轴心受力构件的承载力计算
(轴心)受压构件正截面承载力计算

(2)破坏特征 1)螺旋筋或焊接环筋在约束 核心混凝土的横向变形时产生 拉应力,当它达到抗拉屈服强 度时,就不再能有效地约束混 凝土的横向变形,构件破坏。 2)螺旋筋或焊接环筋外的混 凝土保护层在螺旋筋或焊接环 筋受到较大拉应力时就开裂, 故在计算时不考虑此部分混凝 土。
螺旋箍筋柱破坏情况
2.适用条件和强度提高原理 12(短柱) ; (1)适用条件:①l0 / d ②尺寸受到限制。 注意:螺旋箍筋柱不如普遍箍筋柱经济,一般不宜采用。 根据图7-8 所示螺旋箍筋柱截面 受力图式,由平衡条件可得到
150mm或15倍箍筋直径(取较大者)范围,则应设置复合箍 筋。
a)、b)S内设3根纵向受力钢筋
c)S内设2根纵向 受力钢筋
复合箍筋的布置
7.2 螺旋箍筋轴心受压构件
1.受力分析及破坏特征 (1)受力分析 螺旋箍筋或焊接圆环箍筋能约束混凝土在轴向压力作用 下所产生的侧向变形,对混凝土产生间接的被动侧向压力,
d cor As 01
S
As 01
As 0 S d cor
将式(2)代入式(1),则可得到
2
2 f s As 01 2 f s As 0 S 2 f s As 0 f s As 0 f s As 0 2 2 d cor S d cor S d cor 2 Acor d cor d cor 2 4
态、承载力计算;
2.配有纵向钢筋和螺旋箍筋的轴心受压构件的破坏形 态、承载力计算; 3.稳定系数的概念及其影响因素; 4.核心混凝土强度分析及强度计算;
5.普通箍筋柱、螺旋箍筋柱的配筋特点和构造要求。
7.1 普通箍筋轴心受压构件
1.钢筋混凝土轴心受压柱的分类
普通箍筋柱:配有纵筋 和箍筋的柱 (图7-1a)。 螺旋箍筋柱:配有纵筋 和螺旋筋或焊接环筋的 柱,(图7-1b)。 其中:纵筋帮助受压、承 担弯矩、防止脆性破坏。 螺旋筋提高构件的强 度和延性。
轴心受压构件正截面承载力计算

0 Nd Nu 0.9( fcd Acor kfsd As0 As fsd )
k —— 间接钢筋的影响系数,混凝土强度C50
及以下时,k=2.0;C50-C80取k=2.0-1.7,中 间直线插入取值。
混凝土 强度
k
≤C50 2.0
C55 C60 C65 C70 C75 C80 1.95 1.90 1.85 1.80 1.75 1.70
例题2:圆形截面轴心受压构件,直径为450mm, 计算长度2.25m, 轴向压力设计组合值Nd=2580kN, 纵筋用HRB335级,箍筋用R235级,混凝土强度等 级为C25。I类环境条件,安全等级二级,试进行构 件的配筋设计。
2.25512 1%
0.45
As1%4 4520 15m 902m
A co r45 420 30 119 m3 2m 99
f s d —— 间接钢筋的强度;
Acor —— 构件的核心截面面积;
A s 0 —— 间接钢筋的换算面积,As0
dcor As01
S
;
A s 0 1 —— 单根间接钢筋的截面面积;
S —— 间接钢筋的间距;
轴心受压构件正截面承载力计算
6.2 配有纵向钢筋和螺旋箍筋的轴心受压构件 四、 螺旋箍筋轴压构件正截面承载力计算
轴心受压构件正截面承载力计算
6.1 配有纵向钢筋和普通箍筋的轴心受压构件 五、正截面承载力计算 2.截面设计之二(尺寸未知):
如果尺寸未知,则 先假设一个ρ′,令稳定系数φ=1; 求出截面面积A,取整; 重新计算φ,求As′.
例题略。
轴心受压构件正截面承载力计算
6.1 配有纵向钢筋和普通箍筋的轴心受压构件
主要和构件的长细比有关,长细比越大,稳定 系数 越小。
第4章轴心受力构件的承载力计算

柱的长细比较大,柱的极限承载力将受侧向变形所引起的附加弯矩影响而 降低。
第4章 轴心受力构件的承载力计算
1. 受力分析及破坏特征 ⑴受压短柱 第Ⅰ阶段——弹性阶段 轴向压力与截面钢筋和混凝土的应力 基本上呈线性关系
第Ⅱ阶段——弹塑性阶段 混凝土进入明显的非线性阶段,钢筋 的压应力比混凝土的压应力增加得快, 出现应力重分布。
Asso
d cor Ass1
s
计算螺旋筋间距s, 选螺旋箍筋为
12,Assl=113.1mm2
s
d cor Assl
Asso
3.14 450 113.1 69.4mm 2303
取s=60mm,满足s ≤ 80mm(或1/5dcor)
第4章 轴心受力构件的承载力计算
截面验算 一
由混凝土压碎所控制,这一阶段是计算轴心受压构件极限强度的依据。
第4章 轴心受力构件的承载力计算
⑵受压长柱
初始偏心距
附加弯矩和侧向挠度
加大了原来的初始偏心距
构件承载力降低
破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压 碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵 轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。
第4章 轴心受力构件的承载力计算
2.配有普通箍筋的轴心受压构件正截面承载力计算方法
f c A) N 0.9 ( f y As
N-轴向力设计值;
N
-钢筋混凝土构件的稳定系数;
f y-钢筋抗压强度设计值; fc f y A s
A s-全部纵向受压钢筋的截面面积;
f c-混凝土轴心抗压强度设计值; A -构件截面面积,当纵向配筋率大于0.03时, A改为Ac, Ac =A- A s; 0.9 -可靠度调整系数。 h
第三章轴心受力构件承载力计算

筋将首先达到抗压屈服强度,随后钢筋承担的压力维持 不变,而继续增加荷载全部由混凝土承担,直到混凝土 压碎,在这类构件中,钢筋于混凝土的抗压强度都得到 充分的利用。对较高强度钢筋,在构件破坏时,可能达 不到屈服。钢筋的强度得不到充分的利用。
在轴心受压短柱中,不论受压钢筋在构件破坏时是否 屈服,构件的最终承载能力都由混凝土压碎来控制的。
性,即处于弹性阶段。
随着荷载的增加,混凝土的非弹性变形发 展,进入弹塑性阶段,但钢筋仍处与弹性阶段, 混凝土的应力增长的速度比钢筋的压应力增长 的速度慢,由与,故钢筋压应力与混凝土压应 力之比大于也就是钢筋于混凝土之间的应力重 分布。
在长期荷载作用下,混凝土的徐变发生,截面上引 起应力重分布。随着荷载的持续的时间的增加,混凝土 的压应力会逐见的减小,钢筋的应力将逐渐增加。钢筋 应力增加的多少,与截面纵向钢筋的配筋率有关,当配 筋率较大时,钢筋的应力增进阿的较大,当配筋率较低 时,钢筋的应力增加较小
特征:构件带裂缝工ห้องสมุดไป่ตู้。 在裂缝截面处,拉力全部由钢筋承担。在混凝土
开裂前和混凝土开裂后的瞬间,裂缝截面处的钢筋的 应力发生突变。
裂缝的间距和裂缝宽度的大小与纵向受力钢筋的配 筋率和直径布置等因素有关。
(3)破坏阶段 特征:纵向钢筋屈服,标志着构件破坏。破坏由纵
向钢筋起控制作用。
2 轴心受拉构件截面承载力计算
二、教学提示
展示轴心受力构件的教学模型,并提出如下 问题;
1 钢筋混凝土轴心受拉构件中混凝土的作用。 2 钢筋混凝土轴心受压构件中纵向钢筋和箍筋 的作用。
第二讲
一、内容
(2)截面承载力计算
( ) 1) 计算公式
N ≤ 0.9ϕ
f
` Y
轴心受力构件的截面承载力计算

l0/b=8~34
l0与构件两端支承条件有关:
两端铰支 l0= l,
两端固支 l0=0.5 l
一端固支一端铰支 l0=0.7 l
一端固支一端自由 l0=2 l
《规范》采用的ψ值根据长细比l0/b查表3-1
01
03
02
04
05
06
长细比l0/b的取值
实际结构中的端部支承条件并不好确定,《规范对排架柱、框架柱的计算长度做出了具体规定。
当柱截面短边大于400mm、且各边纵筋配置根数超过多于3根时,或当柱截面短边不大于400mm,但各边纵筋配置根数超过多于4根时,应设置复合箍筋。
对截面形状复杂的柱,不得采用具有内折角的箍筋 ?
1
2
3
4
5
四、箍 筋
内折角不应采用
内折角不应采用
复杂截面的箍筋形式
钢筋混凝土构件由两种材料组成,其中混凝土是非匀质材料,钢筋可不对称布置,故对钢筋混凝土构件,只有均匀受压(或受拉)的内合力与纵向外力在同一直线时为轴心受力,其余情况下均为偏心受力。在工程中,严格意义上轴心受压不存在,所谓的轴压构件或多或少的都存在偏心。
从经济、施工及受力性能方面考虑(施工布筋过多会影响混凝土的浇筑质量;配筋率过大易产生粘结裂缝,突然卸荷时混凝土易拉裂),全部纵筋配筋率不宜超过5%。全部纵向钢筋的配筋率按r =(A's+As)/A计算,一侧受压钢筋的配筋率按r '=A's/A计算,其中A为构件全截面面积。
三、纵向钢筋
1
柱中纵向受力钢筋的的直径d不宜小于12mm,且选配钢筋时宜根数少而粗,但对矩形截面根数不得少于4根,圆形截面根数不宜少于8根,不得少于6根,且应沿周边均匀布置。
轴心受力构件

轴心受力构件设计轴心受拉构件时需进行强度和刚度的验算,设计轴心受压构件时需进行强度、整体稳定、局部稳定和刚度的验算。
一、轴心受力构件的强度和刚度1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服点为承载力极限状态f A N n ≤=σ (1) 式中 N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。
采用高强度螺栓摩擦型连接的构件,验算最外列螺栓处危险截面的强度时,按下式计算:f A N n≤='σ (2) 'N =)5.01(1n n N - (3)式中 n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数;0.5——孔前传力系数。
采用高强度螺栓摩擦型连接的拉杆,除按式(2)验算净截面强度外,还应按下式验算毛截面强度f A N ≤=σ (4)2.轴心受力构件的刚度计算轴心受力构件的刚度是以限制其长细比保证][λλ≤ (5) 式中 λ——构件的最大长细比;[λ]——构件的容许长细比。
二、 轴心受压构件的整体稳定1.理想轴心受压构件的屈曲形式理想轴心受压构件可能以三种屈曲形式丧失稳定:①弯曲屈曲 双轴对称截面构件最常见的屈曲形式。
②扭转屈曲 长度较小的十字形截面构件可能发生的扭转屈曲。
③弯扭屈曲 单轴对称截面杆件绕对称轴屈曲时发生弯扭屈曲。
2.理想轴心受压构件的弯曲屈曲临界力若只考虑弯曲变形,临界力公式即为著名的欧拉临界力公式,表达式为N E =22l EI π=22λπEA (6) 3.初始缺陷对轴心受压构件承载力的影响实际工程中的构件不可避免地存在初弯曲、荷载初偏心和残余应力等初始缺陷,这些缺陷会降低轴心受压构件的稳定承载力。
1)残余应力的影响当轴心受压构件截面的平均应力p f >σ时,杆件截面内将出现部分塑性区和部分弹性区。
由于截面塑性区应力不可能再增加,能够产生抵抗力矩的只是截面的弹性区,此时的临界力和临界应力应为:N cr =22l EI e π=22lEI π·I I e (7) cr σ=22λπE ·I I e (8) 式中 I e ——弹性区的截面惯性矩(或有效惯性矩);I ——全截面的惯性矩。
项目2:子项目6—受压构件承载力计算(1)

Example
已知某现浇多层钢筋混凝土框架 结构,处于一类环境,安全等级为二级, 底层中间柱为轴心受压圆形柱,直径为 450mm。柱的长度为 l0 5100,m轴m 向 压 力 设 计 值 为 4750kN , 混 凝 土 强 度 等 级 为 C30 , 柱 中 纵 筋 和 箍 筋 分 别 采 用 HRB400级和HRB335级钢筋。试确定 柱中纵筋及箍筋。
的抗压强度和变形能力,从而提高构件的受压承载力。
当混凝土的压应变达到无约束混凝土的极限压应变
时,箍筋外围的混凝土保护层开始脱落。当螺旋箍筋的应 力达到屈服强度时,柱达到最大承载力而破坏。因为这种
柱是通过对核心混凝土的套箍作用而间接提高柱的受压
承载力,故也称间接配筋柱,同时螺旋箍筋或焊接环式箍 筋也称间接钢筋。
上的纵向受力钢筋以及轴心受压柱中各边的纵向受力钢
筋,其中距不宜大于300mm。
为保证钢筋骨架的刚度,纵向受力钢筋的直径不宜
小于12mm,且宜选择直径较大的钢筋。矩形截面柱中纵 向钢筋根数不应少于4根。
箍筋
柱中的箍筋应符合下列规定:
1. 箍筋直径不应小于 d 4 ,且不应小于6mm,d 为纵
向钢筋的最大直径。 2. 箍筋间距不应大于400mm及构件截面的短边尺寸,
长细比 l0 b 30 l0 h 25
宜采用强度等级较高的混凝 土,一般结构常用C25~C40 纵向受力钢筋应优先采用 HRB400 级 和 HB335 级 钢 筋 。箍筋一般采用HPB300级和 HRB335级钢筋。
纵向钢筋
柱中纵向钢筋配置应符合下列规定:
1. 纵向钢筋直径不宜小于12mm;全部纵向钢筋 的配筋率不宜大于5%。
2. 柱中纵向钢筋的净间距不应小于50mm时,且 不宜大于300mm。
轴心受压构件正截面承载力计算

轴心受压构件正截面承载力计算首先,要计算轴心受压构件的正截面承载力,我们需要了解构件的几何参数,例如截面的尺寸和形状,以及构件的材料特性,如弹性模量和抗压强度等。
下面介绍一种常用的计算方法,即欧拉公式。
欧拉公式适用于细长的杆件,可以计算其承载力。
根据欧拉公式,轴心受压构件的正截面承载力可以表示为:Pcr = (π^2 * E * I) / (Lr)^2其中,Pcr 是构件的临界承载力,E 是构件的弹性模量,I 是构件截面的惯性矩,Lr 是约化长度。
对于不同的构件形状,惯性矩I的计算公式也不同。
以下是一些常见形状的惯性矩计算公式:1.矩形截面:I=(b*h^3)/12,其中b是截面的宽度,h是截面的高度;2.圆形截面:I=π*(d^4)/64,其中d是截面的直径;3.方管截面:I=(b*h^3-(b'*h')^3)/12,其中b是外边框的宽度,h是外边框的高度,b'是内边框的宽度,h'是内边框的高度。
约化长度Lr的计算取决于构件的边界条件。
以下是一些常见边界条件的约化长度计算公式:1.双端固定支承:Lr=L;2.一端固定支承、一端支座支承:Lr=0.7*L;3.双端支座支承:Lr=2*L。
通过使用上述公式,我们可以计算出轴心受压构件的正截面承载力。
需要注意的是,上述公式是基于一些理想化假设和条件下推导得出的,实际工程中还需要考虑一些因素,例如构件的稳定性和局部细部构造等。
因此,在实际设计中,应该根据具体情况综合考虑各种因素,并结合相关的规范和标准进行设计和验证,以确保构件的安全性和可靠性。
总之,轴心受压构件正截面承载力计算是工程设计中的重要环节。
通过合理的参数选择和计算,可以确定构件能够安全承受的最大压力,从而保证结构的安全和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
截面设计应注意的问题: (1)配筋率应当以构件的全部面积为分母求得; (2)检查是否满足最小配筋率、单面最小配筋率以及不超过最大配筋率的要 求; (3)计算高度受构件支承条件的影响;
(4)实际配筋面积与计算配筋的面积的误差控制在5%左右,比较合理。
第4章 轴心受力构件的承载力计算
N - f c A) N 0.9 f c A) A N 0.9 ( f y As As 0.9 ( f c f y ) f y (
第4章 轴心受力构件的承载力计算
2.配有普通箍筋的轴心受压构件正截面承载力计算方法
f c A) N 0.9 ( f y As
N-轴向力设计值;
N
-钢筋混凝土构件的稳定系数;
f y-钢筋抗压强度设计值; fc f y A s
A s-全部纵向受压钢筋的截面面积;
f c-混凝土轴心抗压强度设计值; A -构件截面面积,当纵向配筋率大于0.03时, A改为Ac, Ac =A- A s; 0.9 -可靠度调整系数。 h
第4章 轴心受力构件的承载力计算
第4章 轴心受力构件的承载力计算
§4.1 轴心受压构件的承载力计算 §4.2 轴心受拉构件的承载力计算 §4.3 轴心受力构件配筋构造
第4章 轴心受力构件的承载力计算
§4
轴心受力构件
对于单一匀质材料的构件,当纵向外力N的作用线与构件截面的形心线重合 时,称为轴心受力构件。 N为拉力时为轴心受拉构件; N为压力时为轴心受 压构件。
假定´
A
N 0.9 ( f c f y )
N ( - f c A) 0.9 As f y
⑵截面校核:
已知:bh,fc,f y,l0,As,N,校核。
f c A) N u 0.9 ( f y As
当Nu N时,安全。
第4章 轴心受力构件的承载力计算
例 某轴心受压柱,轴力设计值 N=2400kN ,计算高度为 l0=6.2m ,混凝土 C25,纵筋采用HRB400级钢筋。试求柱截面尺寸,并配置受力钢筋。 解:初步估算截面尺寸 查得C25混凝土的fc=11.9N/mm2,HRB400钢筋的f'y=360N/mm2。 取=1.0,’=1%,则有 N 2400 10 3 A 172.043 10 3 mm 2 0.9 ( f c f y ) 0.9 1 (11.9 360 0.01) 若 采 用 方 柱 , h=b= A =414.78mm , 取 b×h=450mm×450mm , l0/b=6.2/0.45=13.78,查表3-1得=0.923,则有 3 N 2400 10 ( - f c A) 11.9 450 450 0.9 As 0.9 0.923 1332mm 2 f y 360 查附表11-1,选用8 16的纵向钢筋(A's=1608mm2)。 1608 0.794% min 0.5% 配筋合适 450 450
应力峰值时的压应变一般在 0.0025~0.0035之间。《规范》偏于安全地取最 大 压 应 变 为 0.002 。 受 压 纵 筋 屈 服 强 度 约
's=Es's=200×103×0.002=400N/mm2。采用f'y>400Mpa钢筋,则纵筋不屈
服。在轴心受压短柱中,不论受压纵筋是否屈服,构件的最终破坏形态均是
第4章 轴心受力构件的承载力计算
试验表明,长柱的破坏荷载低于其他条件相同的短柱破坏荷载。 稳定系数-考虑长柱纵向弯曲的不利影响。P54表4-1
lo -构件的计算长度,与构件端部的支承条件有关; 两端铰支时取1.0l 一端固定,一端铰支时取0.7l 两端固定时取0.5l 一端固定,一端自由时取2.0l b -矩形截面的短边尺寸; d -圆形截面的直径; i -截面最小回转半径;
A s
b
第4章 轴心受力构件的 f c A) N 0.9 ( f y As
N - f c A) 0.9 As f y (
min = 0.6%
①已知:bh,fc, f y, l0,N,求As。
> min
②已知:fc, f y, l0,N,求A、As。
工程实例
第4章 轴心受力构件的承载力计算
纵筋的作用: ①承受轴向拉力或轴向压力;
②减少混凝土的徐变变形。
横向箍筋的作用: ①固定纵向钢筋位置;防止纵向钢筋受 力后发生变形和错位; ②箍筋与纵筋形成骨架,保证骨架刚度。
第4章 轴心受力构件的承载力计算
§4.1 钢筋混凝土轴心受压构件正截面承载力计算 (reinforced concrete axially compressive member)
第Ⅲ阶段——破坏阶段 钢筋首先屈服,有明显屈服台阶的钢 筋应力保持屈服强度不变,混凝土的 应力也随应变的增加而继续增长。
第4章 轴心受力构件的承载力计算
当混凝土压应力达到峰值应变, 外荷载不再增加,压缩变形继续 增加,出现的纵向裂缝继续发展, 箍筋间的纵筋发生压屈向外凸出, 混凝土被压碎而整个构件破坏。
由混凝土压碎所控制,这一阶段是计算轴心受压构件极限强度的依据。
第4章 轴心受力构件的承载力计算
⑵受压长柱
初始偏心距
附加弯矩和侧向挠度
加大了原来的初始偏心距
构件承载力降低
破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压 碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵 轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。
柱的长细比较大,柱的极限承载力将受侧向变形所引起的附加弯矩影响而 降低。
第4章 轴心受力构件的承载力计算
1. 受力分析及破坏特征 ⑴受压短柱 第Ⅰ阶段——弹性阶段 轴向压力与截面钢筋和混凝土的应力 基本上呈线性关系
第Ⅱ阶段——弹塑性阶段 混凝土进入明显的非线性阶段,钢筋 的压应力比混凝土的压应力增加得快, 出现应力重分布。
柱的分类: 构件的长细比-构件的计算长度 l0 与构件的 短边 b 或截面回转半径 i 之比
短柱 长柱
《规范》规定,柱的长细比满足以下条件时 属短柱:矩形截面l0 /b≤8;圆形截面l0 /d≤7; 任意截面l0 /i≤28。
普通箍筋 Õ Í Æ ¨¸ Ö ¹ ¿ Ö ù
螺旋箍筋 Ý Ð Â ý ¸ Ö ¹ ¿ Ö ù