铜矿浸出

铜矿浸出
铜矿浸出

铜矿浸出(leaching of copper ore)

用浸出剂使含铜矿石、焙砂或铜精矿中的铜等有价组分溶解在水溶液中与大部分杂质分离的过程,为湿法炼铜的第一道作业。

铜浸出剂铜矿物可以被许多种浸出剂溶解,但实际在工业应用的只有水、硫酸、硫酸铁溶液、氨液和氯化物溶液。最常用的铜浸出剂是硫酸。含石英多的酸性氧化铜矿,一般宜用硫酸浸出,这不仅因为硫酸价廉,而且也由于硫酸浸出酸性矿石的酸消耗较少。含碱性脉石(如碳酸钙和碳酸镁)较高的氧化铜矿,则一般用氨液浸出。混合铜矿宜用硫酸和硫酸铁的混合液浸出,硫酸主要溶解铜的氧化矿物,硫酸铁则溶解铜的硫化矿物。处理一些含金属铜的物料时,既可用硫酸也可用氨浸出。

方法已应用于工业生产或达到半工业试验阶段的方法主要有硫酸浸出法、氨性介质浸出法和氯化物浸出法。

硫酸浸出法氧化铜矿多用稀硫酸直接浸出,这也是湿法炼铜工业用得最普遍的一种方法。含铜浸出液可用硫化沉淀、中和水解(见沉淀)、铁屑置换(见置换),或用溶剂苹取一电解沉积法从溶液中提取铜。溶剂萃取一电解沉积法发展很快,已成为从浸出液中提铜的主要方法。

稀硫酸可以将矿石中的氧化铜矿物溶解出来,如溶解孔雀石CuCO3?Cu(OH)2、硅孔雀石CuSiO3?2 H2O、蓝铜矿Cu3(CO3)2(OH)2、赤铜矿Cu2O、胆矾CuSO4?5H2O等;当浸出时间延长时,也可溶解次生硫化矿如辉铜矿Cu2S。如浸出剂中含有三价铁和铁硫杆菌等细菌,也可按下式浸出黄铜矿:

Fe2(SO4)3+CuFeS2→5FeSO4+CuSO4+2S

赞比亚恩昌加(Nchanga)公司钦戈拉(Chingola)厂用稀硫酸浸出含铜0.6%的浮选尾矿、含铜2.25%的堆存尾矿和部分废石。物料经预浸后,送往帕丘卡槽(见浸出槽)进行两段浸出,每段有四台帕丘卡槽,浸出矿浆在浓密池中逆流倾析洗涤,浓密机底流加石灰中和后泵往尾矿坝,浓密机上清液通过过滤送萃取。

氨性介质浸出法用氨液[(NH4)2CO3、(NH4)2SO4、NH4OH]浸出含铜物料,使铜以铜氨配位离子形态转入溶液。美国阿那康达(Anaconda)公司的阿比特(Arbiter)厂采用的氨浸法处理硫化铜精矿,就是氨性介质浸出法的典型例子。实际上这是舍立特?高尔顿(Shrritt Gordon)加压氨浸法的改进方法,它不需用加压,用氧气代替空气。硫化铜矿是在氧一氨一硫酸铵系统中,于温度373K、接近常压下,在密封搅拌槽中进行浸出的。过滤后的浸出渣经浮选回收残存的铜和贵金属,用Lix-65N萃取剂萃取浸出液中的铜,然后用电解沉积法获得阴极铜。此法的原则流程示于图1。氨性介质浸出法适用于镍铜精矿、鼓风炉炼锌(帝国熔炼法)的铜浮渣及其他含铜废料的浸出。

氯化物浸出法人们早就致力于研究铜矿的氯化物浸出,所用的浸出剂有氯化铁和氯化铜。氯化物浸出法之所以引起人们的重视,是由于它在常压和适当的温度下,氯化物可以分解较惰性的黄铜矿,而氯化物本身又可以在流程中循环使用。但由于操作和设备的材料问题没有得到解决,氯化物浸出法的研究工作,一直进展缓慢。20世纪70年代,出现了一种以塞梅特(Cymet)法命名的氯化物浸出法,1973年进行了半工业试验,并随后建立了工业试验厂。

杜瓦尔(Duval)法是美国杜瓦尔公司发明一种氯化物浸出法,采用氯化铜作为浸出剂,浸出过程分四个阶段。(1)氧化段:原料用FeCl3和CuCl2浸出,浸出温度413K,压力0.276MPa,浸出过程最好用氧气。(2)还原段:用还原剂将氧化段的CuCl2还原成Cu2Cl2。(3)电解:在隔膜电解槽中进行,铜在阴极析出而被提取,部分CuCl3再生为Cu2Cl2。(4)再生和清除杂质。用空气或氧气使电解残液中的FeCl2再生成FeCl3,浸出的铁以氢氧化铁除去。曾于1975年建成并投产了一座年产32500t电解铜的杜瓦尔法生产厂。

戴克斯太克(Dextec)矿浆电解法是澳大利亚戴克斯太克冶金公司发明的一种氯化物浸出法,其工艺独特。方法的实质是在氯化物(如NaCI)溶液中用空气氧化黄铜矿,在浸出铜矿物的同时实现除铁,并在阴极产出电解铜粉。它的原则流程如图2。这种方法经十多年研究于20世纪90年代初停止了试验。

焙烧-浸出法由于稀硫酸不能直接分解硫化铜矿物,硫化铜精矿必须经过在923~973K温度下的硫酸化焙烧,使铜的硫化物转变成能被稀硫酸溶解的铜的硫酸盐。焙砂用含硫酸的电解废液浸出,并在浸出的同时净化除铁,浸出液送电解沉积产出电解铜。

在扎伊尔和赞比亚用这种方法处理铜钴精矿已有几十年的历史。美国在20世纪70年代也建立了用焙烧浸出法同时处理硫化铜矿和氧化铜矿的大规模生产厂。中国在20世纪60年代也曾建立了一批小规模的焙烧一浸出法铜生产厂,它们的年产能力一般为300~800t电解铜,但自20世纪70年代以来这些工厂已相继关闭。

这种方法还可以考虑与堆浸联合,如果在焙烧一浸出法工厂附近有可以采用堆浸的氧化矿和废矿石,就可以将焙砂浸出的矿浆直接排到堆场,然后从堆浸液中萃取回收铜,这不仅可以利用废酸,还可以省掉固液分离作业。焙烧一浸出法的原则流程见图3

方式湿法炼铜的浸出方式分为渗滤浸出和搅拌浸出。

渗滤浸出一种被广泛采用的浸出方式,适用于粒度较粗的矿石和

已经爆破松动的矿体。酸性浸出剂通常从矿层顶部喷洒,溶液中

的酸与矿石中的酸溶铜反应,生成的硫酸铜透过矿层渗滤出来。

渗滤浸出包括堆浸、就地浸出和槽浸浸出。

(1)堆浸。包括废矿堆浸出和矿石堆浸,前者是用来处理常规采矿法的低铜废弃矿石,常为露天作业,将岩矿聚为大堆(以百万吨计),浸出剂从矿堆表面洒布;后者是将地表氧化矿破碎而聚成矿堆,一般达10~50万t规模,矿堆内的矿块较废矿堆浸的略小。

(2)就地浸出。先用炸药就地破碎矿石,不用移动矿石,浸出剂从矿石表面洒布。这种方法用于处理低品位的地表铜矿床或地下铜矿床。但浸出前必须注意地下岩石在水力加压下的开裂情况。不管是堆浸还是就地浸出,都要求有不渗漏的基底(天然的或人工的),以便能收集浸出液。

(3)槽浸浸出。在巨型槽子(如长25m,宽15m,深6m,处理量为3000~5000t矿石)中,用含硫酸50~100g/L的溶液浸没破碎的矿石(小于1cm)。浸出常常经历若干次浸泡放干的循环。最初几次的浸出液经净化后送去电解沉积生产电解铜,其后的浸出液用来浸出下一批新鲜矿石。与堆浸和就地浸出相比,槽浸浸出使用较浓的硫酸溶液并有较高的生产效率。

搅拌浸出磨细的含铜物料与浸出剂一起加入设有搅拌器的槽内进行搅拌浸出,物料的粒度为95%小于75/μm,浸出液含硫酸50~100g/L。搅拌浸出的效率较高。一般说来,就地浸出和堆浸的时间以年

为单位计算,槽浸浸出的时间以天算,而搅拌浸出仅需2~5h就可以完成。

除了一些氧化铜矿和经焙烧后的硫化物焙砂采用搅拌浸出之外,一般氨浸和氧化物浸出都采用搅拌浸出。

黄铜矿生物浸出研

第一章文献综述 1.1铜的性质及用途 铜(Cu)是元素周期表中第二十九号元素,属于IB族,相对原子质量为63.54,是一种呈紫红色金光泽的金属。其密度8.92t/m3,熔点1083.4℃,沸点2567℃。延展性和导热性强;导电性高,仅次于银;硬度2.5~3,比重8.5~9。当铜中有杂质存在时,对其导电率有决定性影响。 铜是人类最早发现和使用的金属之一,在6000多年前就已被人类使用。在当前世界金属消费量中,铜仅次于铁和铝,居第三位。铜的导电率仅次于银,且铜比银的价格要低,所以铜在电器、电子技术等工业部门中应用最广,用量也最大。在通讯、水以及气的输送中也要使用铜。铜的导热性能也较好,仅次于银和金,其导热率约为银的73%,因此常用铜来制造加热器、冷凝器等设备。铜的延展性较好,易于成型和加工,在飞机、船舶、汽车等制造业多用来生产各种零部件。铜的耐蚀性较强,盐酸和稀硫酸与铜不起作用,因此在化学运输中多用来制造真空器、管道等。铜和黄铜还广泛地应用于自来水管道系统,可以提高管道系统的抗细菌能力[1]。 在当今社会,铜及其合金材料已成为人类在新世纪科技飞速发展不可或缺的主要金属。随着铜金属的应用领域不断拓展,其消耗量也将不断增加。 1.2铜资源分布概述 1.2.1世界铜资源分布概况 世界铜矿资源较为丰富,主要铜生产国是智利,其产量约占世界三分之一,其次是美国、印度尼西亚、秘鲁、澳大利亚、俄罗斯和中国[2]。从国家分布情况来看,智利、美国、秘鲁三国的铜资源储量约占世界总储量的43.6%,美洲占了世界储量的近一半。而我国铜矿保有储量仅占世界储量基础的5.53%,居世界第七位,人均拥有量远低于世界平均水平,属绝对数量尚占优势,相对数量不足的矿产,对经济发展的支撑能力较低。根据国土资源部全国矿产储量数据库2009年的统计数据所显示,建国以来至2008年底全国累计查明铜资源储量约9949.74万吨。我国铜精矿的主要产地集中于江西、云南、西藏、安徽、及甘肃五个省(区),其中江西、云南、西藏三个省(区)查明资源储量合计占全国的48.6%,基础储量合计占全国的41.1%,因此,这三个省(区)是我国铜工业的重要原料基地。 铜矿成矿类型多样,按其地质-工业类型可分为:①斑岩型铜矿;②砂页岩型铜矿;③铜镍硫化物型铜矿;④黄铁矿型铜矿;⑤铜-铀-金型铜矿;⑥自然铜型铜矿;⑦脉型铜矿;⑧碳酸岩型铜矿;⑨矽卡岩型铜矿。其中最重要的是前四类,它们占世界铜总储量的96%左右[3]。各主要产铜国的资源大部分集

氧化铜矿的几种选矿方法

氧化铜矿石的选矿方法总结 常见的主要氧化铜矿物有: 孔雀石CuCO3·Cu(OH)2,含Cu57.5%,其可浮性较好,可用脂肪酸或羟酸钠直接浮选,也可用硫化钠硫化后用高级黄药浮选。硫化时,加硫酸铵有促进其硫化的作用。 蓝铜矿2CuCO3·Cu(OH)2,含Cu69.2%,其可浮性与孔雀石相近,只是硫化浮选时,硫化时间较长。 赤铜矿Cu2O,含Cu88.8%,可浮性与孔雀石相近。 硅孔雀石CuSiO3·2H2O,含Cu36.2%,其表面亲水性较强,也不容易被硫化钠等硫化剂所硫化。PH=4时,加硫化氢、硫化钠及硫酸铵,可以部分将其硫化,然后用高级黄药浮选。硅孔雀石能用脂肪酸捕收,但浮选性质与脉石相似,难于分选。近年来用羟肟酸及其他一些特殊的捕收剂,收到一些效果。 斜硅铜矿:一般呈蓝色或天蓝色,与黑铜矿、孔雀石、褐铁矿、石英等矿物共生。 磷铜矿:与孔雀石、硅孔雀石、褐铁矿和脉石等矿物关系密切,常分布在石英、白云石和褐铁矿的裂隙或表面,有时包裹褐铁矿以及脉石矿物。 水胆矾:Cu4SO4(OH)6 颜色为翠绿色、黑绿色甚至为全黑;灰绿色条痕;具有玻璃至珍珠光泽;硬度3.5~4,比重3.5~4;断口贝壳状到参差状,有一个方向的良好解理;属于易脆矿物,。不与盐酸酸作用。 常见的氧化铜选矿方法: 一、浮选法 1.硫化浮选法 这是处理孔雀石和兰铜矿这类氧化铜矿石的一种最简单,最普遍的方法。硅孔雀石和赤铜矿的硫化比较困难,因此当矿石中氧化铜矿物主要为孔雀石和兰铜矿时,可采用硫化浮选法。 硫化时硫化钠用量可达1~2kg/t。由于硫化生成的薄膜不稳固,经强烈搅拌容易脱落,而且硫化钠本身易于氧化,所以在使用硫化钠时应分批加入。另外,孔雀石和兰铜矿的硫化速度较快,故在实践中进行硫化时常不需要预先

黄铜矿在硫酸介质中浸出的电化学行为

Ser i es N o .383 M ay 2008 金 属 矿 山M ETAL M I N E 总第383期 2008年第5期 *国家科技支撑计划项目课题资助(编号:2007BAB18806)。朱 莉(1981 ),女,西南科技大学生命科学与工程学院,硕士研究生,621010四川省绵阳市西南科技大学东苑8A -514室。罗学刚(1957 ),男,西南科技大学生命科学与工程学院,教授,博士生导师,通讯联系人,621010四川省绵阳市。 黄铜矿在硫酸介质中浸出的电化学行为 * 朱 莉 张德诚 罗学刚 (西南科技大学) 摘 要 以天然黄铜矿为研究对象,运用三电极电化学体系,对在硫酸介质中黄铜矿的浸出过程电化学行为进行了研究。结果表明,黄铜矿首先氧化成缺铁硫化物,覆盖于电极表面,使电极表面发生钝化。随着电位的升高,缺铁硫化物继续氧化,最终以硫酸根形式于溶液中。当电位小于-0.85V (vs .SCE)时,黄铜矿阴极还原反应电流大,晶格中的Fe 3+完全溶解出来。黄铜矿的阴极反应较强烈,且对黄铜矿氧化浸出具有重要意义。此外,随p H 值降低,H 2S 加速生成,氧化还原峰电流增强。说明在研究的p H 值内,降低体系的p H 值有利于黄铜矿的氧化。 关键词 黄铜矿 循环伏安法 电化学 酸浸 E lectroche m ical Behavior of Chalcopyrite in Sulfuric A cid Leaching Zhu L i Zhang Decheng Luo Xuegang (H enan Universit y of S cience and T echnology ) Abstrac t Study ism ade on t he e l ectrochem ica l behav ior o f cha lcopy rite i n sulfuric acid leach i ng o f natura l cha l copy rite by three e lectrode me t hod .The resu lts i ndicate t hat t he chalcopyr ite is fi rst ox i d ized i n t o iron depleted sulfide ,wh i ch covers the electrode surface and passi vates the l a tter .W ith the rise i n potenti a ,l the iron dep l e ted sulfi de conti nues the ox i dati on and fi na lly occurs i n the so l u ti on i n for m of sulfa te radica.l W hen t he potenti a l gets s m a ller than -0.85V (vs .SCE ),the ca t hodic reducti on current of cha lcopyrite is larger and the F e 3+i n t he crysta l latti ce i s full y disso lved .T he strong ca t hodic reacti on of cha lcopyr ite i s o f great i m po rtance to the ox idation leach i ng of cha l copy rite .W hat s 'm ore ,w ith the decrease o f p H,H 2S f o r m ati on i s accelerated and t he peak current o f ox i dati on reducti on is i ncreased ,i ndicati ng t hat the reducti on of p H o f the sa i d research syste m i s benefi c ial t o the ox i dation o f cha l copy rite . K eywords Cha lcopyr i te ,Cyc lic vo lta mm etry ,E lectroche m istry ,A cid leach i ng 硫化铜矿以黄铜矿最为重要,黄铜矿的浸取是 硫化铜矿湿法冶金的核心。黄铜矿属四方晶系(c =525pm,a =1032pm ),其四面体晶胞大约相当于两个闪锌矿的晶格组合在一起,在其中的一半结构中,4个锌原子被铜原子和2个铁原子取代,铁原子与铜原子沿c 轴交替排列,其中Cu 为+2价,Fe 为+3价;在另一半结构中,硫原子位置保持不变。黄铜矿的这种晶格结构使其具有较高的点阵能 (17500kJ),因此晶体结构稳定,难以分解[1] 。 在实际浸出过程中,黄铜矿的分解是分步进行的,且反应十分缓慢。很多研究者认为有钝化层阻止了反应的进一步进行,从而导致黄铜矿浸出率很低。在硫酸浸出黄铜矿的过程中,钝化物被认为是具有半导体性质的中间物质,如Cu 1-x Fe 1-y S 2-z [2] 、 CuS 2[3 4] 、Cu 0.8S 2[5] 和CuSn [6] 等。电化学方法能将 一般难以测定的化学量直接变换成容易测定的电化学参数。故对于湿法冶金中硫化矿浸出机理研究而 言,电化学方法是一种常用的有效方法[7] 。因此研究黄铜矿电化学分解行为,探讨浸出机理对提高黄铜矿的浸出率很有意义。前人对此已做过一些研究[8 13] 。由于大部分硫化矿的浸出过程是氧化溶解过程,因此大多数研究都是关于在阳极氧化反应方面的研究,而对黄铜矿阴极还原反应及其意义的研究很少。本研究采用静止黄铜矿电极进行循环伏安图分析,并根据需要进行多次重复扫描,在不同初始扫描方向、电位以及不同酸浓度,分析黄铜矿在酸性条件下的电化学行为,并对黄铜矿阴极还原反应对阳极氧化的影响做了较深刻的研究。

浸矿微生物技术

课程结业论文 题目浸矿微生物技术 姓名李诚 所在学院化工学院 专业班级化学工程与工艺09级2班 学号 2009301767 指导教师张东晨 二〇一 1 年 4 月28 日

学年论文指导教师评阅意见

浸矿微生物技术 摘要:概述了将微生物技术应用于矿业加工技术之中的原理,其中涉及到的菌种极其培养条件和各种石矿运用这种技术进行浸出的实例应用 关键词:矿业、微生物、浸出 大多数金属硫化矿如黄铜矿、辉铜矿、黄铁矿、黝铜矿、闪锌矿和某些金属氧化矿如铀矿、氧化锰矿难溶于稀硫酸等一般工业浸出剂。但人们可利用某些特殊微生物,在合适条件下将上述矿物中的金属用稀硫酸浸出。 生物浸出的基本原理 生物浸出是利用微生物在生命活动中自身的氧化和还原特性,使资源中的有用成分氧化或还原,以水溶液中离子态或沉淀的形式与原物质分离,或靠微生物的代谢产物与矿物作用,溶解提取矿物有用成分。 矿石(硫化矿)的生物浸出是水溶液中多相体系的一个复杂过程,它同时包含了化学氧化、生物氧化和电化学氧化反应。一般认为,在生物浸出过程中,微生物的作用表现在两方面,即直接氧化作用和间接氧化作用。 1、微生物的直接氧化作用 直接氧化作用是指微生物与目的矿物直接接触,加速固体矿物被氧化成可溶性盐的反应过程,如许多金属硫化矿物在浸矿微生物的直接氧化作用下会发生浸出反应。 直接氧化作用中细菌的“催化”功能是通过酶催化溶解机制来完成的,细菌在酶解矿物晶格的过程中获得生长所需的能量。 2、微生物的间接氧化作用 间接氧化作用是指通过微生物代谢产生的化学氧化剂溶解矿物的作用,如上述反应产生的硫酸亚铁又可作为能源被细菌氧化为硫酸高铁。 硫酸铁是一种强氧化剂,可通过化学氧化作用溶解矿物。 间接氧化作用是细菌代谢产物的化学溶解作用,细菌在其中的作用是再生氧化剂———硫酸高铁,完成生物化学循环,细菌可不与矿物接触。 在实际细菌浸出过程中,既有直接氧化作用,又有间接氧化作用,属于一种耦合作用。生物浸出应用的菌种 用于生物浸出的微生物种类繁多,但主要可分为两大类:化能无机自养型和化能有机异养型。化能无机自养型细菌主要用于有色金属硫化物的氧化浸出,化能有机异养型中的真菌、藻类等主要用于从硅酸盐和碳酸盐矿物中提取金属,如浸金。 已研究过用于生物浸出的微生物有20多种,分布于硫杆菌属、钩端螺菌属、硫化杆菌属、硫化叶菌属、酸菌属、生金球菌属和硫球菌属等。其中比较重要的有以下几种: 1、硫杆菌属 硫杆菌属中最为重要的3个种为氧化亚铁硫杆菌、氧化硫硫杆菌和排硫硫杆菌。 (1)氧化亚铁硫杆菌

某氧化铜矿的选矿工艺

某氧化铜矿的选矿工艺研究 杨树赟 (云南迪庆矿业有限公司) 1引言 随着矿产资源开发利用的强度越来越大,高品位易回收利用的优质矿石逐渐减少,对难处理氧化矿的开展回收利用研究十分必要,也符合国家资源综合利用的产业政策,同时可以带动地区经济发展。 某矿山矿产资源为铜氧化矿,生产工艺流程为:“碎矿为三段一闭路流程,碎矿最终粒度为-12mm;碎矿产品经过两段连续磨矿至-200目占70%,再经一次粗选、一次扫选、两次精选获得铜精矿;选铜作业的尾矿经一次磁粗选获得铁粗精矿,再磨至-200占92%的细度,然后经过两次精选获得铁精矿;精矿脱水为浓密、过滤两段脱水作业,最终产品铜精矿含水14%,铁精矿含水10%”的设计流程,作为一期建设的依据。 2选矿流程 2.1单金属矿浮选原则流程 单金属矿浮选原则流程的选择,主要取决于矿石中有用矿物的嵌布粒度特性。一般多为不均嵌布,由于有益矿物和脉石硬度不同,易于泥化,影响回收率,制定选别流程的原则是尽最使有用矿物经粗选、扫选得粗精矿或中矿,然后进行粗精矿或中矿再磨再选,对于嵌布不均的有益矿物在粗磨的条件下能产出部分合格精矿,粗选尾矿进行再磨再选或得粗精矿再磨再选,得到第二部分合格精矿。 处理复杂不均嵌布矿石时,由于该类矿石有用矿物嵌布不均,连生体解离范围较广,有时要用三段磨矿三段选别的流程,才能综合回收不同粒级的有用矿物。处理含大量原生泥和可溶性盐类矿石时,由于矿泥和矿砂选别工艺不一样,一般采用泥砂分选流程,才能获得比较理想的技术经济指标。 2.2多金属矿浮选原则流程 多金属矿浮选是指两种有益矿物以上的金属矿浮选,选别流程一般有优先浮选、混合浮选然后分离浮选和优先、混合浮选兼有的选别流程。如铅锌矿一般有铅锌依次的优先浮选和铅锌混合浮选得混合精矿,经再磨(或不再磨)后分离浮选得铅精矿和锌精矿。又如铜、铅锌、硫化铁的多金属矿,其浮选流程一般为先优先浮选铜铅,进行铜铅分离,优先浮选铜铅的尾矿进行锌、硫混合浮选然后分离锌硫或依次优先浮选锌、硫得锌精矿、硫精矿。某些矿石可利用矿物的可浮性使用选择性捕收剂优先选出已解离的部分矿物,然后再进行混合浮选、分离浮选。流程中有否再磨工序,视矿物的堪布粒度及解离情况而定。 3氧化铜矿的处理方法 3.1浮选法 (1)硫化浮选法。加硫化剂使氧化矿硫化,然后用普通硫化铜浮选的药剂方法进行浮选。此法适用于处理以孔雀石、蓝铜矿、氯铜矿为主的矿石。 (2)胺类浮选法。用胺类作捕收剂进行浮选,适用于处理孔雀石、蓝铜矿、氯铜矿等,含矿泥多时应加脉石抑制剂、絮泥剂;如果一般的抑制剂无效时,可选用海藻粉、木素磺酸盐或纤维素木素磺酸盐,聚丙烯酸等作脉石抑制剂。 (3)螯合剂-中性油浮选法。硅孔雀石可用上述方法回收,但因效果较差,所以选用特殊捕收剂,如辛基取代的碱性染料孔雀绿,辛基氧肪酸钾,苯并三唑及中性油乳化剂,N-取代亚胺二乙酸盐,多元胺和有机卤化物的缩合物,以及季铵盐和季磷盐等进行浮选。 (4)乳浊液浮选法。氧化铜矿物先经硫化,然后加铜络合剂,造成稳定的亲油性矿物表面,再用中性油乳浊液盖在其表面,造成强疏水的可浮状态,牢固地吸附在气泡上浮。脉石抑制剂可用丙烯酸聚合物和硅酸钠。铜络合剂用苯并三唑、甲苯酰三唑、疏基苯并唑、二苯胍等;非极性油浮化剂可用汽油、煤油、柴油等。 3.2化学选矿或与浮选联合处理 氧化和混合矿多采用浮选法处理,对于浮选效果较差的氧化矿石,可用化学选矿法处理。化学选矿法又可分为浸出法(包括酸浸和氨浸),浸出-萃取-电积法;浸出-置换-浮选法(即LPF法);磨矿-浸出-置换-浮选法(即GLPF法);浸出-置换-磁选法(即LCMS法);磨矿-浸出-浮选法,哈尔兰法(即氧化铜矿直接电解法);焙烧(硫酸化焙烧)-浸出-电解法;氯化焙烧-浮选法;离析-浮选法(氯化还原焙烧-浮选法);还原焙烧-氨浸法等。 浸染状铜矿石的浮选一般采用比较简单的流程,经一段磨矿,细度-200目占50~70%,1次粗选,2~3次精选,1~2次扫选,就能达到较为理想的生产技术经济指标。如铜矿物浸染粒度比较细,可考虑采用阶段磨选流程。处理斑铜矿的选矿厂,大多采用粗精矿再磨在进行精选的阶段磨选阶段选别流程,其实质是混合-优先浮选流程。先经一段粗磨、粗选、扫选,再将粗精矿再磨再精选得到高品位铜精矿和硫精矿。粗磨细度-200目约占45~50%,再磨细度-200目约占90~95%。致密铜矿石的浮选,致密铜矿石由于黄铜矿和黄铁矿致密共生,黄铁矿往往被次生铜矿物活化,黄铁矿含量较高,难于抑制,分选困难。分选过程中要求同时得到铜精矿和硫精矿。通常选铜后的尾矿就是硫精矿。如果矿石中脉石含量超过20~25%,为得到硫精矿还需再次分选。处理致密铜矿石,常采用两段磨矿或阶段磨矿,磨矿细度要求较细。药剂用量也较大,黄药用量100g/t(原矿)以上,石灰8~10kg/t(原矿)以上。 摘要:氧化铜矿石,是一种难以综合回收利用的矿石。根据氧化铜矿的组成及其特征,提出了氧化铜矿石选矿回收工艺中值得考虑的几个问题,在此基础上通过多方案的对比,来确定较为合理的选矿回收工艺流程。 关键词:氧化铜矿石;综合选矿回收利用工艺;处理技术 地质勘测 180 广东科技2012.12.第23期

黄铜矿

黄铜矿 黄铜矿(chalcopyrite)是一种铜铁硫化物。化学式:cufes2,常含微量的金、银等。正方,晶体相对少见,为四面体状;多呈不规则粒状及致密块状,也有肾状、状集合体。黄铜黄色,时有斑状锖色。为微带绿的黑色。黄铜矿是一种较常见的铜矿物,几乎可形成于不同的环境下。但主要是热液作用和的产物,常可形成具一定规模的。遍布世界各地。在工业上,它是炼钢的主要原料。在宝石学领域,它很少被单独利用,偶而用作黄铁矿的代用品。另它常参与一些、砚石和玉石的组成。 目录 展开 化学性质 晶体化学:理论组成(wB%):Cu 34.56,Fe 30.52,S 34.92。通常含有、、、、,大多为机械混入物;有时含、、、Se、、、族元素等。 结构与形态:,a0=0.524nm,c0=1.032nm;Z=4。晶体

黄铜矿 结构与、黝矿(Cu2FeSnS4)相似。黄、黝锡矿相当于闪锌矿单位晶胞的两倍,构成四方。在三种的配位四面体中心都分布着S,在角顶则分布着不同的阳离子。由于三者的结构相似,因而在高温下可以互溶;而当温度降低时,由于离子半径相差较大,固溶体发生离溶。故常在闪锌矿中发现黄铜矿和黝锡矿小包裹体。 四方偏三角面体晶类,D2d-42m (Li42L22P)。晶体较少见。常见单形:四方四面体p{112}、-p 、r{332}、d{118},四方双锥z{201}。以(112)为双晶面或以[112]为双晶轴成简单双晶。可与黝锡矿或闪锌矿规则连生。主要呈致密块状或粒状。 用途:在冶炼铜矿过程中存在重要反应 2CuFeS2+O2=Cu2S+2FeS+SO2 2Cu2S+3O2=2Cu2O+2SO2↑ 2Cu2O+Cu2S=6Cu+SO2↑ 物理性质 物理性质:黄铜黄色,表面常有蓝、紫褐色的斑状锖色。绿黑色。,不透明。∥{112}、{101}不完全。3~4。性脆。相对密度4.1~4.3。 产状与组合:分布较广。型,产于与基性、有关的铜镍硫化物中,与磁黄铁矿、密切共生。接触交代型,与、黄铁矿、磁黄铁矿等共 黄铜矿 生;亦可与或方铅矿、闪锌矿等共生。热液型,常呈中温热液充填或交代脉状,与黄铁矿、方铅矿、闪锌矿、、辉钼矿及方解石、等共生。在风化

微生物冶金研究及应用示例

微生物冶金研究及应用示例 摘要:微生物冶金是微生物学与矿物加工学相交叉而产生的一门新兴的边缘学科,开展这方面的研究具有重要的学术意义及广阔的应用前景。本文主要对微生物冶金以及其在矿物开采中的应用进行了较全面的综述,包括微生物冶金发展概况、冶金微生物、微生物冶金技术及冶金过程的机理,并介绍了微生物冶金技术的应用现状。 关键词:生物冶金;硫化矿;冶金技术;生物浸出 矿产资源的开发与利用是支持全球经济发展与社会进步的重要基础之一。随着全球工业化迅速发展带来的自然资源的飞速开发,导致优质富矿资源日趋枯竭,从而品位低以及成分复杂的贫矿资源开始受到人们日渐关注,难选冶炼矿石所占比例不断攀升。常规冶金技术在对低品位低矿物的加工过程中所体现出的产量低、成本高、污染大等缺点,在技术和经济上已无法满足工业生产需求,微生物冶金技术逐渐受到人们的重视[1]。 生物冶金技术又称生物浸出技术,其本质是利用自然界中的微生物或其代谢产物溶浸矿石中有用金属的一种技术。这些微生物为适温细菌,靠无机物生存,对生命无害,它们可以通过多种途径对矿物作用,将矿物中的酸性金属氧化成可溶性的金属盐,不溶的贵金属留在残留物中。并一旦溶液可与残留物分离,在溶液中和之前,采取传统加工方式,如溶剂萃取等方法来回收溶液中的金属;可能存在于残留物中的金属,经细菌氧化后,通过氰化物提取。生物冶金技术具有能耗少、设备简单、操作方便、成本低、工艺流程简单、无污染等优点[2-3],在矿物加工及冶金领域逐渐受到重视并发展壮大起来,是未来冶金行业发展的重要方向之一[4]。因此,微生物冶金技术的研究及其应用对冶金学的发展具有重要的理论和实际意义[5-6]。 1 微生物冶金发展概况 生物冶金的应用研究开始于20世纪40年代。1947年,Colmer和Hinkel[7]首次从酸性矿坑水中分离到氧化亚铁硫杆菌。其后,Temple等[8]和Leathen等[9]先后发现这种细菌能够将Fe2+氧化为Fe3+,并且能够将矿物中的硫化物氧化为硫

低品位黄铜矿的氧化浸出概论

学院:专业:班级:

实 验 原 理 CuFeS2 +4Fe3 +=Cu2 + +5Fe2 + +2S0 , (1) CuFeS2 +4H++O2 =Cu2+ +Fe2 + +2S0 +2H2O ,(2) CuFeS2 +3Cu2 + +3Fe2 +=2Cu2S +4Fe3 + , (3) Cu2S +4H+ +O2 =2Cu2 + +S0 +2H2O , (4) Cu2S +4Fe3 +=2Cu2 + +S0 +4Fe2 +。(5) 实验仪器 药品及试剂:Fe2(SO4)3 ,H2SO4 仪器:榔头,球磨机,筛子,棒磨机,烘烤箱,500ml烧杯,250ml烧瓶,漏斗,滤纸,分析天平,磁力悬浮搅拌器;

实验数据第一组 原矿品位:0.23 细度/% Q渣/g 渣铜品位浸出率/% 60 17.07 0.073 72.91 70 16.99 0.057 78.95 80 17.02 0.041 84.83 90 17.58 0.047 82.04 第二组 磨矿时间:7min 粒度:80% 原矿质量:20g 温度/O C Q渣/g 渣铜品位浸出率/% 650 17.14 0.046 82.86 750 17.39 0.037 86.01 850 17.40 0.042 84.11 950 17.44 0.047 82.18

第三组 粒度:80% 温度:750O C 时间/min Q渣/g 渣铜品位浸出率/% 90 18.71 0.034 86.17 120 17.49 0.029 88.97 150 17.60 0.031 88.13 180 17.62 0.033 87.35 第四组 原矿品位:0.23 细度/% Q渣/g 渣铜品位浸出率/% 70 19.05 0.07 71.01 80 18.92 0.061 74.91 85 18.83 0.064 73.80 90 18.88 0.065 73.32

氧化铜矿石定义及处理方法

氧化铜矿石定义及处理方法【含图】 2014-10-16 浏览量:2312 将本内容地址发到手机 文章导读:今天我们的主题是氧化铜矿石定义及处理方法。整篇文章中我们主要讲解的是氧 化铜矿石的定义,氧化铜矿石的常见种类及氧化铜矿石的处理方法。具体详情请查看正文。 今天我们的主题是氧化铜矿石定义及处理方法。顾名思义今天的主角是氧化铜 矿石。氧化铜矿石的定义是什么?氧化铜矿石的常见种类有哪些?氧化铜矿石的处 理方法有哪几种?让我们带着这些疑问来开始今天的主题氧化铜矿石定义及处理方法。 氧化铜矿石定义及处理方法之氧化铜矿石的定义 氧化铜矿石:铜是一种典型的亲硫元素,在自然界中主要形成硫化物,只有在 强氧化条件下形成氧化物,在还原条件下可形成自然铜。目前,在地壳中已发现的 铜矿物和含铜矿物约有250多种,主要是硫化物及其类似的化合物和铜的氧化物、 自然铜以及铜的硫酸盐、碳酸盐、硅酸盐类等矿物。其中,能够适合目前选冶条件 可作为工业矿物原料的有16种。即自然元素:自然铜;铜的硫化物:黄铜矿、斑铜矿、辉铜矿、铜蓝、方黄铜矿、黝铜矿、砷黝铜矿、硫砷铜矿;铜的氧化物:赤铜矿、黑铜矿;铜的硫酸盐、碳酸盐和硅酸盐矿物:孔雀石、蓝铜矿、硅孔雀石、水 胆矾、氯铜矿。

氧化铜矿石 氧化铜矿石定义及处理方法之铜类氧化矿物的常见种类: 1、孔雀石型:矿物以孔雀石为主,其它含量较少,属易选矿石,可用硫化浮选法分选。 2、硅孔雀石型:矿物以硅孔雀石为主,脉石为硅酸盐类,矿石属难选型,可用化学选矿法、离析-浮选法处理。 3、赤铜矿型:以赤铜矿和孔雀石为主,原矿铜品位高,不论脉石为何种类型,此类矿石可采用浮选法处理。 4、水胆矾型:以铜的矾类矿物为主,具有中等可选性,可用浮选或化学选矿法直接回收;若脉石为碳酸盐矿物,则可采用联合法处理。 5、自然铜型:此种共生矿物,粒度较粗,品位较富,属易选矿石,可用浮选法分离。 6、结合型:氧化铜矿物以极细粒状被褐铁矿或泥状物包裹,铜品位较低;若脉石为硅酸盐类,则属难选型矿石,可用化学选矿法直接回收;若脉石为碳酸盐类,则属复杂型,可用化学选矿法或离析-浮选法回收。 7、混合型:矿石中有氧化物,也有硫化物,成分复杂,粒度稍粗大;若脉石为硅酸盐类,可采用浮选-化学选矿法处理。

【采矿课件】第十二章矿物微生物浸出

第十二章矿物微生物浸出 教学大纲要求 本章主要介绍了微生物粉冶金的基本概念,细菌浸矿的作用机理,以及影响细菌浸出的主要因素 。主要内容包括: 1.矿物微生物浸出的基本概念 2.浸矿微生物种类 3.微生的浸出的基本原理 4.影响细菌浸出的主要因素 教学时间 6学时。 教学重点 1. 浸矿细菌的培养; 2. 微生物浸出的作用机理。教学难点 微生物浸矿的主要作用机制。 教学方法 课堂教学为主。

教学要求 掌握浸矿微生物培养、筛选方法,微生物浸出的主要作用机制。 讨论 微生物冶金方法与传统冶金方法间的优劣。 教学参考书 1. 浸矿技术编委会,浸矿技术,:原子能,1994. 2. 聂树人,索有瑞,难选冶金矿石浸金,:地质,1997. 3. 童雄,微生物浸矿的理论与实践,:冶金工业,1997. 4. 杨显万,邱定蕃,湿法冶金,:冶金工业,1998. 12.1 固结过程的气体力学简单叙述生物冶金和细菌浸出的基本概念和发展状况。12.2 浸矿微生物教学内容 主要内容包括浸矿微生物的种类、来源、生理生态特征,细菌的采集、分离、培养与驯化,细菌生 长规律,层透气性的基本概念、透气性变化规律定量描述与影响料层透气性的主要因素。 教学时间 2学时。 本节重点 微生物的生长规律。 教学方法 课堂教学为主。 教学要求 了解浸矿细菌的种类、采集、培养、驯化过程,掌握细菌生长的基本规律。 12.3 微生物浸出基本原理教学内容

主要内容包括微生物浸出的直接作用说、间接作用说和复合作用说的内涵。教学时间 3学时。 本节重点 微生浸矿的三种作用机制。 本节难点 不同作用机理之间的差异。 教学方法 课堂教学为主。 教学要求 熟练掌握微生物浸矿的作用机制。 12.4 细菌浸出影响因素和浸出动力学教学内容 主要内容包影响微生物浸出各种因素以及浸出动力学规律。 教学时间 2学时。 教学方法课堂教学为主。 教学要求 了解微生物浸矿过程影响浸出效率和速度的各种因素。

氧化铜矿处理方法

立志当早,存高远 氧化铜矿处理方法 处理氧化铜矿的方法,主要有下几种: (1)硫化后萤药浮选法。此法是将氧化矿物先用硫化钠或其他硫化剂(如硫氢化钠)进行硫化,然后用高级黄药作捕收剂进行浮选。硫化时,矿浆的pH 值愈低,硫化进行得愈快。而硫化钠等硫化剂易于氧化,作用时间短,所以使用硫化法浮选氧化铜时,硫化剂最好是分段添加。硫酸铵和硫酸铝有助于氧化矿物的硫化,因此硫化浮选时加入该两种药剂可以显著地改善浮选效果、可用硫化法处理的氧化铜矿物,主要是铜的碳酸盐类,如孔雀石、蓝铜矿等也可以用于浮选赤铜矿,而硅孔雀石如不预先进行特殊处理,则其硫化效果很差,甚至不能硫化。 (2)脂肪酸浮选法。该法又称为直接浮选法,用脂肪酸及其皂类作捕收剂进行浮选时,通常还要加入脉石抑制剂水玻璃、磷酸盐及矿浆调整剂碳酸钠等。脂肪酸机器皂类能很好地浮选孔雀石及蓝铜矿,用小同烃链的脂肪酸浮选孔雀石的试验结果表明,只要烃链足够长,脂肪酸对孔雀石的捕收能力足相当强的,在一定范围内,捕收能力越强,药剂的用量就越少,直接浮选只适用于脉石不是碳酸盐类的氧化铜矿,当脉石中舍有大量铁、锰矿物时,其指标就会变坏。 (3)特殊捕收剂法。对氧化铜矿的浮选,除使用上述两类捕收剂以外,还可采用其他特殊捕收剂进行浮选有时还可以与黄药混合使用,以提高铜的回收率。 (4)浸出-沉淀-浮选法。由于氧化铜矿的种类多有的可浮件好,有的可浮性差,还有些 氧化铜矿物容易被某些酸、碱溶解,所以也有将难选易溶的氧化铜矿物先用酸提出然后用铁粉置换,沉淀析出金属铜,再用浮选法浮出沉淀铜。设法技术条件是:根据矿石嵌布粒度,将矿石细磨到单体分离。浸出用0.5%-3%的稀硫

微生物实验原理

大肠埃希菌检测 胆盐乳糖培养基:通过胆盐或者去氧胆酸钠抑制革兰氏阳性菌;选择利用乳糖为碳源的革兰氏阴性菌; 溴甲酚紫 可以用作乳酸乳球菌的培养基制备时的指示剂,其pH变色范围5.2(黄色)~6.8(紫色); 胆酸盐 MUG 培养基试验 亚硫酸钠和去氧胆酸钠为选择性抑菌剂;菌的葡萄糖醛酸苷酶在碱性条件下,作用于4-甲基伞形酮-β-D葡萄糖醛酸苷的β糖醛酸苷键,使其水解,释放的4-甲基伞形酮在366nm紫外灯下产生蓝白色荧光。97%的大肠埃希氏杆菌、10%的沙门氏菌以及少量的志贺氏菌具有葡萄糖醛酸苷酶。 靛基质试验 某些细菌具有色氨酸酶,能分解蛋白胨水中的色氨酸生成吲哚,当加入吲哚试剂(对位二甲氨基苯甲醛)后则形成红色的玫瑰吲哚。(变形杆菌和霍乱弧菌亦可以产生靛基质阳性) 色氨酸酶 催化色氨酸厌氧分解产生吲哚和丙酮酸和氨的反应的酶。在微生物中特别是大肠杆菌有大量存在,以磷酸吡哆醛为辅酶,对半胱氨酸和丝氨酸也有一定作用。在动物体内无此酶。 伊红美蓝培养基 伊红为酸性染料,美蓝为碱性染料,两种苯胺类染料,可以抑制革兰氏阳性菌的生长。当大肠杆菌分解乳糖产酸时细菌带正电荷被染成红色,再与美蓝结合形成紫黑色菌落,并带有绿色金属光泽。而产气杆菌则形成呈棕色的大菌落。 在碱性环境中不分解乳糖产酸的细菌不着色,伊红和美蓝不能结合,故沙门氏菌等为无色或琥珀色半透明菌落。金葡菌在此培养基上不生长。 麦康凯琼脂培养基 利用胆盐来抑制革兰阳性细菌的生长,而对伤寒等沙门菌有促进生长的作用.利用乳糖发酵,中性红的颜色可把分解乳糖和不分解乳糖的细菌区别开.沙门菌及志贺菌呈无色菌落,大肠埃希菌呈桃红色菌落. 沙门氏菌检测 生化特性 发酵葡萄糖,麦芽糖,甘露醇和山梨醇产气;不发酵乳糖、蔗糖和侧金盏花醇;不产吲哚、V-P反应阴性;不水解尿素和对苯丙氨酸不脱氨。伤寒沙门氏菌、鸡伤寒沙门氏菌及一部分鸡白痢沙门氏菌发酵糖不产气,大多数鸡白痢沙门氏菌不

氧化铜矿的氨浸

立志当早,存高远 氧化铜矿的氨浸 由于铜离子在氨溶液中形成稳定的配位化合物,Cu (NH3)2+n,n=1~4,因此溶解度很大。溶液中加人硫酸铵或碳酸氢铵等铵盐,可以缓冲溶液的pH 值,阻止铜的水解反应。早在1915 年就出现了氨浸法提铜的专利,20 年代开 始工业应用。孔雀石和蓝铜等碱式碳酸盐矿物中的铜通过生成配合物易于溶 解于氨性溶液:CuC03·Cu(OH)2+6NH40H+(NH4)2C03 ==== 2Cu (NH3)4C03+8H20 可以看出,浸取中要保证足够的氨浓度,以生成稳定的铜氨配合物。温度虽然可以提高反应速度,但使氨的分压增高,损失增加,因此,以选取适中的温度为宜。硅孔雀石也能在氨-铵盐溶液中浸出。早期都用大 桶渗滤的方法浸取这些矿物,回收率能达到80%左右。使用氨浸处理含碱性 脉石的矿石可减少采用酸浸所额外消耗的酸。不过,如果矿物中含有蒙脱石等 间层硅酸盐组成的矿物,其中的钠离子能与铜离子交换,吸附铜,造成损失。 我国东川汤丹是大型氧化铜矿床,金属总储量有100 万t。铜矿物主要是孔雀 石(55%)、斑铜矿(20%)和硅孔雀石(11%),黄铜矿5%,辉铜矿4%。铜 矿物大部分呈极细颗粒嵌布在脉石之中,因此选矿回收率仅为70%左右。试验 表明氨浸效果良好,选矿加尾矿氨浸,铜总回收率可接近90%以上。采用氨和 碳酸铵浓度分别为2mol/L 的溶液进行浸取,温度对浸取的影响最显著,110℃ 以上浸取率才能达到90%以上。空气分压也有较大影响,120℃下浸取3h,分 压从0.3MPa 增高到1.2MPa,浸取率从80%提高到90%。浸出液蒸氨后,铜生成氧化铜析出,需精炼才能得合格产品。含氨残液加石灰乳苛化,得含铜硫酸钙。进行过日处理l00t 矿石原矿氨浸半工业试验,流程见下图的半工业试验, 采用多层空气提升高压釜浸取,效果良好[1]。参考文献 1.陈家镛等著,湿法 冶金的研究和发展,北京:冶金工业出版社,1998,4~20

氧化铜矿选矿药剂

立志当早,存高远 氧化铜矿选矿药剂 在我国的铜资源中,氧化铜矿约占四分之一。大多数铜矿床上部有氧化带,甚至有的已形成独立的大中型氧化铜矿床。为此,开发和利用氧化铜矿,对于我国铜工业的发展具有重要意义。1. 氧化铜矿的可选性氧化铜矿一般见于矿床上部的氧化带。由于氧化带的物理化学条件极为复杂,所以,氧化矿的矿物组成、结构构造也是很复杂的。氧化铜矿的可选性取决铜矿物的种类、脉石的组成、矿物与脉石共生关系以及含泥量的多少等因素。 2.氧化铜选矿方法介绍氧化铜矿的浮选分为直接浮选和硫化浮选。直接浮选是最早应用的不用硫化钠活化,直接利用捕收剂浮选的方法,包括脂肪酸浮选法、胺类浮选法、中性油乳浊液浮选法和鳌合捕收剂浮选法等。由于氧化铜矿大都是氧化率高、含泥量大、结合铜含量高、细粒不均匀嵌布、氧硫混杂、多种矿物共存等特点,因此捕收剂很难吸附到矿物表面,需经过硫化处理,才能使氧化铜矿物表面发生根本的变化。硫化浮选也就是在氧化铜矿浆中加入硫化钠等硫化剂进行硫化,然后添加黄药类捕收剂浮选。作为常规的浮选氧化铜的方法已经很难适应当前复杂难选氧化铜的需要了,新药剂、新工艺、联合浮选流程越来越成为浮选难选氧化铜的发展趋势。 3.浮选氧化铜的新药剂由于氧化矿对浮选药剂的要求比硫化矿要高,作为单一的直接硫化很难达到预期的效果,所以一些组合药剂常用于氧化矿的浮选。 下面重点介绍最新的浮选氧化铜矿的药剂CSU-3 CSU-3 药剂是由长沙鸿顺矿业科技有限公司最新研制成功的一种氧化铜矿新型浮选药剂,该药剂同时兼具活化、捕收、起泡功能,生产过程中无需添加其他药剂,即可实现对氧化铜矿的高效捕收,药剂环保无毒。为防止假冒,本产品采用二元组分,组分一

微生物检测原理

1、胆盐乳糖培养基原理 蛋白胨为氮源、乳糖为碳源,胆酸盐为抑制剂(抑制革兰氏阳性细菌),溴甲酚紫指示剂(变黄则细菌产酸)该培养基为选择性培养基,选择性生长利用乳糖为碳源的革兰氏阴性菌,根据是否产酸产气判断样品是否为大肠菌群。 2、玫瑰红纳培养基原理 胨提供碳氮源,葡萄糖提供能源,磷酸二氢钾提供缓冲剂,硫酸镁提供微量元素,玫瑰红纳未选择抑菌剂,可抑制细菌的生长,并可减缓莫些霉菌生长过而导致菌落蔓延生长通常黑曲霉为孢子黑色白色念珠菌为奶油色 3、酵母浸出粉胨葡萄糖琼脂培养基原理 酵母浸出粉提供B族维生素能促进酵母生长 4、靛基质实验原理 莫些细菌可能分解蛋白质中的色氨酸生成吲哚,吲哚的存在可用显色表现,吲哚对对二甲基氨基苯醛结合成玫瑰吲哚 5、乙酰甲基甲醇生成实验(v-p) 莫些细菌分解葡萄糖生成丙酮酸,丙酮酸缩合脱羧生成乙酰甲基甲酸,乙酰甲基甲酸可在强碱条件下被空气中的氧氧化为二乙酰,二乙酰与蛋白胨中的瓜基生成红色化合物 6、枸橼酸盐利用实验原理 不同的细菌有不同的酶,分解产物各有差异,以枸橼酸纳为唯一碳源于Ph为7的培养基上,产气杆菌分解枸橼酸生成碳酸盐,是培养基由中性变为碱性培养基中指示剂溴麝香草酚蓝(ptb)有浅绿色变为深蓝色,此为枸橼酸利用实验阳性,大肠杆菌因不能利用为阴性 7、曙红亚甲基蓝琼脂平板实验原理 蛋白胨和牛肉浸粉提供氮源、维生素、氨基酸和碳源;氯化钠能维持均衡的渗透压;乳糖是大肠菌群可发酵的糖类;琼脂是培养基凝固剂;曙红钠和亚甲蓝是抑菌剂和pH指示剂,可抑制革兰氏阳性菌,在酸性条件下产生沉淀,形成紫黑色菌落或具黑色中心的外围无色透明的菌落 MUG培养基在大肠杆菌中检测的原理 8、一种基于荧光方法检测大肠杆菌的MUG培养基,其主要组分和含量(重量份)为:MUG0.030-0.1,乳糖3-10,pH值为7.0-7.5。由于本发明在培养基中加入胆盐,可抑制部分革兰氏阳性细菌的生长,有利于大肠杆菌的生长。在培养基中加入乳糖,同时考察培养液产气和产荧光两个因素,大大减少假阳性,提高检测准确性。 微生物限度检查法 附录ⅪJ 微生物限度检查法 微生物限度检查法系指非规定灭菌制剂及其原、辅料受到微生物污染程度的一种检 查方法,包括染菌量及控制菌的检查。 供试品应随机抽样。一般抽样量为检验用量(2个以上最小包装单位)的3倍量。 检查的全过程,均应严格遵守无菌操作,严防再污染。 除另有规定外,本检查法中细菌培养温度为30~35℃,霉菌、酵母菌培养温度为25 ~28℃,控制菌培养温度为36℃±1℃。 检验结果的报告以1g、1ml或10cm<2>为单位。 培养基及其制备方法 除另有规定外,培养基制备的灭菌条件为121℃20分钟。

铜矿浸出

铜矿浸出(leaching of copper ore) 用浸出剂使含铜矿石、焙砂或铜精矿中的铜等有价组分溶解在水溶液中与大部分杂质分离的过程,为湿法炼铜的第一道作业。 铜浸出剂铜矿物可以被许多种浸出剂溶解,但实际在工业应用的只有水、硫酸、硫酸铁溶液、氨液和氯化物溶液。最常用的铜浸出剂是硫酸。含石英多的酸性氧化铜矿,一般宜用硫酸浸出,这不仅因为硫酸价廉,而且也由于硫酸浸出酸性矿石的酸消耗较少。含碱性脉石(如碳酸钙和碳酸镁)较高的氧化铜矿,则一般用氨液浸出。混合铜矿宜用硫酸和硫酸铁的混合液浸出,硫酸主要溶解铜的氧化矿物,硫酸铁则溶解铜的硫化矿物。处理一些含金属铜的物料时,既可用硫酸也可用氨浸出。 方法已应用于工业生产或达到半工业试验阶段的方法主要有硫酸浸出法、氨性介质浸出法和氯化物浸出法。 硫酸浸出法氧化铜矿多用稀硫酸直接浸出,这也是湿法炼铜工业用得最普遍的一种方法。含铜浸出液可用硫化沉淀、中和水解(见沉淀)、铁屑置换(见置换),或用溶剂苹取一电解沉积法从溶液中提取铜。溶剂萃取一电解沉积法发展很快,已成为从浸出液中提铜的主要方法。 稀硫酸可以将矿石中的氧化铜矿物溶解出来,如溶解孔雀石CuCO3?Cu(OH)2、硅孔雀石CuSiO3?2 H2O、蓝铜矿Cu3(CO3)2(OH)2、赤铜矿Cu2O、胆矾CuSO4?5H2O等;当浸出时间延长时,也可溶解次生硫化矿如辉铜矿Cu2S。如浸出剂中含有三价铁和铁硫杆菌等细菌,也可按下式浸出黄铜矿: Fe2(SO4)3+CuFeS2→5FeSO4+CuSO4+2S 赞比亚恩昌加(Nchanga)公司钦戈拉(Chingola)厂用稀硫酸浸出含铜0.6%的浮选尾矿、含铜2.25%的堆存尾矿和部分废石。物料经预浸后,送往帕丘卡槽(见浸出槽)进行两段浸出,每段有四台帕丘卡槽,浸出矿浆在浓密池中逆流倾析洗涤,浓密机底流加石灰中和后泵往尾矿坝,浓密机上清液通过过滤送萃取。 氨性介质浸出法用氨液[(NH4)2CO3、(NH4)2SO4、NH4OH]浸出含铜物料,使铜以铜氨配位离子形态转入溶液。美国阿那康达(Anaconda)公司的阿比特(Arbiter)厂采用的氨浸法处理硫化铜精矿,就是氨性介质浸出法的典型例子。实际上这是舍立特?高尔顿(Shrritt Gordon)加压氨浸法的改进方法,它不需用加压,用氧气代替空气。硫化铜矿是在氧一氨一硫酸铵系统中,于温度373K、接近常压下,在密封搅拌槽中进行浸出的。过滤后的浸出渣经浮选回收残存的铜和贵金属,用Lix-65N萃取剂萃取浸出液中的铜,然后用电解沉积法获得阴极铜。此法的原则流程示于图1。氨性介质浸出法适用于镍铜精矿、鼓风炉炼锌(帝国熔炼法)的铜浮渣及其他含铜废料的浸出。 氯化物浸出法人们早就致力于研究铜矿的氯化物浸出,所用的浸出剂有氯化铁和氯化铜。氯化物浸出法之所以引起人们的重视,是由于它在常压和适当的温度下,氯化物可以分解较惰性的黄铜矿,而氯化物本身又可以在流程中循环使用。但由于操作和设备的材料问题没有得到解决,氯化物浸出法的研究工作,一直进展缓慢。20世纪70年代,出现了一种以塞梅特(Cymet)法命名的氯化物浸出法,1973年进行了半工业试验,并随后建立了工业试验厂。

微生物浸出技术及其在尾矿开发中的应用

微生物浸出技术及其在尾矿开发中的应用 摘要:介绍了微生物浸出技术发展概况,阐述了该技术的研究现状,特别是在尾矿开发中的应用,包括优良菌种的培育、细菌浸出的主要影响因素和浸出工艺,指出尾矿的生物浸出是微生物浸出技术的发展方向,尾矿专属浸矿细菌的选育、尾矿生物浸出影响因素的研究、尾矿原位浸出技术的开发,是尾矿资源得以利用的关键。 关键词:生物浸出;尾矿;菌种选育;浸出工艺 微生物浸出技术,是利用微生物自身代谢过程对硫化矿中硫、铁等元素的氧化还原作用,从矿石中选择性浸出有价金属的过程。微生物浸出技术与传统冶炼工艺相比,具有能耗较低、能够综合利用资源、投资和操作费用少、环境友好等特点,能够处理传统冶炼方式不能处理或难以处理的低品位或难处理的原矿、尾矿资源,在国内外被广泛研究并应用于工业实践。目前,微生物浸出技术已经成功应用于多种有价金属的提取,包括铜、金、银、铀、镍、钴、钼、锰、锌和镉等。但是,该技术多应用于从低品位硫化矿中回收有价金属和难选冶精矿的预氧化处理,是一门新兴的湿法冶金技术,而把这项技术引入到尾矿中有价金属的浸出上,在国内外报道的还较少。矿产资源是不可再生资源,经过多年的开采利用,高品位易选冶矿产资源已日趋减少,我国还有大量的尾矿资源正待开发,因此尾矿的开发已成当务之急。 1 微生物浸出技术发展概况 微生物浸出技术的应用研究始于20 世纪40 年代末。1947 年,Colmer 和Hinkel 首次分离到一种能够氧化硫化矿的细菌,后被命名为氧化亚铁硫杆菌。1958 年,Zimmerley 等,首次申请了生物堆浸技术的专利,并将这项专利付诸于实践,从而开启了微生物浸出技术的现代工业应用。 微生物浸出技术最初是应用于从低品位铜矿石中回收铜,继1958年美国率先将这项技术应用于铜矿石的堆浸生产后,智利、加拿大、澳大利亚、巴西、西班牙、日本、印度等国也先后采用微生物堆浸法来处理低品位铜矿石,或采用原位浸出法回收难采矿石中的金属铜。1980 至1996 年的十几年间,智利的Lo Aguirre 矿采用微生物浸出技术对铜矿石进行堆浸,处理量达到16000 t/d 。随着对微生物浸出技术研究的不断深入,该技术也逐渐应用到铜精矿的生物浸出中。澳大利亚的一家铜矿利用细菌浸出铜精矿,采用萃取-电积工艺处理浸出液,使铜精矿的微生物浸出在技术和经济上具有了可行性。微生物浸出技术应

相关文档
最新文档