运算的作用; 2.知道用换底公式能将一般对数转化为自然对数或常用对数;
3.能够利用对数的运算性质、换底公式解决问题,提升数学运算核心素养.
教学重点:对数的运算性质,换底公式.
教学难点:对数运算性质的得出,对数换底公式的推导.
PPT 课件,计算器.
(一)新知探究
1.对数的运算性质 问题1:因为运算,数的威力无限;没有运算,数就只是一个符号.在引入对数之后,自然应研究对数的运算性质.你认为可以怎样研究?
师生活动:学生分组讨论交流,教师引导学生从对数与指数间的关系思考.
预设的答案:通过上节课的学习,我们知道了对数是通过指数幂的形式定义出来的,因此对数运算是由指数幂运算衍生出来的.对数运算与指数幂运算是两类重要的运算,正像加法与减法、乘法与除法之间的关系一样,我们通过加法运算学习减法运算,通过乘法运算学习除法运算.对于对数运算,我们也可以通过指数幂运算推导对数运算的性质. 设计意图:明确研究的内容,新旧知识产生联系,激发学生的探究欲望. 追问1:请回忆指数幂的运算性质.
师生活动:个别提问回答.
预设的答案:对于任意实数r ,s ,均有下面的指数幂运算性质.
(1)()0,,r s r s a a a a r s +=>∈R ;
(2)()()0,,s r rs a a a r s =>∈R ;
◆教学目标 ◆教学重难点
◆ ◆课前准备
◆教学过程。
对数的运算教案
对数的运算教案教案名称:对数的运算教案教学目标:1. 理解对数的概念和性质;2. 掌握对数的运算规则,并能灵活运用于不同计算题目中;3. 提高学生的运算技巧和思维能力,培养他们解决实际问题的能力。
教学重点:1. 对数的概念和性质;2. 对数的运算规则。
教学难点:1. 灵活运用对数的运算规则。
教学准备:1. 教学课件;2. 教学板书;3. 针对不同难度层次的训练题目。
教学过程:引入:1. 利用生活实例引发学生对指数的思考,比如问学生“你知道在计算机科学中,为什么会有庞大的数字或者长字符的指数表示吗?”2. 引出对数的概念,解释对数是表示幂运算的逆运算,可以帮助我们简化计算和解决问题。
讲解对数的定义和性质:1. 定义对数:对于任意正数a和正整数n, 如果a^n=x (x > 0),则称n为以a为底x的对数记作n=log_a(x),读作“以a为底x的对数n”。
2. 解释对数的三个性质:性质1:log_a(xy) = log_a(x) + log_a(y);性质2:log_a(x/y) = log_a(x) - log_a(y);性质3:log_a(x^n) =n*log_a(x)。
对数的运算规则:1. 给出不同底数、相同底数的对数运算示例,让学生通过观察归纳对数的运算规律。
2. 引导学生总结不同底数、相同底数的对数运算规则,写在黑板上以备课后复习。
例题练习:1. 给出一些简单的对数运算题目,让学生课堂尝试解答,并进行讲解和解析。
2. 提供一些中等难度的应用题目,鼓励学生合作解决问题,并进行讲解和解析。
拓展练习:1. 提供一些较难的对数运算题目,挑战学生的思维能力和解决问题的能力。
2. 引导学生从实际问题中运用对数运算,如:使用对数来估算地震的震级。
总结:1. 对已学知识进行总结,强调对数的运算规则和灵活运用。
2. 激发学生对对数概念和运算的兴趣,鼓励他们进一步学习和探索。
板书设计:---------------------------------------对数的概念和性质:定义:log_a(x) = n ↔ a^n = x性质1:log_a(xy) = log_a(x) + log_a(y)性质2:log_a(x/y) = log_a(x) - log_a(y)性质3:log_a(x^n) = n*log_a(x)对数的运算规则:1. 不同底数的对数运算规则示例:log_2(8) = log_4(16) = 32. 相同底数的对数运算规则示例:log_3(9) + log_3(27) = log_3(9 * 27) = log_3(243) = 5---------------------------------------师生互动:教师应积极与学生互动,鼓励学生提问、解答问题,还可以设计小组活动或游戏加深对数的运算规则的理解和应用。
北师大版高中数学必修一数学必修第一册:4.2.1《对数的运算性质》教案
对数的运算性质【教学目标】1.掌握对数的运算性质。
2.理解对数的运算性质推导过程。
3.通过推导对数运算性质的过程,提升数学运算素养。
【教学重难点】1.掌握对数的运算性质。
2.理解对数的运算性质推导过程。
【教学过程】一、基础铺垫对数与指数概念之间的联系,决定了对数运算与指数运算之间的密切相关性。
若a >0,且a ≠1,M >0,N >0,则(1)log a (MN )=log a M +log a N ;(2)log a M n =n log a M (n ∈R );(3)log a M N =log a M -log a N 。
二、新知探究1.对数运算性质【例】求下列算式的值。
2log 32-log 3329+log 38+3log 515。
[解]原式=log34-log3329+log38-3log55=log3⎝ ⎛⎭⎪⎫4×932×8-3=log39-3=2-3=-1. 【教师小结】对数的计算一般有两种处理方法:一种是将式中真数的积、商、幂、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;二是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值。
2.对数运算性质的应用[探究问题](1)已知a =2lg 3,b =3lg 2,则a ,b 的大小关系是什么?提示:∵lg a =lg 2lg 3=lg 3lg 2,lg b =lg 3lg 2=lg 2lg 3.∴lg a =lg b∴a =B .(2)设2a =5b=m ,且1a +1b =2,则m 的值是什么? 提示:由2a =5b =m ,取对数得a lg 2=b lg 5=lg m ,∴a =lg m lg 2,b =lg m lg 5,又1a +1b =2,∴lg 2lg m +lg 5lg m =2,∴lg 10lg m =2.∴lg m =12,∴m =1012=10。
《对数的运算性质》教学设计及说课稿
《对数的运算性质》教学设计教学时间:教学班级:教者:教学目标:知识目标:掌握对数的运算性质,并能理解推导这些法则的依据和过程.能力目标:1.熟练运用对数的运算法则进行化简和求值;2.逐步培养学生的观察分析、抽象概括能力、归纳总结能力、逻辑推理能力.情感目标:1.让学生认识事物之间的相互联系与相互转化;2.培养学生运用联系的观点解决问题的意识;3.培养学生通过探索、发现、归纳、猜想、证明,获取知识的思想方法.教学重点:对数运算性质.教学难点:对数运算性质的证明方法.教学模式:引导发现一^归纳猜想一>理论证明一^知识应用―^练习反馈授课类型:新授课教学用具:多媒体教学过程:一、复习引入:1.对数的定义:若a b=N则log N=b,其中a e(0,1)■(1,+8),N e(0,+8)a2.指数式与对数式的互化幂真数指数对数a b=N丁'—1.log N=baf底数f3.重要公式:(1)log1=0,log a=1;(⑵a log a N=N;a a⑶log a b=b;(4)负数与零没有对数.a3.指数运算法则:a m-a n=a m+n(a>0,m,n e R) (a m)n=a mn(a>0,m,n e R) (ab)n=a n-b n(a>0,b>0,n e R)二、新授内容:1.通过观察几个特殊对数式之间的关系,归纳猜想积、商、幂的对数运算法则: 如果a >0,a 丰1,M >0,N >0有:②设log M=p ,log N=q 则U :M=a p ,N=a qa p MM——=a p -q ・・log 一=p-q 即证得log 一=log M-log N a qa N a N aa③设log M=P 由对数定义可以得M=a pa・・M n =a np ・log M n =np 即证得log M 说明:上述证明是运用转化的思想,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后根据对数定义将指数式化成对数式再进行证明.注:①简易语言表达:“积的对数=对数的和"②对数的运算性质只有在同底的情况下才能运用,且底数a 的取值范围必须是aw (0,1)■(1,+8).③真数的取值范围必须是(0,+8).④有时逆向运用公式.3.通过判断几个式子的真假,考察学生对公式的理解.三、例题选讲log(MN)=logM +logN a Maa log =logM -logN a N aa logM n =nlogM(n w R)aa2.引导学生证明公式 (1) (2) (3)证明:①设log M=p,log N=q则:M=a p ,N=a q .\MN=a p a q =a p +q,log MN=p+q 即证得log MN=log M+ a 说明:公式二的证明教师指导学生自己完log N a n =n log M a例1用log X a log y ,log z 表示下列各式:⑴10g2;a zX 2、■'y (2)log —Xi a 3Z 解:(1)log a Xy ——log (xy)—log z=log x+log y-log z a aaa说明:此例题可讲练结合.(1)log (47X 25)=log47+log25222=log22x7+log25=2X7+5=1922⑵解法一:lg14-2lg 7+lg7-lg18 3=lg14Tg (7)2+lg7-lg18=lg ;X7=lg1=0 3(-)2x 187解法二:lg14-2lg 7+lg7-lg18 3=lg(2X7)-2(lg7-lg3)+lg7-lg(32X2)=lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0四、课堂练习:1 .用lg x ,lg y ,lg z 表示下列各式:⑴lg(xyz );(2)1g 里;(3)lg23;(4)lg 三z-vzy 2z2 .求下列各式的值:(1)log 6-log 322 3 3)2log 510+log 50.25五、小结:1、本节课学习了:积、商、幂的对数运算法则,并进行了简单应用.2、在本节课中渗透了从特殊到一般、从具体到抽象的思维方法,也融入了等价转化的数 学思想。
对数运算性质的应用教案设计
对数运算性质的应用教案设计一、教学目标1. 理解对数运算的基本性质,如对数的定义、对数的换底公式、对数的性质等。
2. 掌握对数运算性质的应用,能够解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生的数学素养。
二、教学内容1. 对数的定义及性质2. 对数的换底公式3. 对数运算的简化方法4. 对数运算在实际问题中的应用三、教学重点与难点1. 教学重点:对数运算的基本性质,对数运算的简化方法,对数运算在实际问题中的应用。
2. 教学难点:对数运算性质的深入理解,对实际问题中数据的处理和分析。
四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究对数运算性质的应用。
2. 通过实例分析,让学生体会对数运算在实际问题中的重要性。
3. 利用多媒体辅助教学,直观展示对数运算的过程和结果。
五、教学过程1. 导入新课:通过引入实际问题,激发学生的学习兴趣,引导学生思考对数运算的应用。
2. 讲解对数的定义及性质:讲解对数的基本概念,引导学生理解对数的运算性质。
3. 讲解对数的换底公式:引导学生推导换底公式,让学生掌握换底公式的应用。
4. 讲解对数运算的简化方法:讲解对数运算的简化技巧,让学生能够快速准确地进行对数运算。
5. 应用练习:给出实际问题,让学生运用所学的对数运算性质进行解决,巩固所学知识。
6. 总结与反思:对本节课的内容进行总结,引导学生思考对数运算在实际问题中的作用。
教学评价:通过课堂讲解、练习和实际问题的解决,评价学生对对数运算性质的理解和应用能力。
六、教学活动设计1. 互动提问:在学习对数运算性质之前,引导学生回顾指数运算的基本性质,为新课的学习打下基础。
2. 小组讨论:分组让学生探讨对数运算的性质,每组找出一条性质并解释其含义。
3. 案例分析:通过具体案例,让学生理解对数运算在实际问题中的应用,如计算电路的放大倍数、分析人口增长等。
七、教学实践1. 练习题:设计一些有关对数运算性质的练习题,让学生独立完成,巩固所学知识。
高中数学对数运算性质教案
高中数学对数运算性质教案教学目标:学习对数运算的性质,掌握基本的对数运算方法和规律。
教学重点:了解对数运算的性质,掌握对数运算的基本方法。
教学难点:运用对数运算的性质解决实际问题。
教学准备:教师准备教案、黑板、彩色粉笔、PPT等教学辅助工具。
教学内容及步骤:第一步:引入1. 通过一些实际问题引入对数的概念和运算性质。
2. 提出问题:“如何简化对数运算?”第二步:讲解对数运算性质1. 讲解对数运算的基本性质:对数的底、指数和结果之间的关系。
2. 讲解对数运算的运算法则:对数的加减乘除性质。
第三步:例题演练1. 给学生几个简单的对数运算题目,让学生自己尝试计算。
2. 对学生的答案进行讲解和解析,引导学生理解对数运算的性质。
第四步:练习巩固1. 让学生通过多个综合性的对数运算题目来巩固所学知识。
2. 对学生的答案进行检查和评价,帮助学生发现和纠正错误。
第五步:实际应用1. 给学生一些实际问题,让他们运用所学的对数运算性质来解决问题。
2. 引导学生分析问题、提出解决方案,并讨论解决方法的合理性。
第六步:课堂总结1. 向学生总结本节课的内容,重点强调对数运算的性质和应用。
2. 鼓励学生加强练习,巩固所学知识。
教学反馈:对学生的学习情况进行评估和反馈,及时纠正学生的错误和不足之处。
扩展延伸:引导学生深入学习对数运算的更高级性质和应用,拓展数学思维。
作业布置:布置适量的对数运算题目作为作业,加强学生对所学知识的巩固。
教学反思:根据学生表现和反馈情况,调整教学方法和内容,及时完善教学计划和教学效果。
对数的运算性质教学设计
对数的运算性质教学设计一、教学目标:1.掌握对数的定义和性质;2.倍数关系的转换;3.能够灵活运用对数运算性质解决实际问题。
二、教学重点:1.对数的定义和性质;2.对数运算的性质及其应用。
三、教学难点:学生对对数运算的理解和运用。
四、教学过程:1.引入:请学生回顾一下指数的基本知识,通过提问的方式引导学生回忆指数的定义和基本性质。
提问:什么是指数?它有什么性质?请学生回答。
2.对数的引入:-对数的定义:引导学生了解对数的定义,并通过实例让学生体会对数的计算方法。
提问:什么是对数?它有什么意义?请学生回答。
介绍对数的定义:若a^b = c,其中a和b是正数且a≠1(此处a称为“底数”,b称为“指数”,c称为“真数”),则称b是以a为底,以c为真数的对数,记作logₐc = b。
-对数运算性质的引入:介绍对数运算性质的定义和特点,并以实例让学生感受对数运算性质的应用。
提问:对数运算有哪些性质?分别如何表示?请学生回答。
介绍对数运算性质:(1)对数的定义:logₐc = b,当且仅当a^b = c;(2)对数的唯一性:对于任意实数c和正数a(a≠1),当且仅当a^b = c时,有logₐc = b;(3)对数运算换底公式:logₐb = logₐc * logₐb;(4)对数运算的乘方和开方:a. logₐ(b^c) = c * logₐb;b. logₐ(b/c) = logₐb - logₐc;c. logₐ(1/b) = -logₐb;d. logₐ(b^(-c)) = -c * logₐb;e. logₐ√b = 1/2 * logₐb。
3.对数运算性质的练习:- 设a=2, b=3,求log₂3提示:根据对数的定义和对数运算性质,可知logₐc = log₂3 = log₃3 / log₃2 = 1 / log₃2- 设a=10,b=1000,求log₂1000提示:根据对数的定义和对数运算性质,可知logₐc = log₂1000 = log₁₀1000 / log₁₀2 = 3 / log₁₀2- 设a=5,b=25,求log₂25提示:根据对数的定义和对数运算性质,可知logₐc = log₂25 = 2 * log₂5 = 2 * log₅5 / log₅2 = 2 / log₅2- 设a=2, b=32,求log₂32提示:log₂32 = log₃₂32 / log₃₂2 = 5.4.对数在实际问题中的应用- 问题一:Bob每天花1倍的力量做同样的事情,7天后他的力量增加了多少倍?提示:从一天到第七天分别是1,1*1,1*(1*1),...,1(1的7次方),可以直接通过对数运算得出答案。
对数运算性质的应用教案设计
对数运算性质的应用教案设计一、教学目标知识与技能:1. 理解对数运算的基本性质;2. 掌握对数运算的法则;3. 能够灵活运用对数运算性质解决问题。
过程与方法:1. 通过小组合作、讨论交流的方式,探索对数运算性质;2. 利用数学软件或图形计算器,进行实际操作,验证对数运算性质;3. 培养学生的逻辑思维能力和解决问题的能力。
情感态度价值观:1. 培养学生对数学学科的兴趣;2. 培养学生勇于探索、合作交流的精神;3. 培养学生运用数学知识解决实际问题的能力。
二、教学重难点重点:对数运算性质的掌握及应用。
难点:对数运算性质在实际问题中的灵活运用。
三、教学准备教师准备:1. 教学PPT;2. 数学软件或图形计算器;3. 相关练习题。
学生准备:1. 预习对数运算性质的相关知识;2. 准备好数学软件或图形计算器。
四、教学过程1. 导入:通过一个实际问题,引发学生对对数运算性质的思考,激发学生的学习兴趣。
2. 新课讲解:讲解对数运算的基本性质,引导学生通过小组合作、讨论交流的方式,探索对数运算的法则。
3. 实例演示:利用数学软件或图形计算器,展示对数运算性质的实际操作,让学生验证所学的对数运算性质。
4. 练习巩固:针对所学的对数运算性质,设计一些练习题,让学生独立完成,巩固所学知识。
5. 课堂小结:对本节课的内容进行总结,强调对数运算性质的重要性,以及如何在实际问题中灵活运用。
五、课后作业设计一些有关对数运算性质的应用题,让学生在课后巩固所学知识,提高解决问题的能力。
鼓励学生自主探究,发现更多的对数运算性质,培养学生的创新能力。
六、教学拓展1. 引导学生思考对数运算性质在实际生活中的应用,例如:信号处理、地球科学、财经分析等领域;2. 介绍对数运算在数学发展史上的应用和重要性;3. 引导学生关注对数运算在现代科技领域的应用,激发学生学习兴趣。
七、教学反思1. 教师要关注学生在学习过程中的反馈,及时调整教学方法和节奏;2. 针对不同学生的学习情况,给予个别辅导,提高教学质量;3. 注重培养学生的团队合作能力和交流表达能力。
高中数学对数运算公式教案
高中数学对数运算公式教案教学目标:1. 了解对数的定义及性质。
2. 掌握对数运算的基本规则。
3. 能够灵活运用对数公式解决实际问题。
教学内容:1. 对数的定义及性质2. 对数的四则运算3. 对数的换底公式教学步骤:第一步:引入1. 引导学生回顾对数的基本概念,回顾logx(a) = b的定义。
2. 提出问题:log3(9)=?第二步:讲解对数的四则运算1. 讲解对数的加法规则:loga(mn) = loga(m) + loga(n)2. 讲解对数的减法规则:loga(m/n) = loga(m) - loga(n)3. 讲解对数的乘法规则:loga(m^k) = k*loga(m)4. 讲解对数的除法规则:loga(m^1/k) = 1/k*loga(m)第三步:练习对数的四则运算1. 练习题:计算log2(8)+log2(32)2. 练习题:计算log4(16)-log4(2)3. 练习题:计算log5(125)*log5(625)4. 练习题:计算log6(216)/log6(36)第四步:讲解对数的换底公式1. 讲解对数的换底公式:loga(b) = logc(b) / logc(a)第五步:练习对数的换底公式1. 练习题:计算log3(5)的值第六步:综合练习1. 综合应用题:若logx(2)=a,logx(5)=b,求logx(10)的值。
第七步:作业布置1. 布置作业:完成课堂练习题目,并解答综合应用题。
教学反思:通过对对数运算公式的教学,学生能够掌握对数运算的基本规则,提高数学运算的灵活性和准确性。
同时,通过实际应用题的练习,能够培养学生的解决问题的能力和思维逻辑性。
§..对数的运算性质教案人教版
针对学生在随堂练习中出现的对数运算性质错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
(五)拓展延伸(预计用时:3分钟)
知识拓展:
介绍与对数运算性质相关的拓展知识,如对数在实际问题中的应用等,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
b)讨论法:鼓励学生针对对数运算性质的应用问题进行小组讨论,促进学生之间的思想交流和问题解决。
c)实验法:引导学生通过数学软件或实际问题进行模拟实验,从实践中理解和掌握对数运算性质。
2.教学手段:
a)多媒体设备:利用PPT、视频等资料,生动展示对数运算性质的推导过程,提高学生的学习兴趣。
b)教学软件:运用数学软件辅助教学,让学生在直观的界面中进行对数运算练习,增强其操作能力和应用能力。
2.对数运算性质的推导和证明过程:
-对数乘法法则的推导:利用指数函数的性质,即a^log_a(b) = b
-对数加法法则的推导:利用对数函数的性质,即log_a(m) + log_a(n) = log_a(mn)
-对数减法法则的推导:利用对数函数的性质,即log_a(m) - log_a(n) = log_a((m/n))
1.例题1:已知对数式log_2(x-1) = 3,求x的值。
解析:根据对数的定义,可以将对数式转换为指数式,即2^3 = x - 1。解得x = 9。
补充说明:此题主要考察对数式与指数式之间的转换,以及对数的基本性质。
2.例题2:如果a^log_a(b) = b,那么b的值为多少?
解析:根据对数的定义,可以将指数式转换为对数式,即log_a(b) = 1。因此,b = a^1 = a。
对数的运算性质教案
对数的运算性质教案教学目标:1.理解对数的定义和运算性质。
2.掌握对数的运算规则。
3.能够灵活运用对数的运算性质解决相关问题。
教学重点:1.对数的定义。
2.对数的运算性质,包括对数的乘法性质、除法性质、幂的乘法性质和幂的除法性质。
教学难点:1.灵活运用对数的运算规则解决实际问题。
2.将对数的运算性质与实际应用相结合。
教学准备:1.教师准备:教材、黑板、粉笔。
2.学生准备:课本、笔记本。
教学过程:第一步:导入(5分钟)教师出示一个数学问题:“如果一个物体的质量每天减少一半,那么经过多少天物体的质量会减少到原来的1/8?”请学生思考这个问题并给出答案。
第二步:引入(5分钟)教师出示一个数学问题:“如果一些物种的数量每年增长10%,经过几年后物种的数量会增长到原来的两倍?”请学生思考这个问题并给出答案。
学生可能会发现,这两个问题都涉及到了指数的运算。
为了更方便地表示这种指数关系,数学家引入了对数的概念。
第三步:讲解对数的定义(10分钟)教师向学生介绍对数的定义。
对数的定义是:对于一个正数x,以正数a(a≠1)为底的对数,记作log(ax)(读作log以a为底x),表示满足a的几次方等于x。
即ax = x。
教师可以用一些例子来帮助学生理解对数的概念,比如log(100) = 2,因为10的平方等于100。
第四步:讲解对数的运算性质(15分钟)教师向学生讲解对数的运算性质。
对数的运算性质包括对数的乘法性质、除法性质、幂的乘法性质和幂的除法性质。
乘法性质:log(ab) = log(a) + log(b)。
除法性质:log(a/b) = log(a) - log(b)。
幂的乘法性质:log(a^b) = b·log(a)。
幂的除法性质:log(a^b) = (1/b)·log(a)。
教师可以用一些具体的例子来帮助学生理解这些性质。
第五步:练习(15分钟)教师出示一些练习题,让学生运用对数的运算性质解决问题。
对数运算性质教案2
2.2.1对数与对数运算(二)教学目标(一) 教学知识点对数的运算性质.(二) 能力训练要求1.进一步熟悉对数定义与幂的运算性质; 2. 理解对数运算性质的推倒过程;3.熟悉对数运算性质的内容; 4.熟练运用对数的运算性质进行化简求值;5.明确对数运算性质与幂的运算性质的区别.(三)德育渗透目标1.知识与技能:理解对数运算性质及其推导过程,并能灵活运用运算性质进行对数运算.2. 过程与方法:经历探究、发现、证明、 应用对数运算性质的过程.3 情感态度与价值观:在对数运算性质的探究过程中,培养学生善于观察,勇于探索的自主学习习惯和科学的思维方法教学重点(四)教学难点对数运算性质的证明方法与对数定义的联系.教学过程一、复习引入:1.对数的定义 b N a =l o g 其中 ),1()1,0(+∞∈ a 与 ,0(+∞∈N 2.指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且3.重要公式:⑴负数与零没有对数; ⑵01log =a ,log =a a ⑶对数恒等式N a N a =log4.指数运算法则 )()(),()(),(R n b a ab R n m a a R n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+二、新授内容:1.积、商、幂的对数运算法则:如果 a > 0,a ≠ 1,M > 0, N > 0 有:)()()(3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+= 证明:①设a log M =p , a log N =q . 由对数的定义可以得:M =p a ,N =q a . ∴MN = p a q a =q p a + ∴a log MN =p +q , 即证得a log MN =a log M + a log N .②设a log M =p ,a log N =q . 由对数的定义可以得M =p a ,N =q a .∴q p q pa aa N M -== ∴p N M a -=log 即证得N M N M a a a log log log -=. ③设a log M =P 由对数定义可以得M =pa ,∴n M =np a ∴a log n M =np , 即证得a log n M =n a log M . 说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式.①简易语言表达:“积的对数 = 对数的和”……②有时逆向运用公式:如110log 2log 5log 101010==+.③真数的取值范围必须是),0(+∞:)5(log )3(log )5)(3(log 222-+-=-- 是不成立的.)10(log 2)10(log 10210-=-是不成立的.④对公式容易错误记忆,要特别注意:N M MN a a a log log )(log ⋅≠,N M N M a a a log log )(log ±≠±.2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log z y x zxy a a . 解:(1)z xy alog =a log (xy )-a log z=a log x+a log y- a log z (2)32log zy x a =a log (2x 3log )z y a - = a log 2x +alog 3log z y a -=2a log x+z y a a log 31log 21-. 例2. 计算 (1)25log 5, (2)1log 4.0, (3))24(log 572⨯, (4)5100lg解:(1)5log 25= 5log 25=2 (2)4.0log 1=0. (3)2log (74×25)= 2log 74+ 2log 52= 2log 722⨯+ 2log 52 = 2×7+5=19. (4)lg 5100=52lg1052log10512==. 例3.计算:(1);50lg 2lg )5(lg 2⋅+ (2) ;25log 20lg 100+ (3) .18lg 7lg 37lg 214lg -+- 说明:此例题可讲练结合.解:(1) 50lg 2lg )5(lg 2⋅+=)15(lg 2lg )5(lg 2+⋅+=2lg 5lg 2lg )5(lg 2+⋅+=2lg )2lg 5(lg 5lg ++=2lg 5lg +=1;(2) 25log 20lg 100+=5lg 20lg +=100lg =2;(3)解法一:lg14-2lg 37+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(23×2) =lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.解法二: lg14-2lg 37+lg7-lg18=lg14-lg 2)37(+lg7-lg18=lg 01lg 18)37(7142==⨯⨯ 评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系.(2)题要避免错用对数运算性质.例4.已知3010.02lg =,4771.03lg =, 求45lg (课堂练习)3.课堂练习:教材第68页练习题1、2、3题.4.课堂小结对数的运算法则,公式的逆向使用.。
【精品】高中数学必修1《对数的运算性质》教案和教案说明
对数的运算性质人教A 版必修1教学目标:1.理解并掌握对数运算性质的内容及推导过程.2.熟练运用对数运算性质解题.教学重点:对数的运算性质及其应用教学难点:运算性质的推导教学方法:互助探究型教学过程设计:一.知识回顾:(投影展示上一节的学习内容)1。
对数的定义及对数式与指数式的互化N x N a a x log ,==则若其中),0(),,1()1,0(+∞∈+∞∈N a2.几个常用对数。
01log =a ,log =a a 特别地,负数与零没有对数;3.课堂小测,回顾并检验前面所学知识。
计算下列各式的值.4log 2log 122+)(8log 2log 222+)(21log 4log 322+)(②求下列各式中的x 21log )2(25log )1(4-==x x 二.授新课:1。
引入思考:①6log 4log 2log 222=+对不对?错在那里?应怎么该?②对数究竟满足怎样的运算性质?2.探究活动:主要通过几个个例的分析,让学生找到对数运算的规律,从而大胆的归纳出对数的运算性质. 探究活动一:?log 34log 2log 1222==+)(?log 48log 2log 2222==+)(?log 121log 4log 3222==+)( 学生讨论并归纳对数的运算性质:log a M+log a N=log a (MN )探究活动二:将上面的加法改为减法呢?学生讨论并归纳:log a M —log a N=log a (M/N )探究活动三:3log 3log 1222=)(3log 3log 2232=)(M log log 3a a =n M )(学生讨论归纳对数的运算性质:log a M n =nlog a M3.教师小结:教师针对学生归纳的情况总结出对数的运算性质,并指出需要注意的地方,即保证对数有意义的条件。
(1)(2)(3)M log n log a a =n M三。
对数的运算性质教案(供参考)
2.2.1对数与对数运算性质(二)教学目标(1)知识与技术:理解对数的运算性质.(2)进程与方式:通过对数的运算性质的探讨及推导进程,培育学生的“推理能力”、“等价转化”和“演绎归纳”的数学思想方式,和创新意识.(3)情感、态态与价值观:一、利用指、对数式关系启发学生研究对数性质及运算法那么培育学生注意探讨、研究、揭露事物的内在联系,培育分析问题、解决问题的能力,培育学生斗胆探讨,实事求是的科学精神。
二、对数运算法那么能够把乘、除、乘方、开方运算转化为加减乘除运算,加速了运算速度、简化了计算方式、显示了对数计算忧越性,表现了所学知识实践中的应用。
教学重点、难点教学重点:对数运算性质及其推导进程.教学难点: 对数的运算性质发觉进程及其证明.教学进程(一)温习巩固,引入新课:(1)对数的概念 b N a =log ,把握其中 a 与 N 的取值范围; (2)指数式与对数式的互化,及两个重要公式;(3)指数运算法那么(积、商、幂、方根)。
设计用意:对数的概念和指数的运算性质是学习本节课的基础,学习新知前的简单温习,不仅能唤起学生的经历,而且为学习新课做好了知识上的预备. 二、请同窗判定以下几组数是不是相等? (1) 101lg100lg +,)101100lg(⨯;(2)81log 4log 22+,21log 2;提出问题:由(1)(2)结果动身,同窗们能看出他们具有一个如何的一起点? 设计用意:让学生观看,学会从特殊到一样,寻求规律。
新课讲解:请同窗们交流讨论得出结论,当底数相同的时候,两个正数的对数之和等于两个正数积的对数。
那么那个结论是不是正确呢?接下来咱们具体的来证明咱们的这一结论:设计用意:让学生让学生体会“归纳一猜想一证明”是数学中发觉结论,证明结论的完整思维方式,让学生体会回到最原始(概念)的地址是解决数学问题的有效策略. 若是 a > 0 , a ≠ 1, M > 0 ,N > 0,证明:log ()log log a a a MN M N =+ 证明:(性质1)设log a M p =,log a N q =由对数的概念可得 pM a =,qN a =, ∴pqp qMN a a a+=⋅=,∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 结论总结:若是 a > 0 , a ≠ 1, M > 0 ,N > 0,那么log ()log log a a a MN M N =+事实上,除上面的那个运算性质之外,人们在对数的运算和推理进程中,还发觉了两个性质:(2)log log -log aa a MM N N=; 商的对数=对数的差 (3)log log ()na a M n M n R =∈. 一个数n 次方的对数=那个数对数的n 倍那么,请同窗们结合前面的性质(1)的证明和以前的所学知识,对咱们所给出的性质(2)(3)进行证明。
对数运算性质教案
对数运算性质教案教案标题:对数运算性质教案教学目标:1. 理解对数的定义和基本性质。
2. 掌握对数运算的基本规则。
3. 能够应用对数运算性质解决实际问题。
教学重点:1. 对数的定义和基本性质。
2. 对数运算的基本规则。
教学难点:1. 运用对数运算性质解决实际问题。
教学准备:1. 教材:包含对数运算性质的教材章节。
2. 教具:黑板、白板、彩色粉笔或白板笔。
3. 辅助工具:计算器。
教学过程:一、导入(5分钟)1. 利用黑板或白板,复习对数的定义和基本性质,引起学生对对数运算性质的兴趣。
2. 提问学生对对数运算性质的理解和应用,激发学生思考。
二、讲解(15分钟)1. 通过示例,讲解对数运算的基本规则,包括对数的乘法规则、除法规则和幂运算规则。
2. 引导学生理解和记忆对数运算性质的关键概念和公式。
三、练习(20分钟)1. 分发练习题,让学生自主完成。
2. 引导学生在解题过程中灵活运用对数运算性质,解决实际问题。
3. 鼓励学生相互讨论和交流解题思路。
四、总结(10分钟)1. 回顾对数运算性质的要点,强调学生在解题中的应用。
2. 强调对数运算性质的重要性和实际应用价值。
五、拓展(5分钟)1. 提供一些对数运算性质的拓展问题,让学生思考和解决。
2. 鼓励学生在日常生活中寻找更多对数运算性质的应用场景。
六、作业布置(5分钟)1. 布置相关的练习题作为课后作业。
2. 强调学生在解题过程中要灵活应用对数运算性质。
教学反思:1. 教案设计要注重引导学生主动参与,培养学生的问题解决能力。
2. 教师要根据学生的实际情况,灵活调整教学方法和教学内容。
3. 在教学过程中,要及时给予学生反馈和指导,帮助他们理解和掌握对数运算性质的关键概念和应用方法。
对数的教案人教版(3篇)
第1篇课时:2课时年级:人教版数学课程高中一年级教学目标:1. 知识与技能:理解对数的概念,掌握对数的基本性质,能够进行对数的运算。
2. 过程与方法:通过实例分析和小组讨论,培养学生逻辑推理和数学表达能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和团队合作精神。
教学重点:1. 对数的概念2. 对数的基本性质教学难点:1. 对数与指数的关系2. 对数的运算教学准备:1. 多媒体课件2. 教学黑板3. 练习题教学过程:第一课时一、导入1. 通过展示一些自然界中的对数现象,如人体生长、细菌繁殖等,引导学生思考对数的概念。
2. 提问:如何用数学语言描述这些现象?二、新课讲授1. 对数的概念:- 介绍对数的定义:若a^x = b,则x是以a为底b的对数,记作log_ab = x。
- 解释对数的底数、真数和指数之间的关系。
- 举例说明对数的实际应用。
2. 对数的基本性质:- 介绍对数的换底公式:log_ab = log_cb / log_ca。
- 讲解对数的运算性质,如对数的乘法、除法、幂运算等。
三、巩固练习1. 布置课堂练习题,让学生独立完成,巩固对数的概念和性质。
2. 教师巡视指导,解答学生疑问。
四、课堂小结1. 总结本节课所学内容,强调对数的概念和性质。
2. 提出思考问题,引导学生课后进一步探究。
第二课时一、复习导入1. 回顾上节课所学内容,提问学生对对数的概念和性质的理解程度。
2. 引导学生思考对数在实际生活中的应用。
二、新课讲授1. 对数与指数的关系:- 介绍指数与对数的关系:若a^x = b,则x = log_ab。
- 讲解指数与对数的互化方法。
2. 对数的运算:- 介绍对数的乘法、除法、幂运算等性质。
- 通过实例讲解对数的运算方法。
三、巩固练习1. 布置课堂练习题,让学生独立完成,巩固对数的运算。
2. 教师巡视指导,解答学生疑问。
四、课堂小结1. 总结本节课所学内容,强调对数的运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1对数与对数运算性质(二)教学目标(1)知识与技能:理解对数的运算性质.
(2)过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.(3)情感、态态与价值观:1、利用指、对数式关系启发学生研究对数性质及运算法则培养学生注意探索、研究、揭示事物的内在联系,培养分析问题、解决问题的能力,培养学生大胆探索,实事求是的科学精神。
2、对数运算法则可以把乘、除、乘方、开方运算转化为加减乘除运算,加快了运算速度、简化了计算方法、显示了对数计算忧越性,体现了所学知识实践中的应用。
教学重点、难点教学重点:对数运算性质及其推导过程.教学难点: 对数的运算性质发现过程及其证明.教学过程(一)复习巩固,引入新课:(1)对数的定义 b N a =log ,掌握其中 a 与 N 的取值范围; (2)指数式与对数式的互化,及两个重要公式;
(3)指数运算法则(积、商、幂、方根)。
设计意图:对数的概念和指数的运算性质是学习本节课的基础,学习新知前的简单复习,不仅能唤起学生的记忆,而且为学习新课做好了知识上的准备. 2、请同学判断以下几组数是否相等? (1) 10
1lg
100lg +,)101
100lg(⨯;
(2)8
1log 4log 22+,21
log 2;
提出问题:由(1)(2)结果出发,同学们能看出他们具有一个怎样的共同点? 设计意图:让学生观察,学会从特殊到一般,寻求规律。
新课讲解:
请同学们交流讨论得出结论,当底数相同的时候,两个正数的对数之和等于两个正数积
的对数。
那么这个结论是否正确呢?接下来我们具体的来证明我们的这一结论:
设计意图:让学生让学生体会“归纳一猜想一证明”是数学中发现结论,证明结论的完整思维方法,让学生体会回到最原始(定义)的地方是解决数学问题的有效策略. 如果 a > 0 , a ≠ 1, M > 0 ,N > 0,证明:log ()log log a a a MN M N =+
证明:(性质1)设log a M p =,log a N q =
由对数的定义可得 p
M a =,q
N a =, ∴p
q
p q
MN a a a
+=⋅=,
∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 结论总结:
如果 a > 0 , a ≠ 1, M > 0 ,N > 0,那么log ()log log a a a MN M N =+
事实上,除了上面的这个运算性质之外,人们在对数的运算和推理过程中,还发现了两个性质:
(2)log log -log a
a a M
M N N
=; 商的对数=对数的差 (3)log log ()n
a a M n M n R =∈. 一个数n 次方的对数=这个数对数的n 倍
那么,请同学们结合前面的性质(1)的证明以及以前的所学知识,对我们所给出的性质(2)(3)进行证明。
3分钟后同桌交换,看相互之间的证明,交换心得,并进一步讨论,是否能够找到更多的证明方法。
设计意图:
1、让学生熟悉和掌握对数和指数之间的互化,更深的理解对数的概念;
2、寻求多种方法,发散学生思维 性质2. 方法一:(仿照性质(1)同理可证)
方法二:由性质(1)的结论出发:
M N N
M N N M a a a a
log log log log =⋅=+ N
M
N M a a a log log log =-⇒
方法三:由性质(1)的结论出发:
N M N N N
M N M a a a a a a
log log log log log log -=-+= 这法二和法三证法使用拆分技巧,化减为加(化除为乘),会常用到。
(性质3)
设log a M p =, 由对数的定义可得 p
M a =, ∴n np
M a =, ∴log n a M np =,
即证得log log n a a M n M =. ∴log n
a M np =,
即证得log log n
a a M n M =
通过上述探讨、研究得到了对数的运算性质
如果0>a 且1≠a ,0>M ,0>N 那么
(1)log ()log log a a a MN M N =+; 积的对数 = 对数的和
(3)log log ()n
a a M n M n R =∈. 一个数n 次方的对数=这个数对数的n 倍
说明:(1)语言表达:“积的对数 = 对数的和”……(简易表达以帮助记忆);
(2)注意有时必须逆向运算:如 11025101010==+log log log ; (3)注意限制条件:必须是同底的对数,真数必须是正数; 例如:12log 12log 4log 3log 3232≠≠+
)5(log )3(log )5)(3(log 222-+-=-- 是不成立的,
)(log )(log 10210102
10-=-是不成立的;
(4)当心记忆错误:N log M log )MN (log a a a ⋅≠,试举反例, N log M log )N M (log a a a ±≠±,试举反例。
(5)性质(1)可以进行推广:
即 log a (M 1M 2M 3…M n )=log a M 1+log a M 2+log a M 3+…+log a M n
(其中a >0,且a ≠1,M 1、M 2、M 3…M n >0).
设计意图:加深学生对知识的理解,注意到一些细节问题,避免出现公式的错误应用。
(三).典型例题: 例1、计算
(1))39(log 5
2
3⨯ (2)5
1
100lg
答案:(1)9 (2)
5
2
设计意图:让学生熟悉三个运算性质
例2.计算:lg14-21g
18lg 7lg 3
7
-+; 解:(1)解法一:18lg 7lg 3
7lg 214lg -+-2
lg(27)2(lg 7lg3)lg 7lg(32)=⨯--+-⨯
lg 2lg72lg72lg3lg72lg3lg 20=+-++--=;
解法二:18lg 7lg 3
7
lg 214lg -+-27lg14lg()lg 7lg183=-+-
=18)3
7(714lg 2
⨯⨯lg10==;
设计意图:本例体现了对数运算性质的灵活运用,运算性质常常逆用,应引起足够的
重视。
(四).课堂练习:P.68练习2,3
其中第3题同桌分工,一个顺向作,一个逆向作,最后核对答案是否一致。
(五).小结:
2.对数的运算法则(积、商、幂、方根的对数)及其成立的前提条件; 3.运算法则的逆用,应引起足够的重视;
4.对数运算性质的综合运用,应注意掌握变形技巧。
(六)作业:课本74页习题2.2A 组第三、四题。