五年级下册图形的运动知识点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级下册图形的运动知识点
篇目一:
五年级数学图形的运动重点知识点复习
一、三种图形的运动——平移、旋转、翻折
三种运动都不改变图形的大小和形状。
在运动前后的图形中,对应角和对应线段相等。
平移中,对应点的距离相等,并且就是图形的平移距离。
旋转中,对应点到旋转中心的距离相等。
翻折中,对应点到对称轴的距离相等。
二、三种图形——旋转对称图形、中心对称图形、轴对称图形
都是指一个图形的性质。
旋转对称图形的最小旋转角和旋转角的区别。
中心对称图形是旋转对称图形中的一种特殊情况。
三、几种特殊图形
①正多边形:正多边形都是旋转对称图形,最小旋转角是360/n
偶数正多边形是中心对称图形,奇数边正多边形不是。
正多边形都是轴对称图形,对称轴条数就是边数。
②圆形是旋转对称图形,没有最小旋转角,有无数个旋转角。
圆形是中心对称图形。
圆形是轴对称图形,对称轴有无数条。
③角是轴对称图形,对称轴是角平分线所在直线。
④线段有两条对称轴,一条是其中垂线,另一条是线段所在的直线。
四、两种位置关系——中心对称和轴对称
都是指两个图形的位置关系。
两个图形关于某个点(对称中心)中心对称。
两个图形关于某条直线(对称轴)轴对称。
五、作图
辅助线用虚线,其余用实线。
中心对称图形或两图形中心对称,任何一组对称点的中点就是对称中心。
或者任意两组对称点的交点也是对称中心。
轴对称图形或两图形轴对称,任何一组对称点的中垂线就是对称轴。
或者任意两组对称点连线段的中点的连线就是对称轴。
篇目二:
一、认识图形的旋转,探索图形旋转的特征和性质,体会图形旋转的基本要素。
1.旋转的含义:
物体绕某一点或轴运动,这种运动现象称为旋转。
2.旋转的特征:
旋转中心的位置不变,所有边旋转的方向相同,旋转的角度也相
同;旋转后图形的形状、大小都没有发生变化,只是位置变了。
3.把与钟表上指针的旋转方向相同的方向称为顺时针方向,与钟表上指针的方向相反的方向称为逆时针方向。
温馨提示:把钟面看作一个圆周,是360度。
钟面上有12个大格,每个大格是360÷12=30(度),也就是说,指针每走1个大格就旋转了30度。
4.图形旋转的性质:
图形绕某一点旋转一定的度数,图形中的对应点、对应线段都旋转相同的度数,对应点到旋转点的距离相等,对应线段、对应角都分别相等。
5.旋转的三要素:
(1)旋转中心:
物体旋转时所绕的点,也叫旋转中心。
(2)旋转方向:
顺时针方向或逆时针方向。
(3)旋转角度:
对应线段的夹角或对应顶点与旋转点连线的夹角的度数。
6.描述图形旋转的方法:
图形绕哪个点按什么方向转动了多少度。
温馨提示:描述物体的旋转时,一定要说清旋转中心、旋转方向和旋转角度。
旋转后的图形与旋转前的图形相比较,每条边、每个点都旋转了相同的角度,但图形的大小、形状都没有发生改变。
二、能在方格纸上进行旋转作图。
1.把一个简单图形旋转一定角度的画法:
(1)找出原图形的几个关键点所在的位置;
(2)确定关键点到旋转点的距离;
(3)确定关键点的对应点,对应点与旋转点所连线段和相应关键点与旋转点所连线段形成的夹角和旋转的度数一致,对应点到旋转点的距离与相应的关键点到旋转点的距离相等;
(4)把描出的对应点按顺序连线。
2.图形旋转时,它的中心点、角上的点都可以作为旋转中心,可根据实际需要来选择。
哪一点在旋转过程中位置没有改变,就是绕那一点旋转的。
3.图形旋转180度时,顺时针和逆时针得到的结果是相同的,所以可以不必注明旋转方向。
三、在具体的操作过程中探索多个图形拼组新图形的运动变化,学会用图形变换解决实际问题。
1.用平移和旋转拼组图形时,先确定原来的每个图形在拼成的图形上的位置,再确定每个图形是如何通过平移或旋转得到的。
2.在探究图形的运动时,要多角度思考,图形的运动有时不只一种形式,有可能是多种运动相结合。
易错点:用平移和旋转拼组图形时,要先观察和思考变化前后各
部分的位置,再确定位置改变的图形是如何通过平移或旋转得到的。
平移作图:①选好基本图案;②确定平移的方向;③确定平移的距离;④画出平移后的图形。
旋转作图:①选好基本图案;②确定旋转中心;③确定旋转角度和方向;④依次画出每次旋转后的图形。