EBL原理与工艺

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子束加工原理及其主要应用

1..电子束加工的原理电子束加工的原理

[1] 电子束加工是以高能电子束流作为热源,对工件或材料实施特殊的加工,是一种完全不同于传统机械加工的新工艺。按照电子束加工所产生的效应,可以将其分为两大类:电子束热效应和电子束化学效应[2]。

1.1电子束热效应

电子束热效应是将电子束的动能在材料表面转化成热能,以实现对材料的加工。电子由电子枪的阴极发出,通过聚束极汇聚成电子束,在电子枪的加速电场作用下,电子的速度被提高到接近或达到光速的一半,具有很高的动能。电子束再经过聚焦线圈和偏转线圈的作用,汇聚成更细的束流。束斑的直径为数微米至1mm,在特定应用环境,束斑的直径甚至可以小到几十纳米,其能量非常集中。电子束的功率密度可高达109W/mm2[3]。当电子束轰击材料时,电子与金属碰撞失去动能,大部分能量转化成热能,使材料局部区域温度急剧上升并且熔化,甚至气化而被去除,从而实现对材料的加工。

1.2电子束化学效应

电子束化学效应是利用电子束代替常规的紫外线照射抗蚀剂以实现曝光,其中包括

1)扫描电子束曝光,用电子束按所需的图形,以微机控制进行扫描曝光,其特点是图形变换的灵活性好,分辨率高;

2)投影电子束曝光,这是一种大面积曝光法,由光电阴极产生大面积平行束进行曝光,其特点是效率高,但分辨率较差;

3)软X射线曝光,软X射线由电子束产生,是一种间接利用电子束的投影曝光法。其应用领域主要是电子束曝光。电子束曝光原理是先在待加工材料表面,涂上具有高分辨率和高灵敏度的化学抗腐蚀涂层,然后通过计算机控制电子束成像电镜及偏转系统,聚焦形成高能电子束流,轰击涂有化学抗腐蚀涂层的材料表面,形成抗腐蚀剂图形,最后通过离子注入、金属沉淀等后续工艺将图形转移到材料表面。

2. 电子束加工的主要应用电子束加工的主要应用

2.1电子束表面改性

利用电子束的加热和熔化技术还可以对材料进行表面改性。例如电子束表面淬火,电子束表面熔凝,电子束表面合金化,电子束表面熔覆和制造表面非晶态层。过改性后的材料表面组织结构得到改善,强度和硬度得到大幅提高,耐腐蚀性和防水性也相应地得到增强[4]。

2.2电子束物理气相沉积

电子束物理气相沉积(EB—PVD)是电子束技术与物理气相沉积技术的有机结合,是利用高能电子轰击沉积材料,使其迅速升温气化而凝聚在基体材料表面的一种表面加工工艺。根据沉积材料的性质,可以使涂层具有优良的隔热、耐磨、耐腐蚀和耐冲刷性能,对基体材料产生一定的保护作用。该技术目前主要应用于

以下几个方面。

1)耐磨涂层:选用硬度高的耐磨涂层材料沉积于工具和模具表面,可以大幅度提高工具和模具的使用寿命。

2)防腐涂层:由于EB.PVD技术制备出的涂层致密程度高,对于在腐蚀环境下工作的零件,其防腐效果非常好。除此之外,EB.PVD得到的涂层形貌良好,残余应力也明显地提高了基体材料的防腐性能。

3)热障涂层:热障涂层(TBCs)是由绝热性能良好的陶瓷材料构成,它沉积在耐高温金属或超合金表面,热障涂层对于基底材料起到隔热作用,降低基底温度,使得用其制成的器件(如发动机涡轮叶片)能在高温下运行,并且可以使器件(发动机等)热效率达到60%以上。

2.3 电子束打孔

用电子束对材料进行打孔加工时,要求电子束的能量密度需大于108W/cm2,每个电子束脉冲打一个孔,脉冲宽度一般只有几毫秒,脉冲的速率快,打孔的速度可以达到每秒几个到3000个孔。电子束脉冲的能量高,不受材料硬度的限制,没有磨损,可以对难熔、高强度和非导电材料进行打孔加工[6]。并且电子束的束斑形状可控,能加工各种孔,加工效率高,加工材料的适应范围广,加工精度高、质量好,无缺陷,一般不需要二次加工。

2.4电子束焊接

电子束焊接具有焊缝深宽比大,焊接速度快,工件热变形小,焊缝物理性能好,工艺适应性强等优点,并且能改善接头机械性能,减少缺陷,保证焊接稳定性和重复性。因而具有极为广阔的应用前景[7]。电子束焊接的加工范围极为广泛,尤其在焊接大型铝合金零件中$电子束焊接工艺具有极大的优势$并且可用于不同金属之间的连接。西欧采用电子束代替过去的氩弧焊焊接大型铝合金筒体,在提高生产效率的同时得到了性能良好的焊接接头,美国和日本均采用电子束焊接工艺加工发电厂汽轮机的定子部件。

相关文档
最新文档