浮法玻璃熔窑的结构知识交流
玻璃熔窑结构
玻璃熔窑结构一、引言玻璃熔窑是用来熔化玻璃原料并制造玻璃制品的装置。
熔窑结构的设计对玻璃的品质、生产效率以及熔窑的能耗都有着重要影响。
本文将全面讨论玻璃熔窑结构的不同方面,包括熔窑类型、主要部件、燃烧系统等。
二、熔窑类型玻璃熔窑可分为浮法熔窑、罩式熔窑和闪蒸熔窑等多种类型。
下面将介绍各种类型的熔窑结构及其特点。
2.1 浮法熔窑浮法熔窑是最常用的玻璃熔窑类型,用于生产平板玻璃。
它由熔窑室、燃烧室和冷却室三部分组成。
具体结构包括:1.熔窑室:熔窑室是玻璃熔化的主要区域,通常采用长条形的结构。
它由多个玻璃浴槽组成,每个浴槽都有一个排气系统和一个物料进出口。
2.燃烧室:燃烧室位于熔窑室的下部,用于燃烧燃料并产生热量。
常见的燃料包括天然气和重油等。
燃烧室一般配备燃烧器和燃烧控制系统。
3.冷却室:冷却室用于降低玻璃的温度,使其逐渐凝固。
冷却室内通常设有冷却辊和风机等设备。
2.2 罩式熔窑罩式熔窑主要用于制造玻璃瓶和容器等。
它相比浮法熔窑结构较为简单,包括以下主要部件:1.罩形熔窑室:罩形熔窑室是玻璃熔化区域,其形状呈圆顶状,类似于一个倒置的罩子。
熔窑室内有多个喷射式燃烧器,用于提供热量。
2.熔罐:熔罐位于罩形熔窑室底部,用于盛放玻璃熔液。
通常由耐火材料制成,其内壁涂有保护涂层,以防止熔液对熔罐产生腐蚀。
3.废气排放系统:废气排放系统用于排除熔窑室产生的废气,以保证熔窑内气体的稳定。
2.3 闪蒸熔窑闪蒸熔窑是一种高温熔炼玻璃的特殊类型熔窑。
其结构相对简单,主要包括以下部件:1.熔化室:闪蒸熔窑的熔化室是玻璃熔化的主要区域。
熔化室内有多个加热电极,通过电阻加热的方式提供热量,使玻璃原料迅速熔化。
2.废气处理系统:废气处理系统用于处理熔窑室出口产生的废气,通常采用除尘和脱硫等工艺,以减少环境污染。
三、主要部件除了不同类型的熔窑有不同的结构,熔窑还包括许多常见的主要部件。
下面将介绍几个关键的部件。
3.1 熔化室熔化室是进行玻璃熔化的核心部分。
浮法玻璃熔窑的结构
浮法玻璃熔窑的结构浮法玻璃熔窑是一种用于生产玻璃板的重要设备,它采用了浮法工艺,在玻璃制造业中具有重要的地位。
浮法玻璃熔窑的结构对于生产过程的稳定性和玻璃品质的保证起着关键的作用。
一、玻璃熔窑的整体结构浮法玻璃熔窑通常由熔池、熔池后区、熔池中区、熔池前区和出口区组成。
熔池是熔窑的核心部分,是玻璃原料熔化的地方。
熔池后区主要用于玻璃液的均热、净化和脱气。
熔池中区是玻璃液的成形区,通过控制温度和速度,使玻璃液在这一区域内逐渐形成平整的玻璃板。
熔池前区是玻璃板的冷却和固化区域,通过控制冷却速度和冷却方式,使玻璃板逐渐凝固。
出口区是玻璃板的取出和切割区域,通过设备将玻璃板从熔窑中取出,并进行必要的切割和整理。
二、熔池的结构熔池是浮法玻璃熔窑的核心组成部分,其结构主要包括熔池底部、熔池壁、熔池顶部和熔池的加热系统。
熔池底部通常由石英砂和耐火材料构成,以承受高温和化学腐蚀。
熔池壁采用多层耐磨耐火砖砌筑而成,以保护熔池的稳定和耐久性。
熔池顶部通常采用陶瓷材料制成,以防止玻璃液与外界空气接触。
熔池的加热系统采用天然气或液化石油气等燃料,通过燃烧产生的高温火焰加热熔池,使玻璃原料熔化成液体状态。
三、熔池后区的结构熔池后区是玻璃液的均热、净化和脱气区域,其结构主要包括流道、均热区和净化区。
流道位于熔池后区的最上方,用于将熔池中的玻璃液引导至熔池后区。
均热区通过控制温度和搅拌玻璃液,使其达到均匀的温度和成分分布。
净化区通过添加特定的化学物质,去除玻璃液中的气泡和杂质,提高玻璃品质。
熔池后区的结构设计合理,能够实现玻璃液的均热、净化和脱气,为后续工序提供高质量的玻璃液。
四、熔池中区的结构熔池中区是玻璃液的成形区域,通过控制温度和速度,使玻璃液在这一区域内逐渐形成平整的玻璃板。
熔池中区的结构主要包括成形辊、支撑辊和冷却辊。
成形辊用于控制玻璃液的流动和形状,使其逐渐成形为平整的玻璃板。
支撑辊用于支撑和稳定玻璃板,以避免其变形或破裂。
浮法玻璃熔窑结构和燃烧系统
特别是在窑龄不断延长 今天, 的 显得更为重要, 这一方面与设计有关, 还有一个很重要的因素是密封材料 的材质和施工质量。
23一点体会 . 综观浮法玻璃熔窑的总体结构形式,在为获得合格的玻璃液方面,遵循的原则是一致的, 在实现的 手段上有差别, 但不是很大, 在 19 年引进了 国内 91 美国TLD 公司的 OEO 浮法玻璃熔窑设计技术后, 熔窑技 术有了很大的 提高.己 接近国际先进水平,但在实际的 使用过程中, 还存在以 下几个问 题: . 受投资的限制, 在浮法玻璃熔窑的耐火材料选用上,与国际先进水平有差距, 玻璃熔窑的砌筑质量
它主要包含了 玻璃熔窑的支撑钢结构的形式, 耐火材料受热膨胀的 控制和窑 炉整体的密 封等的形
式,为了 满足设备安装、 运行, 状态检测,生产操作和维护而采取的窑炉结构形式等. 在玻璃熔窑的 支撑钢结构的形式上,国内 采用的是TLD 公司的技术, OEO 相对结构比 较简单、 实用, 而国际 上有些熔窑就做的比 较仔细、 复杂, 如在窑底用液压千斤顶支撑, 便于在窑底柱有局部不平衡沉降 是可保持窑底标高不变. 大暄采用可升降的 支撑结构, 保证墙体的受热向上膨胀不会影响到破的安全性等。
投料口 熔化部 澄清于浮法玻璃工艺生产具有产量高、 产品规格 ( 厚度, 宽) 长X 范围大、 对产品的质量要求高的 特点, 如何在成型前获得合 格的玻璃液是个关键, 保证获得合格的玻璃液, 为了 玻璃熔窑结构的设计必须考虑以
下 儿个主要因素:
浮法玻璃生产工艺实际上是一种平板玻璃的水平拉制成型工艺, 熔化均匀的 玻璃液经流道流入锡槽, 由于 熔融锡的 浮力作用而漂浮在锡液面上, 通过摊平抛光、 预冷、 拉薄 ( 或增厚) 成型和冷却的 过程, 然
第三节玻璃熔窑投料口和山墙钢结构
—
看 ,投 料池 立柱 布置 形式 大体 可分 为两 类 :其一 是
左 右两 侧 每侧 只设 一 根立 柱 ,这根 立柱 同时承 担 以
图1 全窑 宽投 料池 平 面布 置的左侧局 部 图 5
投 料 口立 柱受 力分 析 :全窑 宽投 料池 每侧 只设
一
其 中最 主要 的受 力为第 一种 功能 ,即夹持纵 向 的熔 窑 胸墙 、保 证小 炉喷 火 口碹 结构稳 定 的力 ,其它 夏
知识讲座 专题
第 三节
玻 璃熔 窑投 料 口和 山墙 钢结构
浮法 玻璃熔 窑 的熔 化部 和冷却 部 共有 四个 山墙
结构 :熔 化 部前 I 墙 、后 …墙 ,冷 却部 前 【 墙 、后 j I L I 山 墙 。熔 化 部 前 山墙 钢 结 构 即 投料 口钢 结 构 ,包 括 :投 料 口 柱 、投料 口前端 拦铁 和侧壁挡 铁等 。
要求 r,为了增加横 向稳定性 而增加一块腹板 ,为双
( 3)柱顶拉 条拉力
=
竿
5 0 ×4 0 0 00 0 0
68 0 0
腹板结构 ( 见全窑宽投料池平面布置的左侧局部 )。 ( )立柱挠 度计算 8
, 一
=
3 0 k 00 0( g)
J 一 48 EI 5 0 ×68 00 0 0
=
第1 期
总第2 4 4 期
②对应 每个小炉 中心距 的熔 化部大碹重 量
( 2 中心角时 ,取 大碹 的弧长 =1 8 5。 . 碹跨 ) 0
G =1 8 ( 。 ,) p .B D 0 +D , L 。
10 16X ( .5×19+02X11) ×35 .8X 1 . 0 . . . .
浮法玻璃熔化培训资料
浮法玻璃熔化培训资料广州南玻员工培训资料熔化部分一、应知部分熔化部分的现场操作,几乎都是在高温环境下完成的。
操作者必须采取安全防护措施,如穿戴好劳动保护用品,使用防护镜、防热手套等。
1、什么是重油?重油又称燃料油,呈暗黑色液体,主要是以原油加工过程中的常压油,减压渣油、裂化渣油、裂化柴油和催化柴油等为原料调合而成。
2、重油的主要成分及特点重油是原油提取汽油、柴油后的剩余重质油,其特点是分子量大、粘度高。
重油的比重一般在0.82~0.95,比热在10,000~11,000kcal/kg左右。
其成分主要是炭水化点物素,另外含有部分的(约0.1~4%)的硫黄及微量的无机化合物。
3、重油燃烧所需的空气量1)按重油主要成分CH进行理论计算,完全燃烧1KG重油需要空气量约413.20Nm3的空气量,需要雾化气量:0.83 Nm34、料堆、泡界线和热点的定义1)料堆:窑内漂浮在玻璃上面的未熔化的生料。
2)泡界线:窑内热点附近泡沫区边缘与熔化好的玻璃液之间整齐、明晰的分界线。
3)热点:熔化温度曲线上的最高温度点5、影响泡界线的主要因素有哪些?能造成泡界线位置、形状发生变化的因素较多,最主要的因素如下:1)熔化温度变化(燃料热值变化、燃料量的变化、风火配比变化等)。
2)拉引量变化。
3)投料作业不正常,窑内发生偏料等。
4)配合料变化:如水份、均匀度、碎玻璃比例波动。
5)原料的粒度、成分变化等。
6)火焰的长短、高低、刚性等。
6、熔化部分的重要温度点有哪些?1、上部温度点1#小炉、4#小炉、末对小炉对应的热电偶和小炉腿温度点澄清部、冷却部和蓄热室顶温度点2)底部温度点池底温度各点烟囱根部温度点烟道温度各点7、火焰气氛有哪几类?火焰气氛通常分为:氧化焰、中性焰和还原焰三类。
8、氧化焰、中性焰和还原焰的定义1)氧化焰是指燃料燃烧时,参与燃烧反应的氧气量大于理论需要量而有富余时的火焰气氛性质。
此时,空气过剩系数α>1,火焰明亮。
浮法玻璃池窑结构_2023年学习资料
5、成型部forming end-作用:兼有冷却与供料作用并将玻璃液控制在能便于成型-制成成品的温度范围内 玻璃液成为制品的初坯-成型部的结构:-浮法平板玻璃-为锡槽。后面专题讲述-平拉法平板玻璃-结构复杂-因产品 同分为-压延法平板玻璃-与浮法相似
1.2热源部分-玻璃窑对热源供给设备的要求:-有一定的火焰长度-要有足够的火焰覆盖面积,且要紧贴玻璃液面焰不发漂,不发散,不分层。-要满足窑内所需的温度、气氛、压力。-热源所用燃料:-理论上:只要能形成长火焰, 且燃烧温度高的燃料就-可以作为玻璃窑的热源燃料。-般来说:所用的燃料为煤气、天燃气、重油。-重油:发热值高 燃烧速度适中,火焰长度长-天然气:发热高,与助燃空气混合性好,火焰长度可调节。-煤气:其特点是火焰长度短, 值较低。但它价廉易得,-裕情-成为大多数玻璃窑的首选燃料,一般是发生炉煤气。
作用是进行配合料熔化和-玻璃液澄清、均化-胸墙:-上空间-提供熔化玻璃所需要的热量供给空间-火焰空间-大碹 -2.熔化空间-池壁-下空间-构成配合料熔化成玻璃液并进行-澄清的空间-窑池-池底-■-所以窑池分为熔化带 澄清带两部分,以泡界线为界。-■泡界线之前为熔化带,泡界线之后为澄清带,-■泡界线:为熔化好的、有许多泡沫 不透明的玻璃液与熔化好的、-透明的玻璃液之间的分界线。-耳池:-布置在平板玻璃两侧、与窑池相同、向外突出的 方形或正方形小池-耳池处玻璃液温度较低,其处玻璃液横向流动加强,对玻璃液流能够起到调-节和澄清作用
1浮法玻璃池窑和锡槽-玻璃窑的结构很复杂,这里只以浮法横焰窑为例见图所示。-分为熔化部分、热源部分、余热利 、排烟供气部分。-配合料-骏璃洁窑-切割玻璃板-p-退火窑-骏璃带-玻请板蜂垛打-0■0-图2,?(浮法) 板玻璃池窑及其有关热工设备的生产流程图-5喝
浮法熔化基础知识
熔化基础知识一.名词解释1.熔化量:熔窑每昼夜能熔化好的玻璃液量。
2.换火:是指熔窑生产过程中周期性地改变火焰喷出方向及烟气排出方向。
3.热效率:是指熔制玻璃的理论热耗与实际热耗之比。
4.泡界线:在窑池的熔化部液面上泡沫区的边缘线。
5.自动调节:在没有人直接参与下利用仪表和自动装置来实现对某些参数的测量与控制就称为自动调节。
6.熔制:将合格的配合料经过高温和热熔融,形成透明、纯净、均匀并适合于成型的玻璃液的过程称为玻璃熔制。
7.蓄热室:利用格子砖作为着热体,回收从窑内排出的废气的部分热量,换向后用来加热入窑内的空气和煤气的废气余热利用设备。
8.玻璃液的澄清:玻璃形成阶段结束时,整个熔融体包含有许多气泡,继续加温降低粘度从玻璃中除去可见气体杂质物的过程。
9.跑料:未熔化好的料堆或含有石英砂的泡沐融体越过泡界线漂到熔化部后端,随成型流送入成型室,造成玻璃种种缺陷。
10.窑压:是指窑内气体的压力与外界大气压之差,用帕斯卡Pa来表示。
11.热修:在生产过程中,对熔窖烧损部分进行修理或改造叫热修。
12.碎玻璃含率:是指配合料中碎玻璃用量与配合料总量之比。
13.熔化率:每平方米熔化面积上每昼夜熔化的玻璃液量。
14.熔化面积:从投料池末端到最末一对小炉中心线一米处的熔化部的部分面积。
15.冷修:在熔窑的使用后期,因各部位烧蚀严重,或突然发生重大事故,或决定对熔窑分进行改造时停止生产,将熔窑中玻璃液放掉,使熔窑冷却下来进行修理,这就是熔窑的冷修。
16.烤窑:熔窑砌筑完成后,由点火开始,按升温的曲线升温,最后达到正常生产作业温度范围的过程。
17.碳粉含率:是指由碳粉引入的固定碳与芒硝引入硫酸钠的之比。
18.大闸板:在锅炉烟道处至烟囱的一段总烟道上装设的闸板叫大闸板。
19.熔窑生产周期:也叫窑龄或使用周期,指熔窑两次冷修之间,从开始生产到放玻璃水的使用时间,是反映熔窑结构使用寿命长短的经济性指标。
20.熔化能力:也叫生产能力,平板玻璃生产系统就是熔化率,指单位熔化面积在单位时间内的产量,常用单位是吨/米2·天。
11-第三章3.1浮法玻璃池窑分析
(1)烧发生炉煤气的小炉:由空气、煤 气通道、舌头、预燃室、喷出口和闸板 组成。
(2)烧重油、天然气小炉:
比煤气小炉简单,其使用油喷嘴, 无煤气通道、舌头、预燃室。 天然气结构与然油小炉相同。
3.1.3 余热回收部分(作用、类型、 工作原理、结构)
拉边机堆机法:适应于生产7-12mm的厚玻璃 (堆积温度940-750℃)
挡边坝堆积法:12-25mm的厚玻璃
2 浮法玻璃成形工艺因素 玻璃的粘度、表面张力和自身的重力
定型
抛光
摊平
关键:摊平过程 玻璃液的平整化 条件
¤ 适于平整化的均匀的温度场:1065-996 ℃ , 对应粘度范围为103.7-104.2PaS。
☯ 连通式:玻璃池窑一侧的蓄热室 连通在一起,并且炉条弦下面的烟道 也相互联通。
☯ 分隔式结构型式:以每一个小炉
为单元对应于分为若干个独立的室,
其下面的烟道也个自独立。
特点
(5)蓄热室的结构
小炉 支烟道
顶碹、炉条碹、格子体、蓄热室墙、钢 结构等组成。
顶碹 格子体 炉条碹
接池窑 钢结构
支烟道
(池窑横剖图)
二者力相等,形成自然厚度,大约7mm。
温度/℃
室温 1000
密度/(g/cm2)
玻璃
锡
2.5
7.3
2.3
6.5
• 薄玻璃的成型过程 低温拉薄法 徐冷拉薄法#
摊平区 徐冷区 成型区(拉薄区) 冷却区
要点
拉边机所处玻璃带的温度 拉边机转速 拉边机头压入玻璃带的深度 玻璃带前进方向所成的角度
• 厚玻璃的成型方法
¤ 大约在1050℃时玻璃的摊平时间为72s
浮法基板玻璃窑
以弓形碹火焰分布均匀,砌筑简单。
R R
弓 形拱 B
箭 头拱 B
r O O'
1 /2 0 ~ 1 / 4 0 B
馒头 拱 B
楔型 砖
锁砖
拱 角砖
fδ R
α B
跨度 B
升高 f 厚度 δ
θ
中心角 θ半径 RFra bibliotek碹角 α
有利于节能。
(2)火焰空间 长度:与窑池等长。 宽度:窑池宽+200~300mm,能牢固拖住胸墙,使火焰全部覆盖。 高度:由胸墙高度和大碹碹股合成。 大碹作用:①使辐射线沿整个液面均匀分布;②辐射热的反射器。 尽量平。但要考虑大碹结构强度。
火焰空间要求: 1)能经受火焰烟气冲刷、烧损,配合料、其他耐材的侵蚀。化学、温
作用是使玻璃液在窑内有足够的停留时间,使玻璃液中的气泡能完 全排除,以保证玻璃的质量。
国内目前300t/d到800t/d熔窑的澄清区长度在10~17m范围之内。
3)熔化池深度: 20世纪90年代以前熔化池的深度一般为1.5m。 90年代以后大多数采用1.2m池深结构。 采用浅池技术,池底不动层减薄,从而减少了玻璃液的重复加热,
5 浮法玻璃熔窑
5.1概述 5.2熔化部 5.3卡脖、冷却部 5.4小炉、蓄热室 5.5烟道
1
5.1概述
• 浮法玻璃生产工艺产生于20世纪50年代末,因玻璃液漂浮在熔融 金属表面获得抛光成形而得名。用于浮法成形工艺的玻璃窑炉称 为浮法玻璃熔窑。
• 属浅池横火焰窑。 • 规模上浮法玻璃熔窑要大得多,世界上日熔化量最高可达到1000
(3)投料池
玻璃熔窑耐火材料及熔窑应知应会资料
玻璃熔窑耐火材料及熔窑应知应会部分一、玻璃熔窑用耐火材料1、硅砖硅砖是浮法玻璃熔窑使用量最多、也是最重要的一个砖种。
对于大型熔窑,硅砖主要用于熔化部及工作部窑顶大碹、胸墙和前后端墙、蓄热室顶碹和蓄热室上部隔墙等。
硅砖的高档制品SiO2含量为96~98%。
它是属于酸性耐火材料;其密度为 2.35至2.38g/cm3,具有很高的高温结构强度,如荷重软化温度高(1640~1700℃)和蠕变率低,而且在吸收少量碱质组分后除了极轻微的熔蚀外,并不降低窑顶结构强度。
硅砖的主要缺点是抗热震性能低。
玻璃窑用硅砖具有如下特点:a.高温体积稳定,不会因温度波动而引起炉体变化:玻璃熔窑在1600℃下可以保持炉体不变形,结构稳定。
b.对玻璃液污染轻微:硅砖主要成分是SiO2,在使用时如有掉块或表面熔滴,不会影响玻璃液的质量。
c.耐化学侵蚀:上部结构的硅砖受玻璃配合料中挥发的R2O的气体侵蚀,表面生成一层光滑的变质层,使侵蚀速度变低,起保护作用。
d.其体积密度小:可减轻炉体重量。
2、粘土砖粘土砖是以耐火粘土为原料生产的耐火制品,浮法玻璃熔窑使用量较多。
粘土砖主要用于工作温度在1300℃的窑炉部位,如蓄热室下部的格子砖及墙砖、烟道砖及池底的粘土大砖等。
粘土砖其主要成分是Al2O3含量为30~48%、SiO2含量为50~70%。
它是偏酸性的耐火材料,随着砖中Al2O3含量的增加其酸性逐渐减弱,它对酸性具有一定的侵蚀抵抗力,对碱性侵蚀抵抗力能力较差,因此粘土砖宜用于酸性窑炉环境;其密度为2 .40至2.56g/cm3,其耐火度虽然高达1700℃,但荷重软化温度只有1300℃左右,因此在高温使用时不能承重、不能受压。
粘土砖的抗热震性较好,波动范围较大,一般大于10次(1100℃/水冷),这与粘土砖的线膨胀系数值不太大又无多晶转变现象及具有明显颗粒结构有关。
3、高铝砖与硅线石砖高铝砖是Al2O3含量大于48%的硅酸铝质耐火材料统称高铝质耐火材料,浮法玻璃熔窑使用量较少;如果在高铝质砖的配料中加入一定比例的硅线石及其他微量元素将变成硅线石砖,高铝砖主要用于蓄热室的中部砌墙,硅线石砖主要用于蓄热室的炉条碹等。
3 玻璃的熔制及熔窑(3)
根据各部分功用分为: 玻璃熔制、热源供给、余热回收、排烟供气。 本节主要讲述熔窑各部结构、作用,设计内 容放在《课程设计》进行。
3.2.1 玻璃熔制部分
该部分由投料部分、熔化部(分隔设备之 前)、分隔设备、冷却部四部分组成。
(1)投料部分
A.投料机 投料机简介及国内主要应用 的型号。
B.投料口和投料池 a.投料机的工作环境 b.投料方式 c.预熔池
Байду номын сангаас.前脸墙 a.何为前脸墙
b.普通碹 c.变形平碹
d.普通碹外加碹结构
e.L型吊墙结构
(2)熔化部
A.作用 B.结构
C.窑池 a.池壁 池壁砖的结构
b.池底 池底的结构
D.耳池
玻璃熔窑耐火材料及熔窑应知应会资料
玻璃熔窑耐火材料及熔窑应知应会部分一、玻璃熔窑用耐火材料1、硅砖硅砖是浮法玻璃熔窑使用量最多、也是最重要的一个砖种。
对于大型熔窑,硅砖主要用于熔化部及工作部窑顶大碹、胸墙和前后端墙、蓄热室顶碹和蓄热室上部隔墙等。
硅砖的高档制品SiO2含量为96~98%。
它是属于酸性耐火材料;其密度为 2.35至2.38g/cm3,具有很高的高温结构强度,如荷重软化温度高(1640~1700℃)和蠕变率低,而且在吸收少量碱质组分后除了极轻微的熔蚀外,并不降低窑顶结构强度。
硅砖的主要缺点是抗热震性能低。
玻璃窑用硅砖具有如下特点:a.高温体积稳定,不会因温度波动而引起炉体变化:玻璃熔窑在1600℃下可以保持炉体不变形,结构稳定。
b.对玻璃液污染轻微:硅砖主要成分是SiO2,在使用时如有掉块或表面熔滴,不会影响玻璃液的质量。
c.耐化学侵蚀:上部结构的硅砖受玻璃配合料中挥发的R2O的气体侵蚀,表面生成一层光滑的变质层,使侵蚀速度变低,起保护作用。
d.其体积密度小:可减轻炉体重量。
2、粘土砖粘土砖是以耐火粘土为原料生产的耐火制品,浮法玻璃熔窑使用量较多。
粘土砖主要用于工作温度在1300℃的窑炉部位,如蓄热室下部的格子砖及墙砖、烟道砖及池底的粘土大砖等。
粘土砖其主要成分是Al2O3含量为30~48%、SiO2含量为50~70%。
它是偏酸性的耐火材料,随着砖中Al2O3含量的增加其酸性逐渐减弱,它对酸性具有一定的侵蚀抵抗力,对碱性侵蚀抵抗力能力较差,因此粘土砖宜用于酸性窑炉环境;其密度为2 .40至2.56g/cm3,其耐火度虽然高达1700℃,但荷重软化温度只有1300℃左右,因此在高温使用时不能承重、不能受压。
粘土砖的抗热震性较好,波动范围较大,一般大于10次(1100℃/水冷),这与粘土砖的线膨胀系数值不太大又无多晶转变现象及具有明显颗粒结构有关。
3、高铝砖与硅线石砖高铝砖是Al2O3含量大于48%的硅酸铝质耐火材料统称高铝质耐火材料,浮法玻璃熔窑使用量较少;如果在高铝质砖的配料中加入一定比例的硅线石及其他微量元素将变成硅线石砖,高铝砖主要用于蓄热室的中部砌墙,硅线石砖主要用于蓄热室的炉条碹等。
浮法玻璃熔窑中玻璃液流动模拟及工艺优化
浮法玻璃熔窑中玻璃液流动模拟及工艺优化随着现代工业的快速发展,浮法玻璃成为了广泛应用于建筑、汽车和电子等领域的重要材料。
而浮法玻璃的质量和性能很大程度上取决于熔窑生产过程中玻璃液的流动情况。
因此,对于浮法玻璃熔窑中玻璃液流动进行模拟和优化,对于提高产品质量和生产效率具有重要意义。
一、浮法玻璃熔窑中玻璃液流动模拟1. 熔窑结构与玻璃液流动特性浮法玻璃熔窑通常由玻璃池、料斗、罩头、分区部分等组成。
玻璃液在池中融化,并从料斗中流出,进入罩头。
在罩头的作用下,玻璃液慢慢变平,形成连续平整的玻璃带。
在这个过程中,玻璃液的流动受到多个因素的影响,例如重力、表面张力、罩头结构等。
2. 流动模拟方法为了更好地理解浮法玻璃熔窑中玻璃液的流动特性,可以使用数值模拟方法。
数值模拟方法可以将复杂的流动过程简化为数学方程组,并通过计算机模拟求解得到详细的流动信息。
目前,常用的数值模拟方法包括有限元方法和有限体积方法等。
通过这些方法,可以计算得到玻璃液的速度场、温度场等信息。
二、浮法玻璃熔窑工艺优化1. 生产质量优化浮法玻璃的生产质量直接关系到产品的市场竞争力。
通过模拟玻璃液流动过程,可以找到工艺中存在的问题,并进一步优化工艺参数以提高产品质量。
例如,通过调整罩头结构、控制熔窑温度分布等,可以减少玻璃中的气泡和其他缺陷,提高产品的透明度和均匀性。
2. 能耗降低优化浮法玻璃熔窑通常需要消耗大量的能源。
优化工艺参数可以帮助降低能源消耗,提高能源利用效率。
例如,通过优化玻璃液的流动速度和温度分布,可以减少能源的损耗。
此外,还可以采用其他节能措施,例如使用高效燃烧器、优化加热方式等。
3. 生产效率提高优化浮法玻璃的生产效率对于企业的经济效益至关重要。
模拟玻璃液流动过程可以帮助优化生产工艺,提高生产效率。
例如,通过优化料斗结构,可以使玻璃液在流动过程中更加顺畅,减少停机时间。
此外,还可以采用自动控制系统,实现生产过程的智能化管理,提高生产效率。
浮法玻璃熔窑中玻璃池的形态演变与表面特性分析
浮法玻璃熔窑中玻璃池的形态演变与表面特性分析浮法玻璃熔窑是目前工业生产中最常用的玻璃制造方法之一。
通过对浮法玻璃熔窑中玻璃池的形态演变与表面特性的分析,可以了解该制造过程中的原理与关键技术,进而提高制造效率与玻璃质量。
本文将从浮法玻璃熔窑的工作原理、玻璃池形态演变与表面特性等方面展开讨论。
浮法玻璃熔窑是一种通过将玻璃料在高温下熔化后在一个质量比玻璃轻的液体金属(常用钠铝合金)上浮起,然后形成一个连续的玻璃条,经过冷却与固化后切割成所需尺寸的平板玻璃的制造方法。
这种方法不仅能够实现自动化生产,还能够控制玻璃厚度和表面光洁度,因此在建筑、汽车等领域得到广泛应用。
浮法玻璃熔窑中的玻璃池形态演变是一个复杂而关键的过程。
在玻璃料熔化后,通过过渡区域,玻璃料进入玻璃池并在上面浸入金属浴中。
在浸入过程中,玻璃料会逐渐融化并展开它的形态演变过程。
一般来说,玻璃池的形态演变可以分为三个阶段:熔融形态阶段、过渡形态阶段和浸润形态阶段。
在熔融形态阶段,玻璃料熔化后均匀分布在熔融区域上,并逐渐形成一个平坦的玻璃池表面。
在这个阶段,温度、压力和表面张力的变化对玻璃池的形态演变有很大影响。
在过渡形态阶段,玻璃料开始缓慢地向金属浴中浸润,形成一个光滑且较稳定的玻璃池表面。
在这个阶段,玻璃池表面的温度和化学属性逐渐接近金属浴,玻璃和金属之间的相互作用开始发挥作用。
在浸润形态阶段,玻璃料完全浸润到金属浴中,并形成一个平面光滑的玻璃池表面。
在这个阶段,玻璃和金属之间的相互作用达到平衡,玻璃池表面的温度和化学属性与金属浴基本保持一致。
玻璃池表面的特性对浮法玻璃制造过程和玻璃质量有着重要影响。
首先,玻璃池表面的光洁度直接影响到最终制成的玻璃板的质量。
如果玻璃池表面不光滑,则制成的玻璃板表面也会有瑕疵,影响到玻璃的透明度和光学性能。
其次,玻璃池表面的温度和化学属性与玻璃的成分和性能有密切关系。
通过调节金属浴的温度和成分,可以控制玻璃池表面的温度和化学属性,从而实现对玻璃成分和性能的调控。
浮法玻璃熔窑新型保温结构及保温材料应用
表 2
部 位 保温层厚度 mm源自材 料本 次 前 次 本 次
前 次
熔化部碹顶 一层 10 一层 30 轻质硅泥 二层 65 二层 130 轻质硅砖 三层 70 三层 100 保温涂料
硅质密封料 轻质硅砖 硅质密封料
熔化部胸墙 一层 115 一层 115 轻质硅砖 二层 30 二层 0 保温涂料
轻质硅砖
熔化部大碹及蓄热室保温结构为第一层 用优质硅泥加水调配成稀浆仔细地灌入砖
缝, 然后用较浓的泥浆铺面, 其厚度为 10~ 20 mm。第二层用单层轻质硅砖干砌, 最外层 采用新型保温涂料铺面, 其厚度一般在 70~ 120 mm。
蓄热室外墙, 在烤窑结束后, 直接用新型 保温涂料抹面, 其厚度为 30~ 50 mm。 2 保温材料的选择
浮法玻璃熔窑的保温结构, 除了其主体 结构、材料性能等因素外, 很大程度上取决于 保温材料的性能。 保温材料的选择应遵循下 列原则: ①具有良好的保温性能, 即导热系数 要小。 ②具有满足使用表面保温以后温度的 性能, 即具有一定的耐火度。③具有高温稳定 性, 即在使用温度条件下不粉化, 不脱落, 导 热系数不变化。④具有较好的化学稳定性, 即 在使用过程中不得侵蚀或腐蚀本体结构, 并 粘结牢固。⑤具有一定的强度和较轻的质量。 ⑥经济上合理。
一层 10 一层 30 优质硅泥 硅质密封料
浮法玻璃熔窑
3.2浮法玻璃熔窑浮法玻璃熔窑属于横火焰蓄热式池窑,如图3-3所示。
浮法玻璃熔窑根据各部功能其构 造分为玻璃熔制、热源供给、余热回收、排烟供气四 大部分。
图3-4横焰窑熔化部剖面图 1 —窗顶(大碹);2一植脚(殖碴); 3—上间隙砖;4—胸墙;5—挂钩砖; 6—下间隙砖;7—池壁;8—池底; 9一拉条;10—立柱;11一碹脚(碴) 角钢;12—上巴掌铁;13—联杆; 14一胸墙托板;15—下巴掌铁;16—池 壁顶铁;17-—池壁顶丝;18—柱脚角 钢;19一柱脚螺检;20—扁钢;21 —次 梁;22—主梁;23—窑柱①火焰空间如图3-3所示;火焰空间是由胸墙、大 碹、前端墙(也称为前脸墙)和后山墙组成的空间体系。
火焰空间内充有来自热源供给部分的炽热的火焰气体,在此,火焰气体将自身热量用于熔化配合料,也传给玻璃液、窑墙(包括胸墙和侧墙)和窑顶(也称为大碹)。
火焰空间应能满足燃料完全燃烧,保证供给玻璃熔化和澄清所需的热量,并应尽量减少散热。
为便于热修,胸墙和大碹均单独支撑,如图3-4所示。
胸墙由托铁板(用铸铁或角钢)支撑,用下巴掌铁托住托铁板。
在胸墙底部设挂钩砖,挡住窑内火焰,不使其穿出烧坏托铁板和巴掌铁。
挂钩砖被胸墙压住,更换困难,因此,要用活动护头砖保护之。
近年来采用了新型上部结构(见图3-5),该结构取消 了上、下间隙砖,胸墙和大碹采用咬合砌筑,挂钩砖与池 壁上平面的缝隙较小,并用密封料密封。
这种结构强化了 窑体的整体性、安全性和密闭性,也有利于节能。
大碹有平碹和拱碹两种。
平碹(也称为吊碹或吊平碹)向外散热面积最小,但需要大量铁件将其吊起。
拱碹按照股跨比(亦称碹升髙),即碹股//碹跨^的比值,分 为半圆碹(/=1/匕)、标准碹(/=l/3〗〜l/7s)、倾斜碹 (/=l/8s22iiijjri^j9rvm^ srm 2z 22n 图3-3浮法玻璃熔窑结构示意图 O 3. 2.1浮法玻璃熔窑各部结构及尺寸 3.2.1.1 玻璃熔制部分 浮法玻璃熔窑窑体沿长度方向分成熔化部(包括 熔化带和澄清带)、冷却部。
玻璃熔窑结构和保温材料应用
玻璃熔窑结构和保温材料应用一、引言玻璃熔窑是玻璃工业中的重要设备,其结构和保温材料应用对于保证玻璃熔化过程的稳定性和高效性至关重要。
本文将从玻璃熔窑结构和保温材料两个方面进行探讨。
二、玻璃熔窑结构2.1 熔窑炉膛熔窑炉膛是玻璃熔窑的核心部分,通常采用圆顶和石棉棉制作的膛体。
圆顶有利于热量的均匀分布和流动,而石棉棉则具有良好的保温性能,能够有效地减少热量的损失。
此外,熔窑炉膛还需要经常清理,以去除熔融玻璃中的杂质和气泡,保证玻璃的质量。
2.2 玻璃液槽玻璃液槽是熔窑中用于容纳熔融玻璃的部分,通常采用耐火砖砌筑。
耐火砖具有良好的高温抗火性能,能够承受高温下的化学侵蚀和热应力。
玻璃液槽的结构特点对玻璃的质量和熔融过程起到重要影响。
2.3 玻璃出口玻璃熔窑的出口通常采用特殊材料和特殊设计,以保证玻璃的顺利排出。
出口的位置、形状和材质都对玻璃的顺利排出和熔窑的能效有很大影响。
所以,玻璃熔窑的出口需要经过精心设计和合理选材。
三、保温材料应用3.1 石棉棉石棉棉是一种常用的玻璃熔窑保温材料,具有优异的导热性能和抗高温性能。
石棉棉可以包裹在熔窑炉膛的外部,减少热量辐射和传导,保持熔窑内部的高温环境。
同时,石棉棉还可以有效防止热量的流失,提高玻璃熔窑的能效。
3.2 隔热砖隔热砖是一种常用的玻璃熔窑保温材料,具有良好的隔热性能和耐火性能。
隔热砖通常砌筑在玻璃熔窑的内部和外部,形成保温层,减少热量的传导和损失。
隔热砖还可以减少熔窑结构的应力和热膨胀,延长玻璃熔窑的使用寿命。
3.3 高温涂料高温涂料是一种能够承受高温的保温材料,常用于玻璃熔窑的外部保温。
高温涂料可以形成一个有效的隔热层,减少熔窑表面的热量损失。
同时,高温涂料还能够防止熔窑表面的侵蚀和氧化,保持熔窑的使用寿命。
3.4 硅酸盐纤维硅酸盐纤维是一种高温保温材料,具有优良的导热性能和耐高温性能。
硅酸盐纤维可以制成纤维毡或纤维板,用于玻璃熔窑的保温。
硅酸盐纤维具有轻质、柔软和耐腐蚀的特点,易于安装和维护,能够提高玻璃熔窑的能效和稳定性。
浮法玻璃熔窑的结构
浮法玻璃熔窑的结构浮法玻璃熔窑是制造平板玻璃的关键设备,它的结构设计直接影响到玻璃品质和生产效率。
下面将介绍浮法玻璃熔窑的结构以及各个部件的作用。
一、熔窑的整体结构浮法玻璃熔窑通常由炉体、燃烧室、熔化区、均化区、冷却区和出料装置等部分组成。
1. 炉体:炉体是熔窑的主要部分,通常由耐火砖或耐火材料砌成。
其主要作用是容纳玻璃原料,提供熔融的环境。
2. 燃烧室:燃烧室位于炉体下部,用于燃烧燃料,提供熔化玻璃所需的高温。
3. 熔化区:熔化区是熔窑中的关键区域,也是玻璃原料被加热并熔化的地方。
在熔化区,玻璃原料经过高温燃烧后逐渐熔化成液态玻璃。
4. 均化区:均化区位于熔化区的上方,用于使熔融的玻璃均匀分布在熔窑的整个宽度上。
在均化区,玻璃被均匀加热,使其温度和厚度得到控制,以确保玻璃板的平整度和质量。
5. 冷却区:冷却区位于均化区的上方,通过控制冷却速度来调整玻璃板的性能和厚度。
在冷却区,玻璃板逐渐降温,使其从液态逐渐变为固态。
6. 出料装置:出料装置用于将冷却后的玻璃板从熔窑中取出,并送往后续的加工环节。
通常采用传送带或辊道等方式进行玻璃板的输送。
二、各个部件的作用1. 炉体:炉体是浮法玻璃熔窑的主体,它提供了一个封闭的空间,使玻璃原料能够在高温下熔化。
2. 燃烧室:燃烧室中的燃料燃烧产生高温,通过炉体向上传导,使玻璃原料逐渐熔化。
3. 熔化区:在熔化区,玻璃原料被加热至高温,逐渐熔化成液态玻璃。
熔化区的温度和熔化时间对玻璃的质量有着重要影响。
4. 均化区:均化区通过控制温度和厚度来使熔融的玻璃均匀分布在整个熔窑的宽度上。
这样可以保证玻璃板的平整度和质量。
5. 冷却区:冷却区通过控制冷却速度来调整玻璃板的性能和厚度。
适当的冷却可以使玻璃板达到所需的硬度和耐热性。
6. 出料装置:出料装置用于将冷却后的玻璃板从熔窑中取出,并送往后续的加工环节。
出料装置的设计应考虑到玻璃板的平稳输送和保证生产效率。
总结:浮法玻璃熔窑的结构包括炉体、燃烧室、熔化区、均化区、冷却区和出料装置等部分。
最全面的浮法玻璃熔窑结构、功能以及施工要点揭秘
最全面的浮法玻璃熔窑结构、功能以及施工要点揭秘浮法玻璃熔窑和其他平板玻璃熔窑相比,结构上没有太大的区别,属浅池横焰池窑,但从规模上说,浮法玻璃熔窑的规模要大得多,目前世界上浮法玻璃熔窑日熔化量最高可达到1100t以上(通常用1000t/d表示)。
浮法玻璃熔窑和其他平板玻璃熔窑虽有不同,但它们的结构有共同之处。
浮法玻璃熔窑的结构主要包括:投料系统、熔制系统、热源供给系统、废气余热利用系统、排烟供气系统等。
图1-1为浮法玻璃熔窑平面图,图1-2为其立面图。
一、投料池投料池位于熔窑的起端,是一个突出于窑池外面的和窑池相通的矩形小池。
投料口包括投料池和上部挡墙(前脸墙)两部分,配合料从投料口投入窑内。
1.投料池的尺寸1-投料口;2-熔化部;3-小炉;4-冷却部;5-流料口;6-蓄热室1-小炉口;2-蓄热室;3-格子体;4-底烟道;5-联通烟道;6-支烟道;7-燃油喷嘴投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的热点位置、泡界限的稳定,最终会影响到产品的质量和产量。
由于浮法玻璃熔窑的熔化量较大,采用横焰池窑,其投料池设置在熔化池的前端。
投料池的尺寸随着熔化池的尺寸、配合料状态、投料方式以及投料机的数量。
配合料状态有粉状、颗粒状和浆状(目前一般使用粉状);投料方式由选用的投料机而确定,有螺旋式、垄式、辊筒式、往复式、裹入式、电磁振动式和斜毯式等。
(目前多采用垄式投料机和斜毯式投料机)。
(1)采用垄式投料机的投料池尺寸采用垄式投料机的投料池宽度取决于选用投料机的台数,投料池的长度可根据工艺布置情况和前脸墙的结构要求来确定。
(2)采用斜毯式投料机的投料池尺寸斜毯式投料机目前在市场上已达到了普遍使用,它的投料方式与垄式投料机相似,只是投料面比垄式投料机要宽得多,因此其投料池的尺寸在设计上与采用垄式投料机的投料池尺寸没有太大的区别,仍然决定于熔化池的宽度和投料面的要求。
随着玻璃熔化技术的成熟和熔化工艺的更新,浮法玻璃熔窑投料池的宽度越来越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浮法玻璃熔窑的结构浮法玻璃熔窑的结构浮法玻璃熔窑和其他平板玻璃熔窑相比,结构上没有太大的区别,属浅池横焰池窑,但从规模上说,浮法玻璃熔窑的规模要大得多,目前世界上浮法玻璃熔窑日熔化量最高可达到1100t以上(通常用1000t/d表示)。
浮法玻璃熔窑和其他平板玻璃熔窑虽有不同,但它们的结构有共同之处。
浮法玻璃熔窑的结构主要包括:投料系统、熔制系统、热源供给系统、废气余热利用系统、排烟供气系统等。
图1-1为浮法玻璃熔窑平面图,图1-2为其立面图。
一投料池投料池位于熔窑的起端,是一个突出于窑池外面的和窑池相通的矩形小池。
投料口包括投料池和上部挡墙(前脸墙)两部分,配合料从投料口投入窑内。
1.投料池的尺寸图1-1 浮法玻璃熔窑平面图1-投料口;2-熔化部;3-小炉;4-冷却部;5-流料口;6-蓄热室图1-2 浮法玻璃熔窑立面图1-小炉口;2-蓄热室;3-格子体;4-底烟道;5-联通烟道;6-支烟道;7-燃油喷嘴投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的热点位置、泡界限的稳定,最终会影响到产品的质量和产量。
由于浮法玻璃熔窑的熔化量较大,采用横焰池窑,其投料池设置在熔化池的前端。
投料池的尺寸随着熔化池的尺寸、配合料状态、投料方式以及投料机的数量。
配合料状态有粉状、颗粒状和浆状(目前一般使用粉状);投料方式由选用的投料机而确定,有螺旋式、垄式、辊筒式、往复式、裹入式、电磁振动式和斜毯式等。
(目前多采用垄式投料机和斜毯式投料机)。
(1)采用垄式投料机的投料池尺寸采用垄式投料机的投料池宽度取决于选用投料机的台数,投料池的长度可根据工艺布置情况和前脸墙的结构要求来确定。
(2)采用斜毯式投料机的投料池尺寸斜毯式投料机目前在市场上已达到了普遍使用,它的投料方式与垄式投料机相似,只是投料面比垄式投料机要宽得多,因此其投料池的尺寸在设计上与采用垄式投料机的投料池尺寸没有太大的区别,仍然决定于熔化池的宽度和投料面的要求。
随着玻璃熔化技术的成熟和熔化工艺的更新,浮法玻璃熔窑投料池的宽度越来越大。
因为配合料吸收的热量与其覆盖面积是成正比的,投料池越宽,配合料的覆盖面积越大,越有利于提高热效率和节能,有利于提高熔化率。
因此,目前在大型浮法玻璃熔窑的设计中,均采用投料池与熔化池等宽和准等宽的模式。
随着投料池宽度的不断增大,大型斜毯式投料机也应运而生,熔化池和投料池宽度均在11m的熔窑,采用两台斜毯式投料机即可满足生产和技术要求。
二熔化部浮法玻璃熔窑的熔化部是进行配合料熔化和玻璃液澄清、均化的部位。
熔化部前后由熔化区和澄清区组成;上下又分为上部火焰空间和下部窑池。
其中上部空间又称为火焰空间,由前脸墙、玻璃液表面、窑顶的大碹与窑壁的胸墙所围成的充满火焰的空间;下部池窑由池底和池壁组成。
也就是说熔化区的功能是配合料在高温下经物理、化学反应形成玻璃液,而澄清区的功能是使形成的玻璃液中的气泡迅速完全排出,达到生产所需的玻璃液质量。
熔化部的下部池窑由池底和池壁组成,如图1—3所示。
1、火焰空间火焰空间内充满了来自热源供给的灼热火焰气体,火焰气体将自身热量用于熔化配合料,同时也辐射给玻璃液、窑墙和窑顶。
火焰空间应能够满足燃料完全燃烧,保证供给玻璃熔化、澄清和均化所需的热量,并应尽量减少散热。
2、池窑池窑是配合料熔化成玻璃液并进行澄清和均化的部位,它应该能供给足够量的熔化完全的透明玻璃液。
为使窑池达到一定的使用年限,池壁厚度一般在250~300㎜.池底厚度根据其保温情况而异,不采用保温带池底厚度一般为300㎜。
(1)前脸墙结构前脸墙是熔化部火焰空间的前部端墙,横跨在投料池的上部,以阻挡熔窑前端投料口处的的热气体(含火焰)的逸出和热辐射。
由于前脸墙受到火焰的烧损和料粉侵蚀容易损坏,并且在热风烤窑时容易变形,为此,目前国内大多数浮法玻璃生产企业采用的是L型吊墙,L型吊墙结构见图1—4。
L型吊墙与以往的多幅碹相比,具有延长前脸墙使用寿命、增强节能效果、改善现场环境、保护投料机、提高熔化速度、减少粉尘飞扬、提高格子体的寿命等特点。
在前脸墙的设计过程中,应注意合理选择与熔化部1#小炉中心线的距离。
距离过小会加速前脸墙的烧损,减少配合料的预热效果,增加1#、2#小炉烧损及堵塞等;距离过大又会造成投料池温度过低,料堆熔化、前进困难等缺陷,目前国内浮法玻璃生产线根据燃料和吨位的不同,前脸墙与熔化部1#小炉中心线的距离范围一般在3.2~4.3m。
①拱碹结构前脸墙这种前脸墙是由两层或三层碹和砌在碹上耐火砖构成,前脸墙下弓形形口还需加挡火墙阻挡火焰喷出,以节约燃料,保护投料机。
挡火墙的承重靠一横跨投料池的大水包提供,大水包上挂刀把形耐火砖,以阻止火焰直接与水包接触,刀把形砖上码砌条形砖,其结构如图1-5所示。
采用这种结构形式的前脸墙,由于安全因素,受到其股跨比的限制,其跨度不宜太大,一般不超过7m,即便这样,由于前脸碹和挡火墙受到火焰烧损和碱性气氛的侵蚀,很容易损坏,挡火墙和水包损坏后,可以热修更换,前脸碹一旦烧损严重,只能放水冷修。
因此,这种前脸墙结构在浮法玻璃熔窑上正在被淘汰,浮法玻璃熔窑以外的平板玻璃熔窑仍在使用。
普通拱碹结构前脸墙受到跨度和安全因素的限制,而欲进一步提高熔化面积,必须加宽投料池、扩大投料面,为解决此矛盾,产生了L形吊墙。
②L形吊墙结构大型浮法玻璃熔窑较为广泛采用的是L形前脸吊墙。
该吊墙是单独悬吊的,通过机械千斤顶可以调节吊墙距玻璃液面对高度。
L形吊墙由耐热钢件和耐火材料构图1—3 熔化部剖面结构图1—4 L型吊墙结构1-窑顶(大碹);2-碹脚(碹碴);3-上间隙砖; 1-垂直墙区;2-下鼻区;3-吊杆;4-钢壳;5-水冷门4-胸墙;5-挂钩砖;6-下间隙砖;7-池壁;8-池底;9-拉条;10-立柱;11-碹碴角钢;12-上巴掌铁;13-联杆;14-胸墙托板;15-下巴掌铁;16-池壁顶铁;17-池壁顶丝;18-柱脚角钢;19-柱脚螺栓;20-扁钢;21-次梁;22-主梁;23-窑柱图1-5 普通拱碹结构前脸墙1-大碹; 2-前脸墙;3-刀把砖; 4-水包; 5-投料口池壁成,其结构安全性不会受其宽度的影响,L形吊墙的宽度可与熔化池等宽,这样可满足投料池的等宽或准等宽设计需要。
采用L形吊墙的同时加长加料池,不但减少了粉尘,还加强了对配合料的预熔作用。
L形吊墙分为直段部分和L形部分,直段耐火材料用优质硅砖,鼻部用烧结莫来石和烧结锆玉材料,吊墙外墙壁采用陶瓷纤维毡进行保温,鼻部前端设有水包,起到冷却后密封的作用。
其结构形式如图1-4所示。
(2)胸墙结构浮法玻璃熔窑由于各个部位受侵蚀情况及热修时间各不相同,为了分开热修损坏最严重的部分,将胸墙、大碹、窑池分成三个单独支撑部分,最后将负荷传到窑底钢结构上,胸墙的承重是由胸墙托板(用铸铁或角钢)及下巴掌铁传到立柱上,最后传到窑底钢结构上。
胸墙的设计需保证在高温下有足够的强度,其中挂钩砖是关键部位,在胸墙的底部设有挂钩砖,挡住窑内火焰,不使其穿出烧坏胸墙托板和巴掌铁。
一般熔化区胸墙采用AZS33电熔砖,上间隙砖采用低蠕变耐崩裂的烧结锆英石砖,澄清区胸墙一般采用优质硅砖。
胸墙的高度取决于燃料的种类和质量、熔化率、熔化耗热量、熔窑规模、散热量、气层厚度等因素。
从理论上讲,只要保证胸墙用耐火材料的抗侵蚀能力,胸墙就不会成为影响到熔窑寿命的关键部位,然而在实际使用中,很多熔窑因熔化区胸墙内倾导致熔窑寿命缩短,有的熔窑在后期由于放料不及时,出现了胸墙倒塌事故。
究其原因,主要是由于大碹砌筑结束后紧固拉条时导致胸墙托板倾斜(外高内低)使胸墙内倾。
另一原因是由于池壁绑砖后,胸墙托板暴露在火焰空间中,使托板变形,导致胸墙内倾,为了减少或避免这一现象的出现,对熔窑胸墙进行了改进的的设计,这种结构的特点是取消了间隙砖,大碹碹脚直接靠紧胸墙,胸墙托板降低,上层胸墙有意内倾,大碹边碹砖采用三层锆英石砖,熔化区挂钩砖取消了挂钩设计,这样可避免因电熔AZS质挂钩砖质量原因,导致挂钩砖断裂而引起胸墙内倾。
另外,有些大型熔窑将50mm厚普通碳钢托板改为60mm厚中硅球墨铸铁托板,也收到良好效果。
(3)大碹结构大碹的作用是与胸墙、前脸墙组成火焰空间,同时,还可以作为火焰向物料和玻璃液辐射传热的媒介,即吸收燃料燃烧时释放的热量,再辐射到玻璃液表面上。
大碹的重量是由钢碹碴通过上巴掌铁并由立柱传到窑底钢结构上。
大碹的高低和特性可通过股跨比来反映。
从热工角度考虑,大碹低一些是有益的,能尽可能地将热量辐射给玻璃液。
降低大碹高度可通过降低胸墙高度和减少大碹碹股来实现,但是,胸墙高度是受到小炉喷出口和大碹的结构强度等因素的制约;股高越小,推力越大,同时散热亦小。
减少碹股会增加大碹的水平推力,碹的不稳定性加大。
一般大型浮法玻璃熔窑的大碹股跨比为1:8左右。
根据熔化部的长度,大碹可以分为若干节,一般至少在三节以上。
砌筑时每节碹之间预留的膨胀缝约为100~120㎜,前、后山墙处的碹顶膨胀缝要留宽些。
大碹一般用优质硅砖砌筑,砖的形状为契形,横缝采用错缝砌筑,灰缝(又称泥缝)的大小根据所采用砌筑灰浆(又称泥浆)的具体要求来确定,一般为1~2㎜。
浮法玻璃熔窑大碹碹碴大多采用钢碹碴,并要求吹风冷却。
两边钢碹碴的斜面延长线需通过大碹碹弧的圆心,其形成的夹角为大碹的中心角。
大碹的寿命决定了整个熔窑的窑龄,大碹在使用中的薄弱环节为测温孔、测压孔等孔洞、大碹砖的横缝(又称顶头缝)、每节碹的碹头以及大碹的边碹部分。
窑炉在正常作业时,窑内为正压,碹顶的各种孔洞很容易因穿火被越烧越大,边碹如果与钢碹碴接触不够紧密,很容易被火焰冲刷、烧损,因此,这些地方应采用性能较好的耐火材料,目前使用较多的是烧结锆英石砖。
(4)池壁、池底的结构窑池由池壁和池底两部分组成,池壁和池底均用大砖砌筑。
窑池建筑在由窑下炉柱支撑的钢结构梁上,整个窑池的质量及其盛装的玻璃液的质量均有窑下炉柱支撑的钢结构承担,浮法玻璃熔窑的炉柱一般为混凝土质或钢质立柱。
炉柱上面架设沿窑长方向的工字钢或H型钢主梁,大型浮法玻璃熔窑主梁一般为4根,在主梁上沿主梁垂直方向安装工字钢次梁。
以前没有窑底保温时,直接在次梁上铺扁钢,在扁钢上铺粘土大砖,此时次梁应避开粘土大砖的砖缝,每块砖的下面要对应2根扁钢和2根次梁。
目前保温技术已经普遍采用,窑底结构也随之发生变化,即在次梁上沿垂直次梁方向铺设槽钢,槽钢内卡砌垛砖,垛砖上铺设池底粘土大砖,铺大砖之前,在槽钢上焊活动钢板支撑架,并在垛砖之间,支撑架之上砌保温层。
池深变浅和窑底保温后,底层玻璃液温度升高,,流动性增大,为减少玻璃液对池底砖的腐蚀,在粘土大砖之上铺保护层,即捣打一层厚25㎜的锆英石捣打料或锆刚玉质捣打料,再在其上铺一层厚度为75㎜的电熔锆钢玉或烧结锆钢玉砖。