中考数学复习专题 分式方程及应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考 点 训 练
【解答】(1)D (2)C
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
2x+1 x (1)(2010· 眉山)解方程: +1= ; x x+1 2x-2 x (2)(2010· 上海)解方程: - -1=0. x x-1
【点拨】本组题考查分式方程的解法,一般步骤为:①去分母,转化为整式方程;②解 整式方程,得根;③验根.这三步缺一不可.
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
考点三 列分式方程解应用题 1. 列分式方程解应用题和其他列方程解应用题一样. 不同之处是列出的方程是分式方程. 求出分式方程解后,一定要记住对所列方程和实际问题验根,不要缺少了这一步. .. 2.应用问题中常用的数量关系及题型 (1)数字问题.(包括日历中的数字规律) ①设个位数字为 c,十位数字为 b,百位数字为 a,则这个三位数是 100a+10b+c; ②日历中前后两日差 1,上下两日差 7. (2)体积变化问题. (3)打折销售问题. ①利润=售价-成本; 利润 ②利润率= ×100%. 成本 (4)行程问题. (5)教育储蓄问题. ①利息=本金×利率×期数; ②本息和=本金+利息=本金×(1+利润×期数); ③利息税=利息×利息税率; ④贷款利息=贷款数额×利率×期数.
甲工厂每天加工 40 件产品,乙工厂每天加工 60 件产品
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
考点训练 9 分式方程及应用
举 一 反 三
训练时间:60分钟 分
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
160 400-160 + =18 x 1+20%x 160 400 C. + =18 x 20%x 400 400-160 D. + =18 x 20%x B.
160 举 【解析】采用新技术后的工作效率为(1+20%)x,前 160 套所用时间为 ,后来的(400 x 一 反 400-160 160 400-160 三 -160)套,所用时间为 ,可列方程为 + =18. 1+20%x x 1+20%x
【解答】(1)方程两边同时乘以 x(x+1),约去分母,得 1 x2+x(x+1)=(2x+1)(x+1).解得 x=- . 2 1 经检验,x=- 是原方程的根. 2 1 所以,原方程的解为 x=- . 2 (2)方程两边同时乘以 x(x-1),约去分母,得 x2-(2x-2)(x-1)-x(x-1)=0 1 解得 x= 或 x=2. 2 1 经检验,x= 或 x=2 都是原方程的根. 2 1 所以原方程的解为 x= 或 x=2. 2
举 一 反 三
当 x=2 时,4-x2=0,∴x=2
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 5. (2010· 益阳)货车行驶 25 千米与小车行驶 35 千米所用的时间相同, 已知小车每小时比 知 识 货车多行驶 20 千米,求两车的速度各为多少?设货车的速度为 x 千米/小时,依题意列方程 精 正确的是( ) 讲 25 35 25 35 中 考 典 例 精 析
宇轩图书
第9讲
分式方程及应用
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
考点一 分式方程及解法 1.分式方程 分母里含有未知数的方程叫做分式方程. 2.解分式方程的基本思想 把分式方程转化为整式方程,即 分式方程― → 整式方程. ―
考 点 训 练
【答案】B
目录
首页
上一页
下一页
末页
宇轩图书
考 点 7 7.(2011 中考预测题)用换元法解方程 x2-2x+ 2 =8,若设 x2-2x=y,则原方程化 知 x -2x 识 为关于 y 的整式方程是( ) 精 A.y2+8y-7=0 讲 中 考 典 例 精 析
B.y2-8y-7=0 C.y2+8y+7=0 D.y2-8y+7=0
2.关于 x 的方程
2x+a =1 的解是正数,则 a 的取值范围是 a<-1. x-1
3.解方程:
举 一 反 三
2 3 = . x-1 x+1
x=5
4.解方程: x= 5 3
3 x 1 - = . 2x-4 x-2 2
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
目录
首页
上一页
下一页
末页
宇轩图书
考 6.(2009 中考变式题)某服装厂准备加工 400 套运动装,在加工完 160 套后,采用了新技 点 术,使得工作效率比原计划提高了 20%,结果共用了 18 天完成任务,问计划每天加工服装 知 ) 识 多少套.在这个问题中,设计划每天加工 x 套,则根据题意可得方程为( 160 400 精 A. + =18 讲 x 1+20%x 中 考 典 例 精 析
3 1 1 1 【解析】 = ,3(x+1)=x+2,3x+3=x+2,2x=-1,x=- ,经检验 x=- 是 2 2 x+2 x+1 原方程的根.
百度文库
举 一 反 三
【答案】B
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
1 1-x 2.(2009 中考变式题)以下是方程 - =1 去分母后的结果,其中正确的是( x 2x A.2-1-x=1 B.2-1+x=1 C.2-1+x=2x D.2-1-x=2x
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
x-2 x 1.方程 = 的解是( C ) x-4 x-6 A.x=1 B.x=2 C.x=3
D.x=4
5.为了提高产品的附加值,某公司计划将研发生产的 1 200 件新产品进行精加工后再投 放市场.现在甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情 况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 10 天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的 1.5 倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
考点训练 9
分式方程及应用 分式方程及应用 训练时间:60分钟 分值:10 训练时间:60分钟 分值:100分
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
一、选择题(每小题 4 分,共 32 分)
3 1 1.(2010· 重庆)方程 = 的解为( x+2 x+1 4 1 A.x= B.x=- 5 2 C.x=-2 D.无解 )
转化 去分母
举 一 反 三
3.解分式方程的步骤 ①去分母,转化为整式方程;②解整式方程,得根;③验根. 4.增根 在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.解分式方程 时,有可能产生增根(使方程中有的分母为零的根),因此解分式方程要验根(其方法是代入最 简公分母中,使最简公分母为零的是增根,否则不是).
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
(2010· 重庆)某镇道路改造工程,由甲、乙两工程队合作 20 天可完成.甲工程队单 独施工比乙工程队单独施工多用 30 天完成此项工程. (1)求甲、乙两工程队单独完成此项工程各需要多少天? (2)若甲工程队独做 a 天后,再由甲、乙两工程队合作________天(用含 a 的代数式表示) 可完成此项工程; (3)如果甲工程队施工每天需付施工费 1 万元,乙工程队施工每天需付施工费 2.5 万元, 甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使 施工费不超过 64 万元?
考 点 训 练
【答案】B
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲
8 2 4.(2009 中考变式题)解方程 的结果是( 2= 4-x 2-x A.x=-2 B.x=2 C.x=4 D.无解
)
8 2 中 【解析】 ,8=2(2+x),8=4+2x,x=2 2= 考 4-x 2-x 典 是原方程的增根,∴原方程无解. 例 精 析 【答案】D
举 一 反 三
【点拨】(1)题方程两边同时乘以(x-3)(x-1),约去分母得 x(x-1)=(x-3)(x+1),解得 x=-3. 经检验:x=-3 是原方程的根. ∴分式方程的解为 x=-3. (2)题使分母为零的未知数的值即为增根,增根一定是分式方程转化为整式方程后的这个 整式方程的根. mx+1 ∵ =-1 有增根,∴x-1=0,∴x=1,∴mx+1=-x+1.当 x=1 时,解得 m= x-1 -1.
= B. = x x-20 x-20 x 25 35 25 35 C. = D. = x x+20 x+20 x A.
【解析】由题意知小车的速度为(x+20)千米/时,根据货车行驶 25 千米与小车行驶 35 25 35 千米所用的时间相同,得 = . x x+20
举 一 反 三
【答案】C
考 点 训 练
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考点二 与增根有关的问题 1.分式方程的增根必须同时满足两个条件 (1)是由分式方程化成的整式方程的根; (2)使最简公分母为零. 2.增根在含参数的分式方程中的应用 由增根求参数的值.解答思路为:①将原方程化为整式方程;②确定增根;③将增根代 入变形后的整式方程,求出参数的值.
7 【解析】由题意可得,y+ =8,则 y2-8y+7=0. y
举 一 反 三
【答案】D
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
x+1 x (1)(2010· 咸宁)分式方程 = 的解为( ) x-3 x-1 A.x=1 B.x=-1 C.x=3 D.x=-3 mx+1 (2)(2009 中考变式题)若解分式方程 =-1 时产生增根,则 m 的值是( x-1 A.0 B.1 C.-1 D.±1 )
)
【解析】等号两边同乘以 2x,去分母后为 2-1+x=2x. 【答案】C
x a 3.(2011 中考预测题)已知方程 =3- 有增根,则 a 的值为( x-5 x-5 A.5 B.-5 C.6 D.4 )
举 一 反 三
【解析】原式去分母后得 x=3(x-5)-a,把增根 x=5 代入得 a=-5.
【点拨】列分式方程解决实际问题,要特别注意解的合理性,需检验求出的未知数的值 是否是原方程的根以及是否符合题意.
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
【解答】 (1)设乙单独做 x 天完成此项工程, 则甲单独做(x+30)天完成此项工程, 由题意, 1 1 得 20( + )=1. x x+30 整理,得 x2-10x-600=0. 解得 x1=30,x2=-20. 经检验,x1=30,x2=-20 都是分式方程的解,但 x2=-20 不符合题意,舍去. 当 x=30 时,x+30=60. 答:甲、乙两工程队单独完成此项工程各需要 60 天、30 天. a (2)合作(20- )天 3 a (3)由题意,得 1×a+(1+2.5)(20- )≤64. 3 解得 a≥36. 即甲工程队至少单独施工 36 天后,再由甲、乙两工程队合作施工完成剩下的工程,才能 使施工费不超过 64 万元.