光学工程课后答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)
(2) 同理,
(3)同理,(4)同理,
(5)同理,(6)同理,
(7)同理,(8)同理,
21、一物体位于半径为r 的凹面镜前什么位置时,可分别得到:放大4倍的实像,当大4倍的虚像、缩小4倍的实像和缩小4倍的虚像?
解:(1)放大4倍的实像
(2)放大四倍虚像
(3)缩小四倍实像
(4)缩小四倍虚像
第二章
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:
所以x=300mm
即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?
图3-29 习题4图
解: 由于平面镜性质可得 及其位置在平面镜前150mm处
为虚像, 为实像
则
解得
又 - =
答:透镜焦距为100mm。
5、如图3-30所示,焦距为 =120mm的透镜后有一厚度为d=60mm的平行平板,其折射率n=1.5。当平行平板绕O点旋转时,像点在像平面内上下移动,试求移动量△ 与旋转角φ的关系,并画出关系曲线。如果像点移动允许有0.02mm的非线形度,试求φ允许的最大值。
解:方法一:
①
②
③
将①②③代入④中得
∴
方法二:
方法三:
5、一个薄透镜对某一物体成实像,放大率为-1x,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动20mm,放大率为原先的3/4倍,求两块透镜的焦距为多少?
解:
6、有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm,
设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:
会聚点位于第二面后15mm处。
(2)将第一面镀膜,就相当于凸面镜
像位于第一面的右侧,只是延长线的交点,因此是虚像。
还可以用β正负判断:
(3)光线经过第一面折射: , 虚像
第二面镀膜,则:
得到:
(4) 在经过第一面折射
解: =2
在
答:平面镜顺时针旋转1.0336 即可使入射光线与出射光线成90 。
第四章
1、设照相物镜的焦距等于75mm,底片尺寸为55 55 ,求该照相物镜的最大视场角等于多少?
解:
第六章
7、.设计一双胶合消色差望远物镜, ,采用冕牌玻璃K9( , )和火石玻璃F2( , ),若正透镜半径 ,求:正负透镜的焦距及三个球面的曲率半径。
解:令纸片最小半径为x,
则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为:
(1)
其中n2=1, n1=1.5,
同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:
解
13、线偏振光在玻璃-空气界面上发生全反射,线偏振光的方位角 度,问线偏振光以多大角度入射才能使反射光的s波和p波的相位差等于45度,设玻璃折射率 。
解:
第十章
2、在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。
(2)
由(1)式和(2)式联立得到n0.
16、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
解:该题可以应用单个折射面的高斯公式来解决,
(3)在水中
19、.有一平凸透镜r =100mm,r ,d=300mm,n=1.5,当物体在时,求高斯像的位置 。在第二面上刻一十字丝,问其通过球面的共轭像在何处?当入射高度h=10mm,实际光线的像方截距为多少?与高斯像面的距离为多少?
解:
20、一球面镜半径r=-100mm,求 =0 , , ,-1 , , , ,∝时的物距和象距。
则所得像与物同大小,求该正透镜组的焦距。
解:由已知得:
由高斯公式:
解得:
7、希望得到一个对无限远成像的长焦距物镜,焦距 =1200mm,由物镜顶点到像面的距离L=700 mm,由系统最后一面到像平面的距离(工作距)为 ,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。
解:
9、已知一透镜 ,求其焦距,光焦度,基点位置。
物像相反为虚像。
18、一直径为400mm,折射率为1.5的玻璃球中有两个小气泡,一个位于球心,另一个位于1/2半径处。沿两气泡连线方向在球两边观察,问看到的气泡在何处?如果在水中观察,看到的气泡又在何处?
解:
设一个气泡在中心处,另一个在第二面和中心之间。
(1)从第一面向第二面看
(2)从第二面向第一面看
解:
第七章
1、.一个人近视程度是 (屈光度),调节范围是 ,求:
(1)远点距离;
(2)其近点距离;
(3)配戴100度近视镜,求该镜的焦距;
(4)戴上该近视镜后,求看清的远点距离;
(5)戴上该近视镜后,求看清的近点距离。
解:①
∴
②
∴
③ ∴
④
⑤
2、一放大镜焦距 ,通光孔径 ,眼睛距放大镜为50mm,像距离眼睛在明视距离250mm,渐晕系数K=50%,试求:(1)视觉放大率;(2)线视场;(3)物体的位置。
n0sinI1=n2sinI2(1)
而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:
(2)
由(1)式和(2)式联立得到n0sinI1 .
解:(1)
∴
(2)Fra Baidu bibliotek
8、电矢量方向与入射面成45度角的一束线偏振光入射到两介质的界面上,两介质的折射率分别为 ,问:入射角 度时,反射光电矢量的方位角(与入射面所成的角)?若 度,反射光的方位角又为多少?
解:
11、一个光学系统由两片分离透镜组成,两透镜的折射率分别为1.5和1.7,求此系统的反射光能损失。如透镜表面镀上曾透膜,使表面反射比降为0.01,问此系统的光能损失又为多少?设光束以接近正入射通过各反射面。
解:设厚度为 ,则前后光程差为
7、在等倾干涉实验中,若照明光波的波长 ,平板的厚度 ,折射率 ,其下表面涂上某种高折射率介质( ),问(1)在反射光方向观察到的圆条纹中心是暗还是亮?(2)由中心向外计算,第10个亮纹的半径是多少?(观察望远镜物镜的焦距为20cm)(3)第10个亮环处的条纹间距是多少?
(2)
联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:
解:
同理: 中
答:α角等于60 。
3、如图3-4所示,设平行光管物镜L的焦距 =1000mm,顶杆离光轴的距离a=10mm。如果推动顶杆使平面镜倾斜,物镜焦点F的自准直象相对于F产生了y=2mm的位移,问平面镜的倾角为多少?顶杆的移动量为多少?
解:
图3-4
4、一光学系统由一透镜和平面镜组成,如图3-29所示。平面镜MM与透镜光轴垂直交于D点,透镜前方离平面镜600mm有一物体AB,经透镜和平面镜后,所成虚像 至平面镜的距离为150mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
解:
视场光阑决定了物面大小,而物面又决定了照明 的大小
7、一开普勒望远镜,五经焦距 ,目镜的焦距为 ,物方视场角 ,渐晕系数 ,为了使目镜通光孔径 ,在物镜后焦平面上放一场镜,试:
(1)求场镜焦距;
(2)若该场镜是平面在前的平凸薄透镜,折射率 ,求其球面的曲率半径。
①
∴
②
其中
代入求得:
第九章
2、在玻璃中传播的一个线偏振光可以表示 ,试求(1)光的频率和波长;(2)玻璃的折射率。
(4)x′=0.937
(5)x′=1.4
(6)x′=2.81
3、.设一系统位于空气中,垂轴放大率 ,由物面到像面的距离(共轭距离)为7200mm,
物镜两焦点间距离为1140mm。求该物镜焦距,并绘出基点位置图。
解:
∵ 系统位于空气中,
由已知条件:
解得:
4、已知一个透镜把物体放大 投影到屏幕上,当透镜向物体移近18mm时,物体将被放大 ,试求透镜的焦距,并用图解法校核之。
解:
2、一放大镜焦距 ,通光孔径 ,眼睛距放大镜为 ,像距离眼睛在明视距离 ,渐晕系数为 ,试求(1)视觉放大率;(2)线视场;(3)物体的位置。
已知:放大镜
求:① Γ ② 2y③l
解: ①
②由 可得:
∴
∴
∴
方法二:
③
5、有一生物显微镜,物镜数值孔径NA=0.5,物体大小2y=0.4mm,照明灯丝面积 ,灯丝到物面的距离100mm,采用临界照明,求聚光镜焦距和通光孔径。
解:(1) ,∴光在两板反射时均产生半波损失,对应的光程差为
∴中心条纹的干涉级数为
为整数,所以中心为一亮纹
(2)由中心向外,第N个亮纹的角半径为
半径为
(3)第十个亮纹处的条纹角间距为
∴间距为
9、在等倾干涉实验中,若平板的厚度和折射率分别是h=3mm和n=1.5,望远镜的视场角为 ,光的波长 问通过望远镜能够看到几个亮纹?
1、针对位于空气中的正透镜组 及负透镜组 ,试用作图法分别对以下物距
,求像平面的位置。
解:1.
2.
2、已知照相物镜的焦距f’=75mm,被摄景物位于(以F点为坐标原点) 处,试求照相底片应分别放在离物镜的像方焦面多远的地方。
解:(1)x= -∝,xx′=ff′得到:x′=0
(2)x′=0.5625
(3)x′=0.703
解:设有N个亮纹,中心级次
最大角半径
∴可看到12条亮纹
第一章习题
1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:
则当光在水中,n=1.333时,v=2.25 m/s,
8、.光纤芯的折射率为 ,包层的折射率为 ,光纤所在介质的折射率为 ,求光纤的数值孔径(即 ,其中 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:
n0sinI1=n2sinI2(1)
而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:
解:已知
求: ,基点位置。
10、一薄透镜组焦距为100 mm,和另一焦距为50 mm的薄透镜组合,其组合焦距仍为100 mm,问两薄透镜的相对位置。
解:
第三章
1.人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系?
解:
镜子的高度为1/2人身高,和前后距离无关。
2、有一双面镜系统,光线平行于其中一个平面镜入射,经两次反射后,出射光线与另一平面镜平行,问两平面镜的夹角为多少?
第一章
3、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:
所以x=300mm
即屏到针孔的初始距离为300mm。
4、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?
图3-30 习题5图
解:
(1)
由图可知
= =
=
=
=
(2)
考虑斜平行光入射情况不发生旋转时
当平行板转过φ角时
=
=
=
13、.如图3-33所示,光线以45 角入射到平面镜上反射后通过折射率n=1.5163,顶角为 的光楔。若使入射光线与最后的出射光线成 ,试确定平面镜所应转动的方向和角度值。
图3-33 习题13图
当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,
当光在火石玻璃中,n=1.65时,v=1.82 m/s,
当光在加拿大树胶中,n=1.526时,v=1.97 m/s,
当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
(2) 同理,
(3)同理,(4)同理,
(5)同理,(6)同理,
(7)同理,(8)同理,
21、一物体位于半径为r 的凹面镜前什么位置时,可分别得到:放大4倍的实像,当大4倍的虚像、缩小4倍的实像和缩小4倍的虚像?
解:(1)放大4倍的实像
(2)放大四倍虚像
(3)缩小四倍实像
(4)缩小四倍虚像
第二章
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:
所以x=300mm
即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?
图3-29 习题4图
解: 由于平面镜性质可得 及其位置在平面镜前150mm处
为虚像, 为实像
则
解得
又 - =
答:透镜焦距为100mm。
5、如图3-30所示,焦距为 =120mm的透镜后有一厚度为d=60mm的平行平板,其折射率n=1.5。当平行平板绕O点旋转时,像点在像平面内上下移动,试求移动量△ 与旋转角φ的关系,并画出关系曲线。如果像点移动允许有0.02mm的非线形度,试求φ允许的最大值。
解:方法一:
①
②
③
将①②③代入④中得
∴
方法二:
方法三:
5、一个薄透镜对某一物体成实像,放大率为-1x,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动20mm,放大率为原先的3/4倍,求两块透镜的焦距为多少?
解:
6、有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm,
设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:
会聚点位于第二面后15mm处。
(2)将第一面镀膜,就相当于凸面镜
像位于第一面的右侧,只是延长线的交点,因此是虚像。
还可以用β正负判断:
(3)光线经过第一面折射: , 虚像
第二面镀膜,则:
得到:
(4) 在经过第一面折射
解: =2
在
答:平面镜顺时针旋转1.0336 即可使入射光线与出射光线成90 。
第四章
1、设照相物镜的焦距等于75mm,底片尺寸为55 55 ,求该照相物镜的最大视场角等于多少?
解:
第六章
7、.设计一双胶合消色差望远物镜, ,采用冕牌玻璃K9( , )和火石玻璃F2( , ),若正透镜半径 ,求:正负透镜的焦距及三个球面的曲率半径。
解:令纸片最小半径为x,
则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为:
(1)
其中n2=1, n1=1.5,
同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:
解
13、线偏振光在玻璃-空气界面上发生全反射,线偏振光的方位角 度,问线偏振光以多大角度入射才能使反射光的s波和p波的相位差等于45度,设玻璃折射率 。
解:
第十章
2、在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。
(2)
由(1)式和(2)式联立得到n0.
16、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
解:该题可以应用单个折射面的高斯公式来解决,
(3)在水中
19、.有一平凸透镜r =100mm,r ,d=300mm,n=1.5,当物体在时,求高斯像的位置 。在第二面上刻一十字丝,问其通过球面的共轭像在何处?当入射高度h=10mm,实际光线的像方截距为多少?与高斯像面的距离为多少?
解:
20、一球面镜半径r=-100mm,求 =0 , , ,-1 , , , ,∝时的物距和象距。
则所得像与物同大小,求该正透镜组的焦距。
解:由已知得:
由高斯公式:
解得:
7、希望得到一个对无限远成像的长焦距物镜,焦距 =1200mm,由物镜顶点到像面的距离L=700 mm,由系统最后一面到像平面的距离(工作距)为 ,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。
解:
9、已知一透镜 ,求其焦距,光焦度,基点位置。
物像相反为虚像。
18、一直径为400mm,折射率为1.5的玻璃球中有两个小气泡,一个位于球心,另一个位于1/2半径处。沿两气泡连线方向在球两边观察,问看到的气泡在何处?如果在水中观察,看到的气泡又在何处?
解:
设一个气泡在中心处,另一个在第二面和中心之间。
(1)从第一面向第二面看
(2)从第二面向第一面看
解:
第七章
1、.一个人近视程度是 (屈光度),调节范围是 ,求:
(1)远点距离;
(2)其近点距离;
(3)配戴100度近视镜,求该镜的焦距;
(4)戴上该近视镜后,求看清的远点距离;
(5)戴上该近视镜后,求看清的近点距离。
解:①
∴
②
∴
③ ∴
④
⑤
2、一放大镜焦距 ,通光孔径 ,眼睛距放大镜为50mm,像距离眼睛在明视距离250mm,渐晕系数K=50%,试求:(1)视觉放大率;(2)线视场;(3)物体的位置。
n0sinI1=n2sinI2(1)
而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:
(2)
由(1)式和(2)式联立得到n0sinI1 .
解:(1)
∴
(2)Fra Baidu bibliotek
8、电矢量方向与入射面成45度角的一束线偏振光入射到两介质的界面上,两介质的折射率分别为 ,问:入射角 度时,反射光电矢量的方位角(与入射面所成的角)?若 度,反射光的方位角又为多少?
解:
11、一个光学系统由两片分离透镜组成,两透镜的折射率分别为1.5和1.7,求此系统的反射光能损失。如透镜表面镀上曾透膜,使表面反射比降为0.01,问此系统的光能损失又为多少?设光束以接近正入射通过各反射面。
解:设厚度为 ,则前后光程差为
7、在等倾干涉实验中,若照明光波的波长 ,平板的厚度 ,折射率 ,其下表面涂上某种高折射率介质( ),问(1)在反射光方向观察到的圆条纹中心是暗还是亮?(2)由中心向外计算,第10个亮纹的半径是多少?(观察望远镜物镜的焦距为20cm)(3)第10个亮环处的条纹间距是多少?
(2)
联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:
解:
同理: 中
答:α角等于60 。
3、如图3-4所示,设平行光管物镜L的焦距 =1000mm,顶杆离光轴的距离a=10mm。如果推动顶杆使平面镜倾斜,物镜焦点F的自准直象相对于F产生了y=2mm的位移,问平面镜的倾角为多少?顶杆的移动量为多少?
解:
图3-4
4、一光学系统由一透镜和平面镜组成,如图3-29所示。平面镜MM与透镜光轴垂直交于D点,透镜前方离平面镜600mm有一物体AB,经透镜和平面镜后,所成虚像 至平面镜的距离为150mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
解:
视场光阑决定了物面大小,而物面又决定了照明 的大小
7、一开普勒望远镜,五经焦距 ,目镜的焦距为 ,物方视场角 ,渐晕系数 ,为了使目镜通光孔径 ,在物镜后焦平面上放一场镜,试:
(1)求场镜焦距;
(2)若该场镜是平面在前的平凸薄透镜,折射率 ,求其球面的曲率半径。
①
∴
②
其中
代入求得:
第九章
2、在玻璃中传播的一个线偏振光可以表示 ,试求(1)光的频率和波长;(2)玻璃的折射率。
(4)x′=0.937
(5)x′=1.4
(6)x′=2.81
3、.设一系统位于空气中,垂轴放大率 ,由物面到像面的距离(共轭距离)为7200mm,
物镜两焦点间距离为1140mm。求该物镜焦距,并绘出基点位置图。
解:
∵ 系统位于空气中,
由已知条件:
解得:
4、已知一个透镜把物体放大 投影到屏幕上,当透镜向物体移近18mm时,物体将被放大 ,试求透镜的焦距,并用图解法校核之。
解:
2、一放大镜焦距 ,通光孔径 ,眼睛距放大镜为 ,像距离眼睛在明视距离 ,渐晕系数为 ,试求(1)视觉放大率;(2)线视场;(3)物体的位置。
已知:放大镜
求:① Γ ② 2y③l
解: ①
②由 可得:
∴
∴
∴
方法二:
③
5、有一生物显微镜,物镜数值孔径NA=0.5,物体大小2y=0.4mm,照明灯丝面积 ,灯丝到物面的距离100mm,采用临界照明,求聚光镜焦距和通光孔径。
解:(1) ,∴光在两板反射时均产生半波损失,对应的光程差为
∴中心条纹的干涉级数为
为整数,所以中心为一亮纹
(2)由中心向外,第N个亮纹的角半径为
半径为
(3)第十个亮纹处的条纹角间距为
∴间距为
9、在等倾干涉实验中,若平板的厚度和折射率分别是h=3mm和n=1.5,望远镜的视场角为 ,光的波长 问通过望远镜能够看到几个亮纹?
1、针对位于空气中的正透镜组 及负透镜组 ,试用作图法分别对以下物距
,求像平面的位置。
解:1.
2.
2、已知照相物镜的焦距f’=75mm,被摄景物位于(以F点为坐标原点) 处,试求照相底片应分别放在离物镜的像方焦面多远的地方。
解:(1)x= -∝,xx′=ff′得到:x′=0
(2)x′=0.5625
(3)x′=0.703
解:设有N个亮纹,中心级次
最大角半径
∴可看到12条亮纹
第一章习题
1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:
则当光在水中,n=1.333时,v=2.25 m/s,
8、.光纤芯的折射率为 ,包层的折射率为 ,光纤所在介质的折射率为 ,求光纤的数值孔径(即 ,其中 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:
n0sinI1=n2sinI2(1)
而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:
解:已知
求: ,基点位置。
10、一薄透镜组焦距为100 mm,和另一焦距为50 mm的薄透镜组合,其组合焦距仍为100 mm,问两薄透镜的相对位置。
解:
第三章
1.人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系?
解:
镜子的高度为1/2人身高,和前后距离无关。
2、有一双面镜系统,光线平行于其中一个平面镜入射,经两次反射后,出射光线与另一平面镜平行,问两平面镜的夹角为多少?
第一章
3、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:
所以x=300mm
即屏到针孔的初始距离为300mm。
4、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?
图3-30 习题5图
解:
(1)
由图可知
= =
=
=
=
(2)
考虑斜平行光入射情况不发生旋转时
当平行板转过φ角时
=
=
=
13、.如图3-33所示,光线以45 角入射到平面镜上反射后通过折射率n=1.5163,顶角为 的光楔。若使入射光线与最后的出射光线成 ,试确定平面镜所应转动的方向和角度值。
图3-33 习题13图
当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,
当光在火石玻璃中,n=1.65时,v=1.82 m/s,
当光在加拿大树胶中,n=1.526时,v=1.97 m/s,
当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。