《生活中的轴对称》全章复习与巩固(提高)知识讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《生活中的轴对称》全章复习与巩固(基础)

责编:康红梅

【学习目标】

1.认识和欣赏身边的轴对称图形,增进学习数学的兴趣.

2.了解轴对称的概念,探索轴对称、轴对称图形的基本性质及它们的简单应用.

3.探索线段的垂直平分线、角平分线和等腰三角形的性质以及判定方法.

4.能按照要求,画出一些轴对称图形.

【知识网络】

【要点梳理】

要点一、轴对称

【高清课堂:389304 轴对称复习,本章概述】

1.轴对称图形和轴对称

(1)轴对称图形

如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.

(2)轴对称

定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.

要求诠释:成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;

②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;

③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.

(3)轴对称图形与轴对称的区别和联系

要点诠释: 轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.

2.线段的垂直平分线

线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

要点诠释:

线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.

三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.

3.角平分线

角平分线性质是:角平分线上的任意一点,到角两边的距离相等;反过来,在角的内部到角两边的距离相等的点在角平分线上.

要点诠释:

前者的前提条件是已经有角平分线了,即角被平分了;后者则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.

要点二、作轴对称图形

1.作轴对称图形

(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;

(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.

要点三、等腰三角形

1.等腰三角形

(1)定义:有两边相等的三角形,叫做等腰三角形.

如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A 是顶角,∠B、∠C是底角.

要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).

∠A=180°-2∠B,∠B=∠C=180

2

A

︒-∠

(2)等腰三角形性质

①等腰三角形的两个底角相等,即“等边对等角”;

②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.

(3)等腰三角形的判定

如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).

要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.2.等边三角形

(1)定义:三条边都相等的三角形,叫做等边三角形.

要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.

(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.

(3)等边三角形的判定:

①三条边都相等的三角形是等边三角形;

②三个角都相等的三角形是等边三角形;

③有一个角为 60°的等腰三角形是等边三角形.

【典型例题】

类型一、轴对称的性质与应用

1、(2015•阳谷县一模)若∠AOB=45°,P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1,P2,连接OP1,OP2,则下列结论正确的是()

A.OP1⊥OP2B.O P1=OP2

C.OP1≠OP2D.O P1⊥OP2且OP1=OP2

【思路点拨】根据轴对称的性质求出OP1、OP2的数量与夹角即可得解.

【答案】D;

【解析】解:如图,∵点P关于直线OA、OB的对称点P1、P2,

∴OP1=OP2=OP,

∠AOP=∠AOP1,∠BOP=∠BOP2,

∴∠P1OP2=∠AOP+∠AOP1+∠BOP+∠BOP2,

=2(∠AOP+∠BOP),

=2∠AOB,

∵∠AOB=45°,

∴OP1⊥OP2成立.

故选D.

【总结升华】本题考查了轴对称的性质,是基础题,熟练掌握性质是解题的关键,利用图形更形象直观.

举一反三:

【变式】如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA

=()

A.180°

B.270°

C.360°

D.480°

相关文档
最新文档