切比雪夫不等式证明(精选多篇)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典合同

切比雪夫不等式证明

姓名:XXX 日期:XX年X月X日

切比雪夫不等式证明

切比雪夫不等式证明

一、

试利用切比雪夫不等式证明:能以大小0.97的概率断言,将一枚均匀硬币连续抛1000次,其出现正面的次数在400到600之间。

分析:将一枚均匀硬币连续抛1000次可看成是1000重贝努利试验,因此

1000次试验中出现正面h的次数服从二项分布.

解:设x表示1000次试验中出现正面h的次数,则x是一个随机变量,且

~xb(1000,1/2).因此

500

2

1

1000=×==npex,

250)

2

答题完毕,祝你开心!

1

1(

2

1

1000)1(=××==pnpdx,

第 2 页共 19 页

而所求的概率为

}500600500400{}600400{<<=<}100100{<<=exxp

}100{<=exxp

975.0

100

1

2

dx

二、

切比雪夫(chebyshev)不等式

对于任一随机变量x,若ex与dx均存在,则对任意ε>0,

恒有p{|x-ex|>=ε}<=dx/ε^2或p{|x-ex|<ε}>=1-dx/ε^2

切比雪夫不等式说明,dx越小,则p{|x-ex|>=ε}

越小,p{|x-ex|<ε}越大,也就是说,随机变量x取值基本上集中在ex附近,这进一步说明了方差的意义。

同时当ex和dx已知时,切比雪夫不等式给出了概率p{|x-ex|>=ε}的一个上界,该上界并不涉及随机变量x的具体概率分布,而只与其方差dx和ε有关,因此,切比雪夫不等式在理论和实际中都有相当广泛的应用。需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。

切比雪夫不等式是指在任何数据集中,与平均数超过k倍标准差的数据占的比例至多是1/k^2。

在概率论中,切比雪夫不等式显示了随机变数的「几乎所有」值都会「接近」平均。这个不等式以数量化这方式来描述,究竟「几乎所有」

第 3 页共 19 页

是多少,「接近」又有多接近:

与平均相差2个标准差的值,数目不多于1/4

与平均相差3个标准差的值,数目不多于1/9

与平均相差4个标准差的值,数目不多于1/16

与平均相差k个标准差的值,数目不多于1/k^2

举例说,若一班有36个学生,而在一次考试中,平均分是80分,标准差是10分,我们便可得出结论:少于50分(与平均相差3个标准差以上)的人,数目不多于4个(=36*1/9)。

设(x,σ,μ)为一测度空间,f为定义在x上的广义实值可测函数。对於任意实数t>0,

一般而言,若g是非负广义实值可测函数,在f的定义域非降,则有

上面的陈述,可透过以|f|取代f,再取如下定义而得:

概率论说法

设x为随机变数,期望值为μ,方差为σ2。对于任何实数k>0,改进

一般而言,切比雪夫不等式给出的上界已无法改进。考虑下面例子:这个分布的标准差σ=1/k,μ=0。

当只求其中一边的值的时候,有cantelli不等式:

证明

定义,设为集的指标函数,有

又可从马尔可夫不等式直接证明:马氏不等式说明对任意随机变数y和正数a有pr(|y|leopeatorname{e}(|y|)/a。取y=(x?μ)2及

a=(kσ)2。

第 4 页共 19 页

亦可从概率论的原理和定义开始证明。

第二篇:切比雪夫不等式的证明(离散型随机变量)

设随机变量x有数学期望?及方差?,则对任何正数?,下列不等式成立 2

?2

p?x?e(x)????2 ?

证明:设x是离散型随机变量,则事件x?e(x)??表示随机变量x 取得一切满足不等式xi?e(x)??的可能值xi。设pi表示事件x?xi的概率,按概率加法定理得

p?x?e(x)????

xi?e(x)???pi

这里和式是对一切满足不等式xi?e(x)??的xi求和。由于

xi?e(x)??,即?xi?e(x)?2??2xi?e(x)??,所以有2?2?1。

2?xi?e(x)?又因为上面和式中的每一项都是正数,如果分别乘以?2,则和式的值将增大。

于是得到

p?x?e(x)????

xi?e(x)???pi?xi?e(x)????xi?e(x)??22pi?1

?2xi?e(x)????xi?e(x)?2pi

因为和式中的每一项都是非负数,所以如果扩大求和范围至随机变量x的一切可能值xi求和,则只能增大和式的值。因此

p?x?e(x)????1

?2??x?e(x)?i

i2pi

第 5 页共 19 页

上式和式是对x的一切可能值xi求和,也就是方差的表达式。所以,

?2

p?x?e(x)????2 ?

第三篇:经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式

mathwang

几个经典不等式的关系

一几个经典不等式

(1)均值不等式

设a1,a2,?an?0是实数

a?a???a12n ???

111n?+??a1a2an

其中ai?0,i?1,2,?n.当且仅当a1?a2???an时,等号成立.

n

(2)柯西不等式

设a1,a2,?an,b1,b2,?bn是实数,则

?a

21

22?a2???an??b12?b22???bn2???a1b1?a2b2???anbn?

2

当且仅当bi?0(i?1,2,?,n)或存在实数k,使得ai?kbi(i?1,2,?,n)时,等号成立.

(3)排序不等式

第 6 页共 19 页

相关文档
最新文档