互感和自感、涡流专题

互感和自感、涡流专题
互感和自感、涡流专题

互感和自感、涡流

【要点梳理】

要点一、互感现象

两个线圈之间没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感,产生的感应电动势叫互感电动势。

要点诠释:

(1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。

(2)互感现象可以把能量从一个电路传到另一个电路。变压器就是利用互感现象制成的。

(3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。

要点二、自感现象

1.实验

如图甲所示,首先闭合S 后调节R ,使12A A 、亮度相同,然后断开开关。再次闭合S ,灯泡2A 立刻发光,而跟线圈L 串联的灯泡1A 却是逐渐亮起来的。

如图乙所示电路中,选择适当的灯泡A 和线圈L ,使灯泡A 的电阻大于线圈L 的直流电阻。断开S 时,灯A 并非立即熄灭,而是闪亮一下再逐渐熄灭。

图甲实验叫通电自感。在闭合开关S 的瞬间,通过线圈L 的电流发生变化而引起穿过线圈L 的磁通量发生变化,线圈L 中产生感应电动势,这个感应电动势阻碍线圈中电流的增大,通过灯泡1A 的电流只能逐渐增大,所以1A 只能逐渐变亮。

图乙实验叫断电自感。断开S 的瞬间,通过线圈L 的电流减弱,穿过线圈的磁通量很快减小,线圈L 中出现感应电动势。虽然电源断开,但由于线圈L 中有感应电动势,且和A 组成闭合电路,使线圈中的电流反向流过灯A ,并逐渐减弱由于L 的直流电阻小于灯A 的电阻,其原电流大于通过灯A 的原电流,故灯闪亮一下后才逐渐熄灭。

2.结论

由于通过线圈自身的电流发生变化时,线圈本身产生感应电动势的现象叫自感现象。由于自感而产生的感应电动热叫自感电动势。

要点诠释:

1.自感电动势的作用:

总是阻碍导体中原电流的变化,即总是起着推迟电流变化的作用。

2.自感电动势的方向:

自感电动势总是阻碍导体中原来电流的变化,当原来电流增大时,自感电动势与原来电流方向相反;当原来电流减小时,自感电动势与原来电流方向相同。

3.自感电动势大小:

i E L t

?=?自,大小由电流变化的快慢和自感系数L 决定。 要点三、自感系数

自感系数是表示线圈产生自感电动势本领大小的物理量,简称为自感或电感,用L 表示。

要点诠释:

(1)大小:线圈长度越长,线圈横截面积越大,单位长度上匝数越多,线圈的自感系数越大;线圈有铁芯比无铁芯时自感系数大得多。

(2)物理意义:表征线圈产生自感电动势本领大小的物理量,数值上等于通过线圈的电流在1s 内改变lA 时产生的自感电动势的大小。

(3)单位:亨利(符号H ),1亨=310毫亨=6

10微亨(361H 10mH 10H μ==)。

要点四、自感现象的应用和防止

1.应用:电感线圈可以把电能转化为磁场能储存起来,也可以把储存的磁场能转化为电能;当自感系数很大时,可以产生自感电动势,增大电路的瞬时电压。

电感线圈可以延续电流的变化时间,起到一定的稳定电流的作用,在交流电路中,常用电感线圈来通直流阻交流,通低频阻高频。电感线圈在各种电器设备和无线电技术中应用广泛,如日光灯电路中的镇流器、LC 振荡电路等。

2.危害和防止:在切断自感系数很大、电流很强的电路的瞬间,会产生很高的自感电动势,形成电弧,危及工作人员和设备安全,在这类电路中应采用特别的开关;制作精密电阻时,采用双线绕法来消除自感现象。

要点五、电感和电阻的比较

1.阻碍作用:

电阻R 对电流有阻碍作用,电感L 对电流的变化有阻碍作用。

2.大小因素:

电阻越大,对电流的阻碍越大,产生的电势差越大;电感越大,对电流的阻碍作用越大,产生的自感电动势越大。

3.决定因素:

电阻R 决定于导体长度、横截面积、材料电阻率;电感L 决定于线圈长度、横截面积、匝数、有无铁芯等。

4.联系:

电感和电阻都是反映导体本身性质的物理量。

要点六、线圈对变化电流的阻碍作用与对稳定电流的阻碍作用的比较

1.两种阻碍作用产生的原因不同

线圈对稳定电流的阻碍作用,是由绕制线圈的导线的电阻决定,对稳定电流阻碍作用的产生原因,是金属对定向运动电子的阻碍作用。而线圈对变化电流的阻碍作用,是由线圈的自感现象引起的,当通过线圈中的电流变化时,穿过线圈的磁通量发生变化,产生自感电动势,阻碍线圈中电流变化。

2.两种阻碍作用产生的效果不同

在通电线圈中,电流稳定值为L E R /,由此可知,线圈的稳态电阻决定了电流的稳定值。L 越大,电流由零增大到稳定值的时间越长,也就是说,线圈对变化电流的阻碍作用越大,电流变化的越慢。总之,稳态电阻决定了电流所能达到的稳定值,对变化电流的阻碍作用决定了要达到稳定值所需的时间。

要点七、在断电自感中,灯泡是否闪亮一下的判断方法

如图所示电路中,当开关S 断开后,灯泡A 是否会闪亮一下?闪亮一下的条件是什么?

设开关闭合时,电源路端电压为U ,线圈的电阻为L R ,灯泡的电阻为A R ,则通过线圈的电流为L L

U I R =,通过灯泡的电流为A A

U I R =。当开关断开后,线圈和灯泡组成的回路中的电流从L I 开始减弱。 若A L R R >,有A L I I <,在断开开关的瞬间,通过灯泡的电流会瞬间增大,灯泡会闪亮一下。若A L R R ≤,有A L I I ≥,断开开关后,通过灯泡的电流减小,灯泡不会闪亮一下。

要点八、电路中电流大小变化的判断方法

在进行分析计算时,要注意:①如果电感线圈的直流电阻为零,那么电路稳定时可认为线圈短路;②在电流由零增大的瞬间可认为线圈断路。

如图所示,S闭合稳定后,若不考虑线圈的直流电阻,则灯泡不亮,流过线圈的电流I较大。在S断开的瞬间,灯泡和线圈构成了闭合回路,其中线圈中电流的流向不变,其大小只能在原来大小的基础上减弱。

要点九、涡流

当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内自成闭合回路,很像水中的旋涡,把它叫做涡电流,简称涡流。

要点诠释:

1.涡流产生的原因:

涡流是一种特殊的电磁感应现象,当把块状金属放在变化的磁场中,或者让它在非均匀磁场中运动,金属块内就产生感应电流,因为金属块本身可自行构成闭合回路,且块状金属导体的电阻一般情况下很小,所以产生的涡流通常是很强的。

2.涡流的防止:

电动机、变压器的线圈中有变化的电流,因而在铁芯中产生了涡流,不仅浪费了能量,还可能损坏电器,因此,要想办法减小涡流。为了达到减小涡流的目的,采用了电阻率大的硅钢做铁芯的材料,并把硅钢做成彼此绝缘的薄片,这样,就大大减小了涡流。

3.涡流的利用:

用来冶炼合金钢的真空冶炼炉,炉外有线圈,线圈中通入反复变化的电流,炉内的金属中就产生涡流。涡流产生的热量使金属达到很高的温度并熔化。利用涡流冶炼金属的优点是整个过程能在真空中进行,这样就能防止空气中的杂质进入金属,可以冶炼高质量的合金。

要点十、电磁阻尼

当导体在磁场中运动时,如果导体中出现涡流,即感应电流,则感应电流会使导体受到安培力作用,安培力的方向总是阻碍导体的运动,这种现象叫做电磁阻尼。

要点诠释:

电磁阻尼在实际中有很多应用,课本上讲的使电学仪表的指针很快的停下来,就是电磁阻尼作用。电磁阻尼还常用于电气机车的电磁制动器中。

要点十一、电磁驱动

如果磁场相对于导体运动,在导体中会产生感应电流,感应电流使导体受到安培力的作用,安培力使导体运动起来,这种作用叫做电磁驱动。

电磁驱动的原因分析:如图所示,当蹄形磁铁转动时,穿过线圈的磁通量发生变化,由楞次定律知,线圈中有感应电流产生,以阻碍磁通量变化,线圈会跟着一起转动起来。

要点诠释:

(1)线圈转动方向和磁铁转动方向相同,但转速小于磁铁转速,即同向异步。

(2)下一章要介绍的感应电动机、家庭中用的电能表、汽车上用的电磁式速度表,就是利用这种电磁驱动。

【典型例题】

类型一、互感现象产生的条件

、两线圈,当开关S闭合和断开瞬间,b线圈中感应电流的方向如何?

例1.如图所示,在同一平面内的a b

举一反三

【变式】关于自感现象,正确的说法是()

A.感应电流不一定和原电流方向相反

B.线圈中产生的自感电动势较大的其自感系数一定较大

C.对于同一线圈,当电流变化较快时,线圈中的自感系数也较大

D.对于同一线圈,当电流变化越大时,线圈中产生的自感电动势也较大

例2. 如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ 、MN ,当PQ 在外力作用下运动时,MN 在磁场力作用下向右运动,则PQ 所做的运动可能是( )

A .向右匀加速运动

B .向左匀加速运动

C .向右匀减速运动

D .向左匀减速运动

【变式】如图所示,闭合金属环从高h 的曲面滚下,又沿曲面的另一侧上升,设闭合环初速为零,摩擦不计,则( )

A .若是匀强磁场,环滚上的高度小于h

B .若是匀强磁场, 环滚上的高度等于h

C .若是非匀强磁场,环滚上的高度等于h

D .若是非匀强磁场,环滚上的高度小于h

类型二、断电自感现象

例3.如图所示的(a )、(b )两个电路中,电阻R 和自感线圈L 的电阻值都小,且小于灯泡A 的电阻,接通开关S ,使电路达到稳定,灯泡A 发光,则( )

A .在电路(a )中,断开S 后,A 将逐渐变暗

B .在电路(a )中,断开S 后,A 将先变得更亮,然后逐渐变暗

C .在电路(b )中,断开S 后,A 将逐渐变暗

D .在电路(b )中,断开S 后,A 将先变得更亮,然后逐渐变暗

举一反三

【变式】图为一演示实验电路图,图中L 是一带铁心的线圈,A 是一灯泡,电键K 处于闭合状态,电路是接通的.现将电键K 打开,则在电路切断的瞬间,通过灯泡A 的电流方向是从_______端到________端.这个实验是用来演示_________现象的.

类型三、通电自感现象 例4.如图所示,灯A L 、B L 完全相同,带铁芯的线圈L 的电阻可忽略。则( )

A .S 闭合的瞬间,A L 、

B L 同时发光,接着A L 变暗,B L 更亮,最后A L 熄灭

B .S 闭合瞬间,A L 不亮,B L 立即亮

C .S 闭合瞬间,A L 、B L 都不立即亮

D .稳定后再断开S 的瞬间,B L 熄灭,A L 比B L (原先亮度)更亮

类型四、正确理解自感电动势

例5.如图所示,L 为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S 的瞬间会有( )

A .灯A 立即熄灭

B .灯A 慢慢熄灭

C .灯A 突然闪亮一下再慢慢熄灭

D .灯A 突然闪亮一下再突然熄灭 举一反三

【高清课堂:法拉第电磁感应定律 例6】

【变式】如图所示电路,线圈L 电阻不计,则( )

A .S 闭合瞬间,A 板带正电,

B 板带负电B .S 保持闭合,A 板带正电,B 板带负电

C .S 断开瞬间,B 板带正电,A 板带负电

D .由于线圈电阻不计,电容器被短路,上述三种情况电容器两板都不带电

类型五、自感现象在电路中的应用

例6.图甲所示电路,开关S 闭合。流过电感线圈L 的电流为1i ,流过灯泡A 的电流为2i ,且12i i >。在时刻1t 将S 断开,流过灯泡A 的电流随时间变化的图象可能是图乙中的( )

举一反三 【变式】在如图所示的电路中,两个相同的小灯泡1L 和2L 分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R 。闭合开关S 后,调整R ,使1L 和2L 发光的亮度一样,此时流过两个灯泡的电流均为I 。

然后,断开S 。若't 时刻再闭合S ,则在't 前后的一小段时间内,正确反映流过1L 的电流1i 、流过2L 的电流2i 随时间t 变

化的图像是( )

类型六、自感现象的应用和防止

例7.在如图所示的四个日光灯的接线图中,1S 为启动器,2S 为开关,L 为镇流器。能使日光灯正常发光的是( )

举一反三 【变式】如图所示是一种延时开关,当1S 闭合时,电磁铁F 将衔铁D 吸下,C 线路接通。当1S 断开时,由于电磁感应作用,D 将延迟一段时间才被释放。对于这个延时开关的工作情况,下列说法中正确的是( )

A .由于A 线圈的电磁感应作用,才产生延时释放D 的作用

B .由于B 线圈的电磁感应作用,才产生延时释放D 的作用

C .如果断开B 线圈的电键2S ,无延时作用

D .如果断开B 线圈的电键2S ,延时将变长

例8.在制作精密电阻时,为了消除使用过程中由于电流变化而引起的自感现象,采用双线并绕的方法,如图所示。其原理是( )

A .当电路中的电流变化时,两股导线产生的自感电动势相互抵消

B .当电路中的电流变化时,两股导线产生的感应电流相互抵消

C .当电路中的电流变化时,两股导线中原电流的磁通量相互抵消

D .以上说法都不对

举一反三

【变式】在无线电仪器中,常需要在距离较近处安装两个线圈,并要求当一个线圈中有电流变化时,对另一个线圈中的电流的影响尽量小。则图中两个线圈的相对安装位置最符合该要求的是 ( )

类型七、涡流的应用

例9.变压器的铁芯是利用薄硅钢片叠压而成,而不采用一块整硅钢,这是为了( )

A .增大涡流,提高变压器的效率

B .减小涡流,提高变压器的效率

C .增大涡流,减小铁芯的发热量

D .减小涡流,减小铁芯的发热量

§9.3互感和自感电磁感应中的电路问题

§9.3 互感和自感电磁感应中的电路问题 1.互感现象 当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,此现象称为互感。 2. 自感 (1)自感现象:由于导体自身电流发生变化而产生的电磁感应现象。自感现象是电磁感应的特例.一般的电磁感应现象中变化的原磁场是外界提供的,而自感现象中是靠流过线圈自身变化的电流提供一个变化的磁场.它们同属电磁感应,所以自感现象遵循所有的电磁感应规律. (2)自感电动势:自感现象中产生的电动势叫做自感电动势。自感电动势和电流的变化率(△I/△t)及自感系数L成正比。自感系数由导体本身的特性决定,线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大;线圈中加入铁芯,自感系数也会增大。 自感电动势仅仅是减缓了原电流的变化,不会阻止原电流的变化或逆转原电流的变化.原电流最终还是要增加到稳定值或减小到零. (3)通电自感:通电时电流增大,阻碍电流增大,自感电动势和原来电流方向相反。 (4)断电自感:断电时电流减小,阻碍电流减小,自感电动势与原来电流方向相同。 自感现象只有在通过电路的电流发生变化时才会产生.在判断电路性质时,一般分析方法是:当流过线圈L的电流突然增大瞬间,我们可以把L 看成一个阻值很大的电阻;电路电流稳定时,看成导线;当流经L的电流突然减小的瞬间,我们可以把L看作一个电源,它提供一个跟原电流同向的电流. 当电路中的电流发生变化时,电路中每一个组成部分,甚至连导线,都会产生自感电动势去阻碍电流的变化,只不过是线圈中产生的自感电动势比较大,其它部分产生的自感电动势非常小而已.3.涡流 当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内且形成旋涡,很象水中的旋涡,简称涡流。 (1)把块状金属放在变化的磁场中,或者让它在磁场中运动时,金属块内将产生感应电流,这种电流在金属块内自成闭合电路,很像水里的漩涡,称涡电流,涡流常常很强。 (2)涡流的减小:在各种电机和变压器中,为了减少涡流的损失,在电机和变压器上通常用涂有绝缘漆的薄硅钢片叠压制成的铁芯。 (3)涡流的利用:冶炼金属的高频感应炉就是利用强大的涡流使金属尽快熔化,电学测量仪表的指针快速停止摆动也是利用铝框在磁场中转动产生的涡流。 4. 电磁感应中电路问题 在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路充当电源.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是: ①确定电源,用电磁感应的规律确定感应电动势的大小和方向; ②分析电路结构,明确内、外电路,必要时画等效电路; ③运用闭合电路欧姆定律、串并联电路性质,电功率等公式联立求解. 【典型例题】 [例1]在如图(a)(b)所示电路中,电阻R和自感线圈L的电阻值都很小,且小于灯D 的电阻, 接通开关S,使电路达到稳定,灯泡D发光,则() (a)(b) A.在电路(a)中,断开S,D将逐渐变暗 B.在电路(a)中,断开S,D将先变得更亮,然后才变暗 C.在电路(b)中,断开S,D将逐渐变暗 D.在电路(b)中,断开S,D将先变得更亮,然后渐暗 [例2]如图甲所示,空间存在着一个范围足够大的竖直向下的匀强磁场区 域,磁场的磁感应强度大小 为B 。边长为L的正方形 金属abcd(下简称方框)放 在光滑的水平面上,其外侧 套着一个与方框边长相同 的U型金属框架MNPQ(下 c a b M d N B Q P

自感互感习题一(试题版)

互感和自感 涡流 知识要点: 一、互感现象 两个相邻的线圈,当一个线圈中的电流变化时在另一个线圈中产生感应电动势,这种现象叫做互感。这种感应电动势叫做互感电动势。变压器就是利用互感现象制成的。 二、自感现象 1.自感:当一个线圈中的电流变化时,它所产生的变化的磁场在它本身激发出感应电动势,这种现象叫做自感,相应的电动势叫做自感电动势。 2.典型电路: 3.规律:自感电动势大小 t I L E ??= 自感电动势方向服从楞次定律,即感应电流总是阻碍原电流的变化。 4.自感系数:公式t I L E ??=中的L 叫做自感系数,简称自感或电感。自感系数与线圈的大小、形状、匝数以及是否有铁芯等因素有关。 三、涡流 1.定义:块状金属在磁场中运动,或者处在变化的磁场中,金属块内部会产生感应电流,这种电流在整块金属内部自成闭合回路,叫做涡流。 2.热效应:金属块中的涡流要产生热量。如果磁通量变化率大,金属的电阻率小,则涡流很强,产生的热量很多。利用涡流的热效应可以制成高频感应炉、高频焊接、电磁炉等感应加热设备。变压器、电机铁芯中的涡流热效应不仅损耗能量,严重时还会使设备烧毁.为减少涡流,变压器、电机中的铁芯都是用很薄的硅钢片叠压而成。 3.磁效应:块状导体在磁场中运动时,产生的涡流使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼。电磁仪表中的电磁阻尼器就是根据涡流磁效应制成的 4.机械效应:磁场相对于导体转动,导体中的感应电流使导体受到安培力作用,安培力使导体运动起来,这种作用称为电磁驱动。交流感应电动机、磁性式转速表就是利用电磁驱动的原理工作的。 课堂练习 1.在如图所示的电路中,a 、b 为两个完全相同的灯泡,L 为自感线圈,E 为电源,S 为开关。关于两灯泡点亮和熄灭的先后次序,下列说法正确的是( A .合上开关,a 先亮,b 后亮;断开开关,a 、b 同时熄灭 B .合上开关,b 先亮,a 后亮;断开开关,a 先熄灭,b

(完整版)高中物理《互感与自感》经典例题

《互感与自感》 【典例精讲】 1.在空间某处存在一变化的磁场,则下列说法中正确的是() A.在磁场中放一闭合线圈,线圈中一定会产生感应电流 B.在磁场中放一闭合线圈,线圈中不一定产生感应电流 C.磁场中不放闭合线圈,在变化的磁场周围一定不会产生电场 D.磁场中不放闭合线圈,在变化的磁场周围一定会产生电场 解析:由感应电流产生的条件可知,只有穿过闭合线圈的磁通量发生改变,线圈内才能产生感应电流,如果闭合线圈平面与磁场方向平行,则线圈中无感应电流产生,故A错误,B 正确;由麦克斯韦电磁场理论可知,感生电场的产生与变化的磁场周围有无闭合线圈无关,故C错误,D正确。 答案:BD 2.某线圈通有如图1所示的电流,则线圈中自感电动势改变方向 的时刻有() A.第1 s末B.第2 s末 C.第3 s末D.第4 s末图1 解析:在自感现象中当原电流减小时,自感电动势与原电流的方向相同,当原电流增加时,自感电动势与原电流方向相反。在图像中0~1 s时间内原电流正方向减小,所以自感电动势的方向是正方向,在1~2 s时间内原电流为负方向且增加,所以自感电动势与其负方向相反,即沿正方向;同理分析2~3 s、3~4 s时间内可得正确答案为B、D。 答案:BD 3.在如图2所示的电路中,L为电阻很小的线圈,G1和G2为零刻度 在表盘中央的两相同的电流表。当开关S闭合时,电流表G1、G2的指针 都偏向右方,那么当断开开关S时,将出现的现象是() A.G1和G2指针都立即回到零点 B.G1指针立即回到零点,而G2指针缓慢地回到零点图2 C.G1指针缓慢地回到零点,而G2指针先立即偏向左方,然后缓慢地回到零点 D.G2指针缓慢地回到零点,而G1指针先立即偏向左方,然后缓慢地回到零点 解析:根据题意,电流方向自右向左时,电流表指针向右偏。那么,电流方向自左向右

互感和自感、涡流

互感和自感、涡流 【学习目标】 1、知道什么是互感现象和自感现象。 2、知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。 3、能够通过电磁感应部分知识分析通电、断电自感现象的原因。 4、知道涡流是如何产生的,知道涡流对人类有利和有害的两方面,以及如何利用涡流和防止涡流。 【要点梳理】 要点一、互感现象 两个线圈之间没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感,产生的感应电动势叫互感电动势。 要点诠释: (1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。 (2)互感现象可以把能量从一个电路传到另一个电路。变压器就是利用互感现象制成的。 (3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。 要点二、自感现象 1.实验 如图甲所示,首先闭合S 后调节R ,使12A A 、亮度相同,然后断开开关。再次闭合S ,灯泡2A 立刻发光,而跟线圈L 串联的灯泡1A 却是逐渐亮起来的。 如图乙所示电路中,选择适当的灯泡A 和线圈L ,使灯泡A 的电阻大于线圈L 的直流电阻。断开S 时,灯A 并非立即熄灭,而是闪亮一下再逐渐熄灭。 图甲实验叫通电自感。在闭合开关S 的瞬间,通过线圈L 的电流发生变化而引起穿过线圈L 的磁通量发生变化,线圈L 中产生感应电动势,这个感应电动势阻碍线圈中电流的增大,通过灯泡1A 的电流只能逐渐增大,所以1A 只能逐渐变亮。 图乙实验叫断电自感。断开S 的瞬间,通过线圈L 的电流减弱,穿过线圈的磁通量很快减小,线圈L 中出现感应电动势。虽然电源断开,但由于线圈L 中有感应电动势,且和A 组成闭合电路,使线圈中的电流反向流过灯A ,并逐渐减弱。由于L 的直流电阻小于灯A 的电阻,其原电流大于通过灯A 的原电流,故灯闪亮一下后才逐渐熄灭。 2.结论

知识讲解 互感和自感、涡流

互感和自感、涡流 编稿:张金虎 审稿:代洪 【学习目标】 1、知道什么是互感现象和自感现象。 2、知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。 3、能够通过电磁感应部分知识分析通电、断电自感现象的原因。 4、知道涡流是如何产生的,知道涡流对人类有利和有害的两方面,以及如何利用涡流和防止涡流。 【要点梳理】 要点一、互感现象 两个线圈之间没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感,产生的感应电动势叫互感电动势。 要点诠释: (1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。 (2)互感现象可以把能量从一个电路传到另一个电路。变压器就是利用互感现象制成的。 (3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。 要点二、自感现象 1.实验 如图甲所示,首先闭合S 后调节R ,使12A A 、亮度相同,然后断开开关。再次闭合S ,灯泡2A 立刻发光,而跟线圈L 串联的灯泡1A 却是逐渐亮起来的。 如图乙所示电路中,选择适当的灯泡A 和线圈L ,使灯泡A 的电阻大于线圈L 的直流电阻。断开S 时,灯A 并非立即熄灭,而是闪亮一下再逐渐熄灭。 图甲实验叫通电自感。在闭合开关S 的瞬间,通过线圈L 的电流发生变化而引起穿过线圈L 的磁通量发生变化,线圈L 中产生感应电动势,这个感应电动势阻碍线圈中电流的增大,通过灯泡1A 的电流只能逐渐增大,所以1A 只能逐渐变亮。 图乙实验叫断电自感。断开S 的瞬间,通过线圈L 的电流减弱,穿过线圈的磁通量很快减小,线圈L 中出现感应电动势。虽然电源断开,但由于线圈L 中有感应电动势,且和A 组成闭合电路,使线圈中的电流反向流过灯A ,并逐渐减弱。由于L 的直流电阻小于灯A 的电阻,其原电流大于通过灯A 的原电流,故灯闪亮一下后才逐渐熄灭。

互感和自感

第六节 互感和自感 一、互感现象 如右图所示,两线圈之间没有导线相连,但当左 线圈中电流变化时,它产生的变化的磁场会在右线圈 中产生感应电动势,这种现象叫 ,这 种感应电动势叫 。 利用互感现象可以把 由一个线圈传递到另一个线圈 二、自感现象 当一个线圈中的电流变化时,它产生的变化的磁场在它本身也激发出感应电动势,这种现象称为 ,由于自感而产生的感应电动势叫 。 自感电动势同样遵从法拉第电磁感应定律 E=?Φ/?T 由于磁场的强度正比于电流的强度,所以磁通量的变化正比于电流的变化E ∝?I/?T 写成等式 E=L ?I/?T L 是比例系数,叫自感系数,简称 或 自感系数L 由线圈自身的因素决定,它与线圈的大小、形状、圈数以及是否有铁芯等因素有关。线圈越粗、越长、匝数越密,它的自感系数就越大。另外,有铁芯的线圈的自感系数比没有铁芯时大的多。 电感的单位 简称 常用单位 1H= mH= μH 自感系数L 表征了电路本身的一种电磁属性。任何回路中只要有电流的改变,就必将在回路中产生自感电动势,以阻碍回路中电流的改变。显然,回路的自感系数愈大,阻碍电流变化的能力也越强,则改变该回路中的电流也愈不易。换句话说,回路的自感有使回路保持原有电流不变的性质,这一特性和力学中物体的惯性相仿。因而,自感系数可认为是描述回路“电磁惯性”的一个物理量。 演示实验1:如右图所示,两个灯泡A 1和A 2的规格相同,线圈L 和电阻R 的电阻相同。闭合电键,可观察到灯泡 A 1 ,灯泡A 2 现象解释:接通电源的瞬间,电路中的电流增强,穿过 线圈L 的磁通量也随之增加,所以线圈L 中产生自感电动势,阻碍电流的增大。但不能阻止电流的增大,只是延缓了电流变大的时间,使灯泡A 1较慢的亮起来。自感系数L 越大, 对电流的阻碍作用越强,现象越明显。 流过灯泡A 1和A 2的电流I 随时间t 变化的图象如右图所示。流过灯泡A 2的电流瞬间即达到最大值,而流过灯泡 A 1的电流却需要较长的时间。

互感和自感、涡流

互感和自感涡流 知识要点: 一、互感现象 两个相邻的线圈,当一个线圈中的电流变化时在另一个线圈中产生感应电动势,这种现象叫做互感。这种感应电动势叫做互感电动势。变压器就是利用互感现象制成的。 二、自感现象 1 ?自感:当一个线圈中的电流变化时,它所产生的变化的磁场在它本身激发出感应电动势,这种现象叫做自感,相应的电动势叫做自感电动势。 2 ?典型电路: t 自感电动势方向服从楞次定律,即感应电流总是阻碍原电流的变化。 4?自感系数:公式E L—中的L叫做自感系数,简称自感或电感。自感系数与线圈 t 的大小、形状、匝数以及是否有铁芯等因素有关。 三、涡流 1 ?定义:块状金属在磁场中运动,或者处在变化的磁场中,金属块内部会产生感应电流,这种电流在整块金属内部自成闭合回路,叫做涡流。 2 ?热效应:金属块中的涡流要产生热量。如果磁通量变化率大,金属的电阻率小,则涡流很强,产生的热量很多。利用涡流的热效应可以制成高频感应炉、高频焊接、电磁炉等感应加热设备。变压器、电机铁芯中的涡流热效应不仅损耗能量,严重时还会使设备烧毁?为减少涡流,变压器、电机中的铁芯都是用很薄的硅钢片叠压而成。 3 ?磁效应:块状导体在磁场中运动时,产生的涡流使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼。电磁仪表中的电磁阻尼器就是根据涡流磁效应制成的 4 ?机械效应:磁场相对于导体转动,导体中的感应电流使导体受到安培力作用,安培力使导体运动起来,这种作用称为电磁驱动。交流感应电动机、磁性式转速表就是利用电磁驱动的原理工作的。 课堂练习 1 ?(海南)在如图所示的电路中,a、b为两个完全相同的灯泡, S为开关。关于两灯泡点亮和熄灭的先后次序,下列说法正确的是( A ?合上开关,a先亮,b后亮;断开开关,a、b同时熄灭 B ?合上开关,b先亮,a后亮;断开开关,a先熄灭,b后熄灭

互感和自感现象

当一线圈中的电流发生变化时,在临近的另一线圈中产生感应电动势,叫做互感现象。互感现象是一种常见的电磁感应现象,不仅发生于绕在同一铁芯上的两个线圈之间,而且也可以发生于任何两个相互靠近的电路之间 当导体中的电流发生变化时,它周围的磁场就随着变化,并由此产生磁通量的变化,因而在导体中就产生感应电动势,这个电动势总是阻碍导体中原来电流的变化,此电动势即自感电动势。这种现象就叫做自感现象 1、单选题 1.如图所示电路中,R1、R2是两个阻值相等的定值电阻,L是一个自感系数很大,直流电阻为零的理想线圈,设 A、B两点电势分别为φA、φB,下列分析正确的是() A.开关S闭合瞬间φA>φB B.开关S闭合后,电路达到稳定时φA<φB C.当开关S从闭合状态断开瞬间φA>φB D.只要线圈中有电流通过,φA就不可能等于φB 2.如图所示的电路中,三个灯泡L1、L2、L3的电阻关系为R1

高中物理选修3-2互感和自感课后习题测试题复习题

6 互感和自感 课时演练·促提升 A组 1.下列说法正确的是() A.当线圈中电流不变时,线圈中的自感电动势也不变 B.当线圈中电流反向时,线圈中自感电动势的方向与线圈中原电流的方向相反 C.当线圈中电流增大时,线圈中自感电动势的方向与线圈中电流的方向相反 D.当线圈中电流减小时,线圈中自感电动势的方向与线圈中电流的方向相反 解析:由法拉第电磁感应定律可知,当线圈中的电流不变时,不产生自感电动势,选项A错误;当线圈中的电流反向时,相当于电流减小,线圈中自感电动势的方向与线圈中原电流的方向相同,选项B错误;当线圈中的电流增大时,自感电动势阻碍电流的增大,线圈中自感电动势的方向与线圈中电流的方向相反,所以选项C正确,同理可知选项D错误。 答案:C 2.在制作精密电阻时,为消除使用过程中由于电流变化而引起的自感现象,采取了双线绕法,如图所示,其道理是() A.当电路中电流变化时,两股导线中产生的自感电动势相互抵消 B.当电路中电流变化时,两股导线中产生的感应电流相互抵消 C.当电路中电流变化时,两股导线中产生的磁通量相互抵消 D.以上说法均不正确 解析:由于采用双线并绕的方法,当电流通过时,两股导线中的电流方向是相反的,不管电流怎样变化,任何时刻两股电流总是等大反向的,所产生的磁通量也是等大反向的,故总磁通量等于零,在线圈中不会产生电磁感应现象,因此消除了自感现象,选项A、B错误,只有C正确。 答案:C

3.如图所示是测定自感系数很大的线圈L的直流电阻的电路,L两端并联一只电压表,用来测量自感线圈的直流电压,在测量完毕后,将电路拆除时应() A.先断开S2 B.先断开S1 C.先拆除电流表 D.先拆除电阻R 解析:只要不断开S1,线圈L与电压表就会组成闭合回路,在断开S2时,线圈L会因此产生感应电流,电流的方向与原来方向相同。这时流过电压表的电流方向与原来电流方向相反,电压表中的指针将反向转动,损坏电压表,所以必须先拆下电压表,即断开S1。 答案:B 4.在同一铁芯上绕着两个线圈A、B,两电源相同,单刀双掷开关原来接在点1,现在把它从点1扳向点2,如图所示,试判断在此过程中,在电阻R上的电流方向是() A.先由P→Q,再由Q→P B.先由Q→P,再由P→Q C.始终由Q→P D.始终由P→Q 解析:单刀双掷开关接在点1上时,A线圈中的电流恒定不变,在铁芯中产生的磁场方向是沿铁芯自右向左。当单刀双掷开关由点1扳向点2的过程中,通过线圈A中的电流,先沿原方向减小到零,再由零增大到原电流值,所以B中产生的感应电流分两个阶段分析: (1)在A中电流沿原方向减小到零的过程中,A的磁场自右向左也跟着减弱,导致穿过线圈B的磁通量在减小。由楞次定律知,线圈B中会产生右上左下的感应电流,即流过电阻R的电流方向是P→Q;

知识讲解 互感和自感、涡流

互感和自感、涡流 编稿:张金虎 审稿:李勇康 【学习目标】 1、知道什么是互感现象和自感现象。 2、知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。 3、能够通过电磁感应部分知识分析通电、断电自感现象的原因。 4、知道涡流是如何产生的,知道涡流对人类有利和有害的两方面,以及如何利用涡流和防止涡流。 【要点梳理】 要点一、互感现象 两个线圈之间没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感,产生的感应电动势叫互感电动势。 要点诠释: (1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。 (2)互感现象可以把能量从一个电路传到另一个电路。变压器就是利用互感现象制成的。 (3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。 要点二、自感现象 1.实验 如图甲所示,首先闭合S 后调节R ,使12A A 、亮度相同,然后断开开关。再次闭合S ,灯泡2A 立刻发光,而跟线圈L 串联的灯泡1A 却是逐渐亮起来的。 如图乙所示电路中,选择适当的灯泡A 和线圈L ,使灯泡A 的电阻大于线圈L 的直流电阻。断开S 时,灯A 并非立即熄灭,而是闪亮一下再逐渐熄灭。 图甲实验叫通电自感。在闭合开关S 的瞬间,通过线圈L 的电流发生变化而引起穿过线圈L 的磁通量发生变化,线圈L 中产生感应电动势,这个感应电动势阻碍线圈中电流的增大,通过灯泡1A 的电流只能逐渐增大,所以1A 只能逐渐变亮。 图乙实验叫断电自感。断开S 的瞬间,通过线圈L 的电流减弱,穿过线圈的磁通量很快减小,线圈L 中出现感应电动势。虽然电源断开,但由于线圈L 中有感应电动势,且和A 组成闭合电路,使线圈中的电流反向流过灯A ,并逐渐减弱。由于L 的直流电阻小于灯A 的电阻,其原电流大于通过灯A 的原电流,故灯闪亮一下后才逐渐熄灭。

高二物理寒假作业 第十九天 法拉第电磁感应定律自感互感 涡流

第十九天法拉第电磁感应定律自感互感涡流 1.北半球海洋某处,地磁场水平分量B1=0.8×10-4 T,竖直分量B2=0.5×10-4 T,海水向北流动.海洋工作者测量海水的流速时,将两极板竖直插入此处海水中,保持两极板正对且垂线沿东西方向,两极板相距L=20 m,如图所示。与两极板相连的电压表(可 看做理想电压表)示数为U=0.2 mv。则 ( ) A.西侧极板电势高,东侧极板电势低 B.西侧极板电势低,东侧极板电势高 C.海水的流速大小为0.125 m/s D.海水的流速大小为0.2 m/s 2.如图所示,E为电池,L是电阻可忽略不计、自感系数足够大的线圈,D1、D2是两个规格相同且额定电压足够大的灯泡,S是控制电路的开关.对于这个电路,下列 说法正确的是( ) A.刚闭合开关S的瞬间,通过D1、D2的电流大小相等 B.刚闭合开关S的瞬间,通过D1、D2的电流大小不相等 C.闭合开关S待电路达到稳定,D1熄灭,D2比原来更亮 D.闭合开关S待电路达到稳定,再将S断开瞬间,D2立即熄灭,D1闪亮一下再熄灭3.如图所示,在铁芯P上绕着两个线圈a和b,则( ) A.绕圈a输入正弦交变电流,线圈b可输出恒定电流 B.绕圈a输入恒定电流,穿过线圈b的磁通量一定为零 C.绕圈b输出的交变电流不对线圈a的磁场造成影响 D.绕圈a的磁场变化时,线圈b中一定有电场 4.如图所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来。若要缩短上述加热时间,下列措施可行的有() A.增加线圈的匝数B.提高交流电源的频率 C.将金属杯换为瓷杯D.取走线圈中的铁芯

《互感和自感》教学设计

《互感和自感》教学设计 安徽省太和中学潘正海 【课程分析】 “自感和互感”是人教版选修3-2 第4 章《电磁感应》第6 节的内容,两者是电磁感应现象的两个重要实例,本质上都是由于电流变化引起的电磁感应现象。 本节教学内容包括互感现象、自感现象和磁场的能量三个部分,是在学生学习了产生感应电流的条件、楞次定律和法拉第电磁感应定律后才学习的,是电磁感应现象具体运用的两个实例。因此,对互感、自感现象的研究,既是对电磁感应规律的巩固和深化,也为以后学习交流电、电磁波奠定了知识基础。同时互感、自感现象知识与人们日常生活、生产技术有着密切的关系,因此,学习该部分知识有着重要的现实意义。 本节课为了让学生经历必要的认知过程,尝试利用“延迟判断”的探究教学策略,适当改进演示实验,变陈述性问题为设计性问题,让学生积极参与物理规律的发现和推理过程,主要的特色体现在以下几个方面: 1.对于“互感”的教学,采用“电磁炉”实验从能量角度引出互感及其应用,充分激发学生探索规律的积极性。 2.对于互感和自感的教学,着眼于让学生先猜测,再观察,验证猜测的正确性,然后再展开充分的讨论,攻克重难点。学生在质疑、猜测和不断探究中了解实验中发生的物理过程。 【学情分析】 学生已经学习了分析电路结构,知道了判断产生电磁感应的条件、判断感应电流的方向,以及感应电动势的大小的计算等电磁感应的规律,学生由于以前的被动学习,不好主动发言,形成了听、记的习惯,对自主、合作、探究的满堂学教学模式没有完全适应,需要老师耐心引导!量体裁衣似地设计导向性信息,激发他们探究的欲望。 【学习目标】 1、了解互感和自感现象 2、能够利用电磁感应有关规律分析通电、断电时自感现象的原因。 3、能说出自感电动势大小的影响因素、自感系数的单位及其决定因素。 4、了解互感和自感的应用和防止。

第三讲 自感和互感 涡流 电磁阻尼和电磁驱动

第三讲:自感和互感涡流电磁阻尼和电磁驱动 知识要点 1.自感现象 2.自感电动势与自感系数 3.涡流 4.电磁阻尼、电磁驱动 学习目标: 1.了解互感和自感现象,以及对它们的利用和防止。 2.能够通过电磁感应有关规律分析通电、断电时自感现象的成因,以及磁场的能量转化问题。 3.了解自感电动势的计算式,知道自感系数是表示线圈本身特征的物理量,知道它的单位。 4、了解涡流是怎么产生的,了解电磁阻尼和电磁驱动。 5、了解涡流现象的利用和危害。 6、通过对涡流实例的分析,了解涡流现象在生活和生产中的应用。 课前检测 要点一、互感现象 两个相互靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象叫互感.利用互感现象可以把能量由一个线圈传递到另一个线圈. 要点诠释: (1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。 (2)互感现象可以把能量从一个电路传到另一个电路。变压器就是利用互感现象制成的。 (3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。要点二、自感现象 1.实验 如图甲所示,首先闭合S后调节R,使12 A A 、亮度相同,然后断开开关。 再次闭合S,灯泡 2 A____而跟线圈L串联的灯泡 1 A_____。 图乙实验叫断电自感。断开S的瞬间,____________。 2.结论 由于通过线圈自身的电流发生变化时,线圈本身产生感应电动势的现象叫自感现象。由于自感而产生的感应电动热叫自感电动势。 要点诠释: 1.自感电动势的作用: 总是阻碍导体中原电流的变化,即总是起着推迟电流变化的作用。 2.自感电动势的方向: 增反减同 3.自感电动势大小: i E L t ? = ? 自 ,大小由电流变化的快慢和自感系数L决定。 1

人教版高中物理选修3-24.6互感和自感随堂检测归纳小结()

高中物理学习材料 金戈铁骑整理制作 1.(对应要点一)如图4-6-8所示的电路中,多匝螺线管的电阻 和电池的内阻可以忽略,两个电阻的阻值都是R ,开关S 原来是断开的,电路中电流I 0=E 2R 。若合上开关,将一个电阻短路,于是电路中有自感电动势产生,此自感电动势( ) A .有阻碍电流的作用,最后电流由I 0减小为零 图4-6-8 B .有阻碍电流的作用,最后电流小于I 0 C .有阻碍电流增大的作用,因而电流保持I 0不变 D .有阻碍电流增大的作用,但电流最后还是要增大到2I 0 解析:开关闭合时,一个电阻被短路,电路总电阻由2R 减小到R ,电路中的总电流将由I 0增大到2I 0。如果电路中没有螺线管,开关闭合后电流由I 0增大到2I 0的过程所经历的时间很短。电路中有多匝螺线管时,闭合S 后,在电流增大的过程中,由于产生自感电动势的方向与电路中原来的电流方向相反,电路中的电流由I 0增大到2I 0的过程所花的时间要延长。所以自感现象只是延长了电流变化的时间,但不能阻止电流的变化。 答案:D 2.(对应要点二)(2011·北京高考)某同学为了验证断电自感现象, 自己找来带铁芯的线圈L 、小灯泡A 、开关S 和电池组E ,用导线将它们连接成如图4-6-9所示的电路。检查电路后,闭合开关S ,小灯泡发光;再断开开关S ,小灯泡仅有不显著的延时熄灭现象。 虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥 图4-6-9 思苦想找不出原因。你认为最有可能造成小灯泡未闪亮的原因是( ) A .电源的内阻较大 B .小灯泡电阻偏大 C .线圈电阻偏大 D .线圈的自感系数较大 解析:根据实物连线图画出正确的电路图,如图所示。当闭合开关

2012届高考物理基础知识归纳-互感 自感与涡流

2012届高考物理基础知识归纳:互感自感与涡流 第3 时互感自感与涡流 基础知识归纳 1互感现象 一个线圈中的电流变化时,所引起的磁场的变化在另一个线圈中产生感应电动势的现象叫做互感现象这种感应电动势叫做互感电动势 2自感现象 由于导体本身的电流发生变化而产生的电磁感应现象在自感现象中产生的电动势,叫做自感电动势 3自感电动势的大小和方向 对于同一线圈说,自感电动势的大小取决于本身电流变化的快慢,其方向总阻碍导体中原电流的变化公式:E自=L 4自感系数 也叫自感或电感,由线圈的大小、形状、匝数及是否有铁芯决定,线圈越长、单位长度的匝数越多、横截面积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大单位:亨利(H) 涡流

(1)定义:当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内形成闭合回路,很像水的旋涡,把它叫做涡电流,简称涡流 (2)特点:整块金属的电阻很小,涡流往往很大 6电磁阻尼与电磁驱动 (1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力总是阻碍导体的运动,这种现象称为电磁阻尼 (2)电磁驱动:磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力,安培力使导体运动,这种作用称为电磁驱动 重点难点突破 一、自感现象与互感现象的区别与联系 1区别:(1)互感现象发生在靠近的两个线圈间,而自感现象发生在一个线圈导体内部;(2)通过互感可以使能量在线圈间传递,而自感现象中,能量只能在一个线圈中储存或释放 2联系:两者都是电磁感应现象 二、通电自感和断电自感的比较 通电自感断电自感 电路图 器材要求A1、A2同规格,R=RL,L较大L很大(有铁芯) 现象在S闭合瞬间,A2立即亮起,A1灯逐渐变亮,最终一样亮在开关S断开时,A灯渐渐熄灭

【精准解析】物理人教版选修3-2课时作业:4-6 互感和自感

课时作业5互感和自感 一、单项选择题 1.关于线圈的自感系数,下面说法正确的是(D) A.线圈的自感系数越大,自感电动势就一定越大 B.线圈中电流等于零时,自感系数也等于零 C.线圈中电流变化越快,自感系数越大 D.线圈的自感系数由线圈本身的因素及有无铁芯决定 解析:自感系数是由线圈的大小、形状、圈数、有无铁芯等因素决定,故B、C错,D对;自感电动势不仅由自感系数决定,还与电流变化快慢有关,故A错. 2.在同一铁芯上绕着两个线圈A、B,两电源相同,单刀双掷开关原来接在点1,现在把它从点1扳向点2,如图所示,试判断在此过程中,在电阻R上的电流方向是(A) A.先是P→Q,再是Q→P B.先是Q→P,再是P→Q C.始终是Q→P D.始终是P→Q 解析:单刀双掷开关接在点1上时,A线圈中的电流恒定不变,在铁芯中产生的磁场方向是沿铁芯自右向左.当单刀双掷开关由点1扳向点2的过程中,通过线圈A中的电流,先沿原方向减小到零,再由零增大到原电流值,所以B中产生的感应电流分两个阶段分析: (1)在A中电流沿原方向减小到零的过程中,A的磁场自右向左

也跟着减弱,导致穿过线圈B的磁通量在减小.由楞次定律知,线圈B中会产生右上左下的感应电流,即流过电阻R的电流方向是P→Q; (2)在A中电流由零增大到原方向的电流的过程中,A的磁场自右向左也跟着增强,导致穿过线圈B的磁通量在增大.由楞次定律知,线圈B中会产生左上右下的感应电流,即通过电阻R的电流方向是Q→P. 综上分析知,全过程中流过电阻R的电流方向先是P→Q,然后是Q→P,所以A对. 3.如图所示,线圈L的电阻和电源内阻都很小,可忽略不计,电路中两个电阻的阻值均为R,开始时开关S断开,此时电路中电流为I0.现将开关S闭合,线圈L中有自感电动势产生,下列说法中正确的是(D) A.由于自感电动势有阻碍电流的作用,电路中电流最终由I0减小到零 B.由于自感电动势有阻碍电流的作用,电路中电流最终小于I0 C.由于自感电动势有阻碍电流的作用,电路中电流将保持I0不变 D.自感电动势有阻碍电流增大的作用,但电路中电流最终还要增大到2I0 解析:当开关S闭合时,通过线圈的电流增大,在线圈中产生自感电动势,自感电动势阻碍电流的增大,但“阻碍”不是“阻止”,“阻碍”实质上是“延缓”,电路中的电流不会立刻变为2I0,但最终仍会增大到2I0.选项D正确.

高考物理基础知识归纳互感 自感与涡流

2012届高考物理基础知识归纳互感自感与涡流 第 3 课时互感自感与涡流 基础知识归纳 1.互感现象一个线圈中的电流变化时,所引起的磁场的变化在另一个线圈中产生感应电动势的现象叫做互感现象.这种感应电动势叫做互感电动势. 2.自感现象由于导体本身 的电流发生变化而产生的电磁感应现象.在自感现象中产生的电动势,叫做自感电动势. 3.自感电动势的大小和方向对于同一线 圈来说,自感电动势的大小取决于本身电流变化的快慢,其方向总 阻碍导体中原来电流的变化.公式:E自=L 4.自感系数也叫自感或电感,由线圈的大小、形状、匝数及是否有铁芯决定,线圈越长、单位长度的匝数越多、横截面积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大.单位:亨利(H). 5.涡流 (1)定义:当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内形成闭合回路,很像水的旋涡,把它叫做涡电流,简称涡流. (2)特点:整块金属的电阻很小,涡流往往很大. 6.电磁阻尼 与电磁驱动 (1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力总是阻碍导体的运动,这种现象称为电磁阻尼. (2)电磁驱动:磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力,安培力使导体运动,这种作用称为电磁驱动. 重点难点突破一、自感现象与互感现象的区别与联系1.区别:(1)互感现象发生在靠近的两个线圈间,而自感现象发生在 一个线圈导体内部;(2)通过互感可以使能量在线圈间传递,而自感 现象中,能量只能在一个线圈中储存或释放. 2.联系:两者都是电磁感应现象. 二、通电自感和断电自感的比较通电自感断电自感电 路图器材要求 A1、A2同规格,R=RL,L较大 L很大(有铁芯) 现 象在S闭合瞬间,A2立即亮起来,A1灯逐渐变亮,最终一样亮在 开关S断开时,A灯渐渐熄灭原 因由于开关闭合时,流过电感线圈的电流迅速增大,使线圈产生自 感电动势,阻碍了电流的增大,使流过A1灯的电流比流过A2灯的电流增加得慢断开开关S时,流过线圈L的电流减小,产生自感电动势,阻碍了电流的减小,使电流继续存在一段时间,在S断开后,通

《自感和互感》教学设计

《自感和互感》教学设计 孙策 【教学目标】 1.知识与技能 (1)理解互感现象的电磁感应特点。 (2)会运用观察、实验、分析、综合等方法,认识自感现象及其特点。 (3)理解自感电动势的作用,明确自感系数的意义及决定条件。 (4)了解自感现象的利、弊以及对它的利用和防止。 2.过程与方法 (1)运用电磁感应原理和电路基本知识,设计实验,探究自感现象特点。 (2)运用物理知识,解释生产和生活中的某些自感现象。 3.情感态度和价值观 培养、提高学生尊重科学,利用实验探索研究自然的科学素养 【教学重点】自感现象产生的原因及特点。 【教学难点】运用自感知识设计实验、分析现象、解决问题。 【教学方法】讨论法、探究法、试验法 【教学用具】 可拆变压器 (用400匝线圈、普通导线一段)、线圈两组、电源、 0.3A 灯泡两只、滑动变阻器、电源(3V)、导线若干、开关、多媒体课件 【教学过程】 一、实验演示、知识回顾、引入互感 1.实验探究 (1)实验仪器介绍:线圈L 1套入普通的铁 芯,线圈和铁芯之间是绝缘的,并与交流电源 相联。线圈L 2是一段普通的导线,在手上绕几圈然后套到铁芯上,导线外层有塑料层,它和铁芯之间也是绝缘的,L 2和一个小灯泡串联起可拆铁芯 手绕的几匝线圈L 2 学生电源 线圈L 1

来构成一个闭合回路。 (2)思考讨论 把两个没有导线相连的线圈套在同一个闭合铁芯上,线圈L1连到交流电源的两端,线圈L2连到小灯泡上。小灯泡可能发光吗为什么请说出你的道理。 (3)先让学生进行实验的预测,说出可能的结果。然后,教师进行实验演示。 (4)请学生根据实验现象试着回答,教师根据学生的回答情况,共同进行实验分析。 2.知识回顾 设问:引起电磁感应现象的条件是什么感应电动势的大小跟哪些因素有关 现象回顾:前面学习了电磁感应现象,了解了几种不同形式的电磁感应现象。如磁铁向线圈中插入或拔出时、闭合电路的一部分导体在磁场中做切割磁感线的运动时等,都会引起感应电动势,发生电磁感应现象。 规律提示:不论用什么方式,也不管是什么原因,只要穿过电路的磁通量发生了变化,都能引起电磁感应现象。如果电路是闭合的,电路中就会有感应电流。感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。 3.实验分析 设问(1):L1接的是交流电,电流大小在时刻变化。假 定某段时间里电流是沿这个方向流进线圈的,而且在增 大。那么大家来分析下看,穿过L1的磁场是哪个方向 过渡:铁芯有聚磁的作用,所以铁芯中的磁感线是沿顺时针方向,通过L2中的磁场方向向下。 设问(2):当电流增大时,穿过L2的磁通量怎样变化 过渡:根据楞次定律,感应电流产生的磁场总是要阻碍引起感应电流的磁通量的变化,即线圈L2产生的感生磁场要阻碍线圈L2的磁通量的增大。所以,线圈L2的感生磁场方向是向上的。 设问(3):如何进一步判断感应电流的方向线圈L2中哪一端电势较高 在以上几个问题的讨论中,师生边结合课件,边仔细体会其中的物理过程思路。

第4章第六节互感和自感练习题及答案解析

1.下列关于自感现象的说法正确的是( ) A .自感现象是由于导体本身的电流发生变化而产生的电磁感应现象 B .线圈中自感电动势的方向总与引起自感的原电流的方向相反 C .线圈中自感电动势的大小与穿过线圈的磁通量变化的快慢有关 D .加铁芯后线圈的自感系数比没有加铁芯时要大 解析:选ACD.自感现象是导体本身电流变化使得穿过线圈的磁通量变化而产生的电磁感应现象,自感电动势与线圈的磁通量变化快慢有关,故A 、C 正确,自感电动势阻碍原电流的变化,并不一定与原电流反向,B 错误. 2.关于线圈的自感系数,下面说法正确的是( ) A .线圈的自感系数越大,自感电动势一定越大 B .线圈中电流等于零时,自感系数也等于零 C .线圈中电流变化越快,自感系数越大 D .线圈的自感系数由线圈本身的因素及有无铁芯决定 答案:D 图4-6-14 3.如图4-6-14所示,L 为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S 的瞬间会有( ) A .灯A 立即熄灭 B .灯A 慢慢熄灭 C .灯A 突然闪亮一下再慢慢熄灭 D .灯A 突然闪亮一下再突然熄灭 解析:选A.当开关S 断开时,由于通过自感线圈的电流从有变到零,线圈将产生自感电动势,但由于线圈L 与灯A 串联,在S 断开后,不能形成闭合回路,因此灯A 在开关断开后,电源供给的电流为零,灯就立即熄灭. 图4-6-15 4.如图4-6-15所示,多匝线圈L 的电阻和电池内阻不计,两个电阻的阻值都是R , 电键S 原来是断开的,电流I 0=E 2R ,今合上电键S 将一电阻短路,于是线圈有自感电动势产生,此电动势( ) A .有阻碍电流的作用,最后电流由I 0减小到零 B .有阻碍电流的作用,最后电流总小于I 0 C .有阻碍电流增大的作用,因而电流将保持I 0不变 D .有阻碍电流增大的作用,但电流最后还是增大到2I 0 解析:选D.电键S 由断开到闭合瞬间,回路中的电流要增大,因而在L 上要产生自感电动势.根据楞次定律,自感电动势总是要阻碍引起它的电流的变化,这就是说由于电流增加引起的自感电动势,要阻碍原电流的增加.而阻碍不是阻止,电流仍要增大,而达到

高中物理人教版选修3选修3-2第四章第6节互感和自感A卷(练习)

高中物理人教版选修3选修3-2第四章第6节互感和自感A卷(练习) 姓名:________ 班级:________ 成绩:________ 一、选择题 (共4题;共8分) 1. (2分) (2015高二下·上饶期中) 交流电源供电的线路如图所示,如果交变电流的频率减小,则() A . 线圈的自感系数减小 B . 线圈的感抗减小 C . 电路中的电流不变 D . 电路中的电流减小 【考点】 2. (2分)下列说法中不正确的是() A . 电动机应用了“自感”产生交流电的 B . 电磁灶应用了“涡流”的加热原理 C . 日光灯启动时利用了“自感”所产生的高压 D . 煤气灶点火装置利用感应圈产生的高压电火花 【考点】 3. (2分) (2018高二下·易门期末) 如图所示电路中,R1、R2是两个阻值相等的定值电阻,L是一个自感系数很大,直流电阻为零的理想线圈,设A、B两点电势分别为φA、φB ,下列分析正确的是()

A . 开关S闭合瞬间 B . 开关S闭合后,电路达到稳定时 C . 当开关S从闭合状态断开瞬间 D . 只要线圈中有电流通过,就不可能等于 【考点】 4. (2分) (2019高二上·黑龙江期末) 如图所示,电源的电动势为E、内阻为r,L1、L2为两个相同的灯泡,线圈L的直流电阻不计,与灯泡L1连接的是一只理想二极管D.下列说法中正确的是() A . 闭合开关S稳定后L1、L2亮度相同 B . 断开S的瞬间,L2会逐渐熄灭 C . 断开S的瞬间,L1中电流方向向左 D . 断开S的瞬间,a点的电势比b点高 【考点】 二、多项选择题 (共4题;共12分) 5. (3分) (2017高二上·大连期末) 如图所示,相同电灯A和B的电阻为R,定值电阻的阻值也为R,L是

相关文档
最新文档