高三数学第二轮专题讲座复习:对集合的理解及集合思想应用的问题

合集下载

【高考数学二轮复习-经典微专题】第01讲集合思想的综合应-原卷版

【高考数学二轮复习-经典微专题】第01讲集合思想的综合应-原卷版

第01讲 集合思想的综合应用知识与方法在高中数学中,集合思想贯穿于数学教学的各部分,集合思想通常从如下3个方面来呈现: 1.类分思想(并集思想)对于比较复杂的问题,可将问题所涉及的对象的全体(通常用集合P 表示)划分为若干两两不相交的部分,通常用()12i P i n =,,,表示,且()i j P P i j ⋂∅≠=,12n P P P P ⋃⋃⋃=,然后分别求解或论证,从而解决原问题.这就是所谓的类分思想(或逻辑划分思想),又称为并集(无公共元素)思想,数学解题中常用的分类讨论、穷举法等都是属于这种思想的具体体现.类分思想(并集思想)处理问题的关键是对事物按恰当的标准不重不漏地划分为若干类别,逐个进行研究,当分类解决完这个问题后,还必须把它们整合到一起,从而使问题完整获解. 2.求同思想(交集思想)求同思想是指从问题所涉及的双方或多方事物之间探求共同点(共性),使问题在某个确定范围内得以解决的一种数学思想,从集合的表示来看,设{A x x =∣具有性质}1P ,{B x x =∣具有性质}2P ,则{A B x x ⋂=∣具有性质1P 和}2P ,探求同时具有性质1P 和2P 的对象,即求集合A B ⋂,所以求同思想也称交集思想. 3.互补思想(补集思想)已知集合A 是某个与之相关的全集U 的子集,若直接求A 比较困难或麻烦,可考虑先求A 的补集U C A ,再求()UvA A =,这种在顺向思维受阻后改用逆向思维的思想,我们称之为正难则反就是数学中的互补界相或补集思想.典型例题【例1】已知集合()(){}(){22321023120}A x x m x m m B x x n x n -∈∈R R =∣+++=,,=∣+++=,.(1)若A B A ⋂=,求m n ,的值. (2)若A B A ⋃=,求m n ,的值.【例2】设(){}(){}221042250A x y y x B x y x x y ---=,∣=,=,∣++=,(){}C x y y kx b =,∣=+,问是否存在k b ∈N ,,使得()?A B C ⋃⋂∅=若存在,求出k b 、的值.若不存在,请说明理由.. 【例3】已知集合{}{}242600A x x mx m B x x -=∣++=,=∣<.若A B ⋂≠∅,求实数m 的取值范围.【例4】(1)若集合()()3cos 03sin x M x y y θθπθ⎧⎧⎫⎨⎨⎬⎩⎭⎩=,=,∣<<=,集合(){}N x y y x b =,∣=+,,且M N ⋂∅=,则b 的取值范围为________. (2) 设集合()222(2)2m A x y x y m x y ⎧⎫-∈⎨⎬⎩⎭R =,∣+,,, (){}221B x y m x y m x y ∈R =,∣++,,,若A B ⋂≠∅,则实数m 的取值范围是________.(3)已知(){}(){}222()1M x y y x N x y x y a -=,∣,=,∣+,求M N N ⋂=成立时a 需满足的充要条件.强化训练1.(1)已知集合{{}131A B m A B A ⋃=,=,,=,则m =( ). A .0B .0或3C .1D .1或3(2)设常数a ∈R ,集合()(){}{}101A x x x a A x x a ---=∣,=∣,若A B ⋃R =,则a 的取值范围为( ). A .()2∞-,B .(]2∞-,C .()2∞,+D .[)2∞,+2.设集合{}*12n P n n ∈N =,,,,,记()f n 为同时满足下列条件的集合A 的个数: (1)n A P ⊆;(2)若x A ∈,则2x A ∉;(3)若nP x A ∈,则2n P x C A ∉.(1)求()4f 的值.(2)求()f n 的解析式(用n 表示).3.已知集合(){26230A k k x kx k -=∣++=有两个正数根},集合{}1B x x a -=∣(1)若A B ⋂∅=,求实数a 的取值范围. (2)若B A ,求实数a 的取值范围.4.已知集合()312y A x y a x -⎧⎫⎨⎬-⎩⎭=,∣=+,集合()(){21(30}B x y a x a y --=,∣+=.若A B ⋂∅=,求实数a 的值.5.设平面点集()()(){}2210(1)(1)1A x y y x y B x y x y x ⎧⎫⎛⎫----⎨⎬ ⎪⎝⎭⎩⎭=,∣,=,∣+,则A B ⋂所表示的平面图形的面积为( ).A .34π B .35πC .47π D .2π6.设m 为实数,若()(){}2225030250x y x y x x y x y mx y ⎧-⎧⎫⎪⎪⎪-⊆⎨⎨⎬⎪⎪⎪⎩⎭⎩+,∣,∣++,则m 的取值范围是________. 7.已知集合()(){}2222151100322A y y a a y a a B y y x x x ⎧⎫--⎨⎬⎩⎭=∣++++>,=∣=+,.若A B ⋂∅=,求实数a 的取值范围.8.若关于x 的不等式()23280m x mx --->的解集是一个开区间,且区间的长度L 满足[]12L ∈,,求实数m 的取值范围(注:开区间()a b ,的长度L b a -=).。

2024年高三数学集合复习必修五知识点总结

2024年高三数学集合复习必修五知识点总结

2024年高三数学集合复习必修五知识点总结一、数集的概念和表示方法1. 数学集合的概念:集合是由一些确定的对象组成的整体。

这些对象可以是任何东西,例如数字、字母、图形等等。

2. 集合的表示方法:集合可以用罗列法、描述法和解析法来表示。

- 罗列法:将集合中的元素一一列举出来。

例如:A = {1, 2, 3, 4, 5}。

- 描述法:用一句话来描述集合的特征。

例如:A = {x | x是自然数,1 ≤ x ≤ 5}。

- 解析法:用代数式表示集合的元素。

例如:A = {x ∈ N | 1 ≤ x ≤ 5}。

3. 集合的运算:集合间可以进行交集、并集、补集和差集等运算。

- 交集:集合 A 和集合 B 的交集,记作 A ∩ B,是既属于集合 A 又属于集合 B 的元素的集合。

- 并集:集合 A 和集合 B 的并集,记作 A ∪ B,是属于集合 A 或者属于集合 B 的元素的集合。

- 补集:对于给定的集合 A,A 的补集,记作 A' 或者A^c,是指一切不属于集合 A 的元素的集合。

- 差集:集合 A 与集合 B 的差集,记作 A - B,是指属于集合 A,但是不属于集合 B 的元素的集合。

二、集合的基本性质和运算规律1. 空集和全集的性质:- 空集的定义:不含任何元素的集合称为空集,记作∅。

- 全集的定义:包含一切可能元素的集合称为全集,用 U 表示。

2. 集合的相等与子集的概念:- 集合的相等:如果两个集合有相同的元素,那么它们是相等的,记作 A = B。

- 子集的定义:对于两个集合 A 和 B,如果集合 A 中的元素全都属于集合 B,那么称集合 A 是集合 B 的子集,记作 A ⊆B。

3. 幂集和集合的运算规律:- 幂集定义:对于一个集合 A,A 的所有子集的集合称为 A 的幂集,记作 P(A)。

- 运算规律:集合的交、并、补运算满足分配律、交换律、结合律等运算规律。

三、集合的应用1. 集合在数学中的应用:- 逻辑关系:集合可以用于描述一些逻辑关系,如包含关系、并集关系、交集关系等。

高三有关集合的知识点总结

高三有关集合的知识点总结

高三有关集合的知识点总结在高三学习集合的过程中,我们需要掌握并理解一些重要的知识点。

本文将对高三有关集合的知识点进行总结,帮助同学们更好地复习和应对考试。

一、集合的概念与表示方法1. 集合的定义:集合是由一些确定的对象组成的整体。

对象称为集合的元素,元素之间没有顺序关系。

2. 集合的表示方法:描述法和列举法。

描述法通过描述元素的特征来表示集合,列举法通过列举出所有的元素来表示集合。

二、集合的基本运算1. 并集:将两个或多个集合中的所有元素放在一起,去除重复元素得到的新集合。

2. 交集:找出两个或多个集合中共有的元素构成的新集合。

3. 差集:从一个集合中去掉与另一个集合相同的元素得到的新集合。

4. 互斥集:两个集合没有共同元素,即交集为空集。

三、集合的运算性质1. 交换律:A∪B = B∪A,A∩B = B∩A2. 结合律:(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)3. 分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) =(A∩B)∪(A∩C)4. 幂等律:A∪A = A,A∩A = A5. 吸收律:A∪(A∩B) = A,A∩(A∪B) = A6. 对偶律:(A∪B)' = A'∩B',(A∩B)' = A'∪B'四、特殊集合的性质1. 空集:不包含任何元素的集合,用符号∅表示。

2. 全集:包含所有元素的集合,通常用符号U表示。

3. 子集:若集合A的所有元素都属于集合B,则称集合A为集合B的子集,记作A⊆B。

4. 并集的性质:A⊆B,则A∪B = B;A∪∅ = A。

5. 交集的性质:A⊆B,则A∩B = A;A∩∅ = ∅。

五、常用的集合表示方法1. 自然数集:N = {0, 1, 2, 3, ...}2. 整数集:Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}3. 有理数集:Q = {p/q | p, q∈Z,q≠0}4. 实数集:R5. 负整数集:Z- = {..., -3, -2, -1}6. 正整数集:Z+ = {1, 2, 3, ...}六、集合的应用1. 判断命题的真值:通过判断命题中的元素是否属于某个集合,来确定命题的真值。

最新-湖南省长沙市望城区白箬中学高三数学第二轮专题

最新-湖南省长沙市望城区白箬中学高三数学第二轮专题

湖南省长沙市望城区白箬中学高三数学第二轮专题讲座复习:对集合的理解及集合思想应用的问题 高考要求集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用 本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用 重难点归纳 1 解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题 2 注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A =∅或A ≠∅两种可能,此时应分类讨论 典型题例示范讲解例1设A ={(x ,y )|y 2-x -1=0},B ={(x ,y )|4x 2+2x -2y +5=0},C ={(x ,y )|y =kx +b },是否存在k 、b ∈N ,使得(A ∪B )∩C =∅,证明此结论 命题意图 本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题 知识依托 解决此题的闪光点是将条件(A ∪B )∩C =∅转化为A ∩C =∅且B ∩C =∅,这样难度就降低了 错解分析 此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手 技巧与方法 由集合A 与集合B 中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b 、k 的范围,又因b 、k ∈N ,进而可得值 解 ∵(A ∪B )∩C =∅,∴A ∩C =∅且B ∩C =∅∵⎩⎨⎧+=+=bkx y x y 12 ∴k 2x 2+(2bk -1)x +b 2-1=0∵A ∩C =∅ ∴Δ1=(2bk -1)2-4k 2(b 2-1)<0 ∴4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即 b 2>1 ① ∵⎩⎨⎧+==+-+bkx y y x x 052242 ∴4x 2+(2-2k )x +(5+2b )=0∵B ∩C =∅,∴Δ2=(1-k )2-4(5-2b )<0 ∴k 2-2k +8b -19<0, 从而8b <20, 即 b <2 5 ②由①②及b ∈N ,得b =2代入由Δ1<0和Δ2<0组成的不等式组,得 ⎪⎩⎪⎨⎧<--<+-032,018422k k k k ∴k =1,故存在自然数k =1,b =2,使得(A ∪B )∩C =∅例2 向50名学生调查对A 、B 两事件的态度,有如下结果 赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人 问对A 、B 都赞成的学生和都不赞成的学生各有多少人? 命题意图 在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握 本题主要强化学生的这种能力 知识依托 解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来 错解分析 本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索 技巧与方法 画出韦恩图,形象地表示出各数量关系间的联系 解 赞成A 的人数为50×53=30,赞成B 的人数为30+3=33,如上图,记50名学生组成的集合为U ,赞成事件A 的学生全体为集合A ;赞成事件B 的学生全体为集合B 设对事件A 、B 都赞成的学生人数为x ,则对A 、B 都不赞成的学生人数为3x +1,赞成A 而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x依题意(30-x )+(33-x )+x +(3x +1)=50,解得x =21 所以对A 、B 都赞成的同学有21人,都不赞成的有8人例3已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,且0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围 解 由⎩⎨⎧≤≤=+-=+-+)20(01022x y x y mx x 得x 2+(m -1)x +1=0①∵A ∩B ≠∅∴方程①在区间[0,2]上至少有一个实数解首先,由Δ=(m -1)2-4≥0,得m ≥3或m ≤-1,当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1>0知,方程①只有负根,不符合要求当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,方程①只有正根,且必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内故所求m 的取值范围是m ≤-1 学生巩固练习 1 集合M ={x |x =42π+kx ,k ∈Z },N ={x |x =42k ππ+,k ∈Z },则( ) A M =N B M N C M N D M ∩N =∅ 2 已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,若A ∪B =A ,则( ) A -3≤m ≤4 B -3<m <4 C 2<m <4 D 2<m ≤4 3 已知集合A ={x ∈R |a x 2-3x +2=0,a ∈R },若A 中元素至多有1个,则a 的取值范围是_________ 4 x 、y ∈R ,A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|by a x - =1,a >0,b >0},当A ∩B 只有一个元素时,a ,b 的关系式是_________ 5 集合A ={x |x 2-ax +a 2-19=0},B ={x |log 2(x 2-5x +8)=1},C ={x |x 2+2x -8=0},求当a 取什么实数时,A ∩ B ∅和A ∩C =∅同时成立 6 已知{a n }是等差数列,d 为公差且不为0,a 1和d 均为实数,它的前n 项和记作S n ,设集合A ={(a n ,nS n )|n ∈N *},B ={(x ,y )|41 x 2-y 2=1,x ,y ∈R } 试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明(1)若以集合A 中的元素作为点的坐标,则这些点都在同一条直线上;(2)A ∩B 至多有一个元素;(3)当a 1≠0时,一定有A ∩B ≠∅ 7 已知集合A ={z ||z -2|≤2,z ∈C },集合B ={w |w =21zi +b ,b ∈R },当A ∩B =B 时,求b 的值 8 设f (x )=x 2+px +q ,A ={x |x =f (x )},B ={x |f [f (x )]=x }(1)求证 A ⊆B ;(2)如果A ={-1,3},求B 参考答案 1 解析 对M 将k 分成两类 k =2n 或k =2n +1(n ∈Z ),M ={x |x =n π+4π,n ∈Z }∪{x |x =n π+43π,n ∈Z }, 对N 将k 分成四类,k =4n 或k =4n +1,k =4n +2,k =4n +3(n ∈Z ),N ={x |x =n π+2π,n ∈Z }∪{x |x =n π+43π,n ∈Z }∪{x |x =n π+π,n ∈Z }∪{x |x =n π+45π,n ∈Z } 答案 C 2 解析 ∵A ∪B =A ,∴B ⊆A,又B ≠∅,∴⎪⎩⎪⎨⎧-<+≤--≥+12171221m m m m 即2<m ≤4 答案3 a =0或a ≥89 4 解析 由A ∩B 只有1个交点知,圆x 2+y 2=1与直线b y a x -=1相切,则1=22ba ab +,即ab答案 ab5 解 log 2(x 2-5x +8)=1,由此得x 2-5x +8=2,∴B ={2,3} 由x 2+2x -8=0,∴C ={2,-4},又A ∩C =∅,∴2和-4都不是关于x 的方程x 2-ax +a 2-19=0的解,而A ∩B ∅,即A ∩B≠∅,∴3是关于x 的方程x 2-ax +a 2-19=0的解,∴可得a =5或a =-2当a =5时,得A ={2,3},∴A ∩C ={2},这与A ∩C =∅不符合,所以a =5(舍去);当a =-2时,可以求得A ={3,-5},符合A ∩C =∅,A ∩B ∅,∴a =-2 6 正确 在等差数列{a n }中,S n =2)(1n a a n +,则21=n S n (a 1+a n ),这表明点(a n ,n S n )的坐标适合方程y 21=(x +a 1),于是点(a n , nS n )均在直线y =21x +21a 1上 (2)正确 设(x ,y )∈A ∩B ,则(x ,y )中的坐标x ,y 应是方程组⎪⎪⎩⎪⎪⎨⎧=-+=1412121221y x a x y 的解,由方程组消去y 得 2a 1x +a 12=-4(*),当a 1=0时,方程(*)无解,此时A ∩B =∅;当a 1≠0时,方程(*)只有一个解x =12124a a --,此时,方程组也只有一解⎪⎪⎩⎪⎪⎨⎧-=--=1211214424a a y a a y ,故上述方程组至多有一解∴A ∩B 至多有一个元素(3)不正确 取a 1=1,d =1,对一切的x ∈N *,有a n =a 1+(n -1)d =n >0,nS n >0,这时集合A 中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a 1=1≠0 如果A ∩B ≠∅,那么据(2)的结论,A ∩B 中至多有一个元素(x 0,y 0),而x 0=5224121-=--a a <0,y 0=43201=+x a <0,这样的(x 0,y 0)∉A ,产生矛盾,故a 1=1,d =1时A ∩B =∅,所以a 1≠0时,一定有A ∩B ≠∅是不正确的 7 解 由w =21zi +b 得z =i b w 22-,∵z ∈A ,∴|z -2|≤2,代入得|ib w 22--2|≤2,化简得|w -(b +i )|≤1∴集合A 、B 在复平面内对应的点的集合是两个圆面,集合A 表示以点(2,0)为圆心,半径为2的圆面,集合B 表示以点(b ,1)为圆心,半径为1的圆面又A ∩B =B ,即B ⊆A ,∴两圆内含 因此22)01()2(-+-b ≤2-1,即(b -2)2≤0,∴b =2 8 (1)证明 设x 0是集合A 中的任一元素,即有x 0∈A∵A ={x |x =f (x )},∴x 0=f (x 0)即有f [f (x 0)]=f (x 0)=x 0,∴x 0∈B ,故A ⊆B(2)证明 ∵A ={-1,3}={x |x 2+px +q =x },∴方程x 2+(p -1)x +q =0有两根-1和3,应用韦达定理,得 ⎩⎨⎧-=-=⇒⎩⎨⎧=⨯---=+-313)1(),1(31q p q p ∴f (x )=x 2-x -3 于是集合B 的元素是方程f [f (x )]=x ,也即(x 2-x -3)2-(x 2-x -3)-3=x (*) 的根将方程(*)变形,得(x 2-x -3)2-x 2=0解得x =1,3,3,-故B ={-3,-1,3,3}。

高考数学复习点拨 数学思想方法在集合中的应用

高考数学复习点拨 数学思想方法在集合中的应用

-2 -5数学思想方法在集合中的应用集合中蕴含着丰富的数学思想方法,在解有关集合问题时若能充分运用这些数学思想方法,常可使许多问题获得简洁、巧妙的解决.下面将集合中常见的数学思想方法举例说明,以供参考.一、数形结合的思想方法数形结合思想,是将抽象的数学语言与直观、具体的图形结合起来,通过“数”与形的相互转化,达到化难为易,化繁为简的目的.集合中常用的手段是数轴法和韦恩图法.例1 设集合M={x ∣25x -<<},N={x ∣221,t x t t R -<<+∈},若MN=N,某某数t 的取值X 围.解:由MN=N得N⊆M,故当N=φ,212t t +≤-时,t 1,3M N N ≤=成立; 当N φ≠时,由图中数轴所示,可得22121522t t t t -<+⎧⎪+≤⎨⎪-≥-⎩,解之得123t <≤. 综上所述可知所某某数t 的取值X 围为{t ∣t ≤2}.评注:应用数轴解答有关集合问题时,应先画出数轴,然后依据题目的条件将集合准确地在数轴上表示出来,再借助数轴的直观性,从而使抽象的集合问题的解答过程简捷、巧妙、形象、直观.例2 已知集合A 、B 、C 为非空集合,M=A ∩C ,N=B ∩C, P=M ∪N ,则 ( )A.一定有C∩P=C, B.一定有C∩P=P,C.一定有C∩P=C∪P, D.一定有C∩P=φ,解:如图3,M=A∩C,N=B∩C,P=M∪N,则必有M∪N⊆C,即P⊆C , ∴ C∩P=P, 选B. 评注:对于涉及的集合个数、信息较多或对于未给元素的抽象集合,研究其关系或运算时,常可考虑用韦恩图求解.二、分类讨论思想分类讨论的思想是一种重要的思想方法,也是一种基本的解题策略.就是化整为零,各个击破的解题手段,使问题变得条理清晰、层次分明、易于解决.例3设集合A={y ∣224,y x x x R =-+∈},B={y ∣224,y ax x a x R =-+∈}, 若A B ⊆,某某数a 的取值X 围.解:由2224(1)33y x x x =-+=-+≥,得A={y ∣3y ≥}.在集合B中,224,y ax x a x R =-+∈.(1)当a =0时,y =-2x ,则B=R,满足A B ⊆;(2)当a ≠0时,211()4y a x a a a=-+-. ①若a <0,则B={y ∣14,0y a a a ≤-<},这与A B ⊆矛盾. ②若a >0,则B={y ∣14,0y a a a ≥->},为使A B ⊆,只要143a a-≤即可, 解得01a <≤. 综上所述,实数a 的取值X 围是{a ∣01a ≤≤}.评注:分类讨论是解决集合问题的常用方法.但在分类时,必须要统一标准,简明扼要,做到不重不漏.三、方程思想方程思想是中学数学最基本、最重要的数学思想.就是从分析问题的数量关系入手,把变量之间的关系用方程的关系来反映,然后通过解方程或对方程进行讨论的方法,使问题得到解决.例4 已知全集U={1,2,4,6,8},集合A={8,m,n,p},B={1,mn,mp,np},且A=B,求U C A.解:∵ A=B∴⎩⎨⎧⨯⨯⨯=+++=+++np mp mn mnp mp np mn p n m 1818 .由②得mnp =8 .又m、n、p∈U ,且m、n、p互异,故m、n、p中不能有6,只能分别为1、2、4(顺序不定),显然1、2、4也是①的解.∴A= {1,2,4,8} 即U C A={6}.评注:本题利用两个集合(有限集)的性质解集合相等的问题,其实质就是用方程的思想和方法,即从A=B 中找出两个独立的等量关系,要注意排除与集合元素互异性或题设相矛盾的情况.四、划归与转化思想① ②在处理数学问题时,通过某种变换或划归把复杂问题简单化,把陌生问题转化为熟悉问题,从而使得原问题得到解决.例5 已知U ={(x ,y )∣,x R y R ∈∈},A={(x ,y )∣1x y +=}, B={(x ,y )∣11y x =-},求()U C B A解:集合U ={(x ,y )∣,x R y R ∈∈}是平面上所有点的集合;集合A是直线1x y +=上的点的集合;集合B是直线1x y +=上的点的集合,但要除去点(1,0);而U C B 表示点(1,0)以及平面上除了直线1x y +=上的所有点以外的所有点,所以()U C B A 对应的元素为(1,0),即()U C B A ={(1,0)}.评注:数学语言通常包括文字语言、符号语言、和图形语言等,在处理集合问题时,我们经常需要将这几种语言进行转化,但在相互转化的过程中要注意转化的等价性.。

高考数学集合总复习 分类讨论思想在集合中的应用

高考数学集合总复习 分类讨论思想在集合中的应用

分类讨论思想在集合中的应用例 (12分)(1)若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,求由a 的可取值组成的集合;(2)若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,求由m 的可取值组成的集合.【答题模板】解 (1)P ={-3,2}.当a =0时,S =∅,满足S ⊆P ; [2分]当a ≠0时,方程ax +1=0的解为x =-1a, 为满足S ⊆P 可使-1a =-3或-1a=2, 即a =13或a =-12. [4分]故所求集合为{0,13,-12}. [6分] (2)当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ; [8分] 若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧ m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3. [10分]故m <2或2≤m ≤3,即所求集合为{m |m ≤3}. [12分]【突破思维障碍】在解决两个数集关系问题时,避免出错的一个有效手段即是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论,分类时要遵循“不重不漏”的分类原则,然后对于每一类情况都要给出问题的解答.【易错点剖析】(1)容易忽略a =0时,S =∅这种情况.(2)想当然认为m +1<2m -1忽略“>”或“=”两种情况.解答集合问题时应注意五点:1.注意集合中元素的性质——互异性的应用,解答时注意检验.2.注意描述法给出的集合的元素.如{y |y =2x },{x |y =2x },{(x ,y )|y =2x }表示不同的集合.3.注意∅的特殊性.在利用A ⊆B 解题时,应对A 是否为∅进行讨论.4.注意数形结合思想的应用.在进行集合运算时要尽可能借助Venn 图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn 图表示,元素连续时用数轴表示,同时注意端点的取舍.5.注意补集思想的应用.在解决A ∩B ≠∅时,可以利用补集思想,先研究A ∩B =∅的情况,然后取补集.(满分:75分)一、选择题(每小题5分,共25分)1.满足{1}A⊆{1,2,3}的集合A的个数是()A.2 B.3 C.4 D.8答案 B解析A={1}∪B,其中B为{2,3}的子集,且B非空,显然这样的集合A有3个,即A={1,2}或{1,3}或{1,2,3}.2.(2011·杭州模拟)设P、Q为两个非空集合,定义集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是()A.9 B.8 C.7 D.6答案 B解析P+Q={1,2,3,4,6,7,8,11},故P+Q中元素的个数是8.3.(2010·北京)集合P={x∈Z|0≤x<3},M={x∈Z|x2≤9},则P∩M等于()A.{1,2} B.{0,1,2} C.{1,2,3} D.{0,1,2,3}答案 B解析由题意知:P={0,1,2},M={-3,-2,-1,0,1,2,3},∴P∩M={0,1,2}.4.(2010·天津)设集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R}.若A∩B=∅,则实数a的取值范围是()A.{a|0≤a≤6} B.{a|a≤2或a≥4}C.{a|a≤0或a≥6} D.{a|2≤a≤4}答案 C解析由|x-a|<1得-1<x-a<1,即a-1<x<a+1.由图可知a+1≤1或a-1≥5,所以a≤0或a≥6.5.设全集U是实数集R,M={x|x2>4},N={x|2x-1≥1},则右图中阴影部分所表示的集合是()A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤2} D.{x|x<2}答案 C解析题图中阴影部分可表示为(∁U M)∩N,集合M为{x|x>2或x<-2},集合N为{x|1<x≤3},由集合的运算,知(∁U M)∩N={x|1<x≤2}.二、填空题(每小题4分,共12分)6.(2011·绍兴模拟)设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是________.答案 4解析由题意知B的元素至少含有3,因此集合B可能为{3}、{1,3}、{2,3}、{1,2,3}.7.(2009·天津)设全集U=A∪B={x∈N*|lg x<1},若A∩(∁U B)={m|m=2n+1,n=0,1,2,3,4},则集合B=________.答案{2,4,6,8}解析A∪B={x∈N*|lg x<1}={1,2,3,4,5,6,7,8,9},A∩(∁U B)={1,3,5,7,9},∴B={2,4,6,8}.8.(2010·江苏)设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=____.答案 1解析∵3∈B,由于a2+4≥4,∴a+2=3,即a=1.三、解答题(共38分)9.(12分)(2011·烟台模拟)集合A ={x |x 2+5x -6≤0},B ={x |x 2+3x >0},求A ∪B 和A ∩B .解 ∵A ={x |x 2+5x -6≤0}={x |-6≤x ≤1}.(3分)B ={x |x 2+3x >0}={x |x <-3或x >0}.(6分)如图所示,∴A ∪B ={x |-6≤x ≤1}∪{x |x <-3或x >0}=R .(9分)A ∩B ={x |-6≤x ≤1}∩{x |x <-3或x >0}={x |-6≤x <-3,或0<x ≤1}.(12分)11.(14分)(2011·岳阳模拟)已知集合A ={x |x -5x +1≤0},B ={x |x 2-2x -m <0}, (1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 由x -5x +1≤0, 所以-1<x ≤5,所以A ={x |-1<x ≤5}.(3分)(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},(6分)所以A ∩(∁R B )={x |3≤x ≤5}.(10分)(2)因为A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},(12分)所以有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.(14分)。

高考数学二轮复习 集合及其应用

高考数学二轮复习 集合及其应用

课 题 §1.1集合及其应用复习目标1、理解集合、子集、交集、并集、补集的概念;理解并掌握集合交、并、补的运算法则。

2、了解空集和全集的意义,了解属于、包含、相等关系的意义;能够掌握有关的术语和符号,能正确地表示一些较简单的集合。

3、能用集合语言表达数学问题,运用集合观点去研究和解决数学问题. 教学重点1、元素与集合、集合与集合间相互关系的理解和掌握;强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义,注意2、利用几何直观性研究问题,注意运用文氏图解题方法的训练,加强两种集合表示方法转换和化简训练。

教学过程高考数学二轮复习 集合及其应用【知识体系】【学法指导】1.学习集合的基础能力是准确描述集合中的元素,熟练运用集合的各种符号, 如∈、∉、⊆、 、=、S A 、∪,∩等等;2.解决集合有关问题的关键是准确理解集合所描述的具体内容(即读懂问题中的集合)以及各个集合之间的关系,常常根据“文氏图”来加深对集合的理解,一个集合能化简(或求解),定 义 特 征表示法 分 类 数 集关 系 运 算 性 质 集合一组对象的全体形成一个集合 确定性、互异性、无序性 列举法{1,2,3,…}、描述法{x |P(x)}、图示法 有限集、无限集 自然数集N 、整数集Z 、有理数集Q 、实数集R 、正整数集N *、空集φ 属于∈、不属于∉、包含于⊆、真包含于⊂、集合相等 交集 A ∩B ={x|x ∈A 且x ∈B}; 并集 A ∪B ={x|x ∈A 或x ∈B}; 补集 A C U ={x|x ∉A 且x ∈U},U 为全集A ⊆A ; φ⊆A ; 若A ⊆B ,B ⊆C ,则A ⊆C ; A ∩A =A ∪A =A ; A ∩φ=φ;A ∪φ=A ;A ∩B =A ⇔A ∪B =B ⇔A ⊆B ;A ∩C U A =φ; A ∪C U A =I ;C U ( C U A)=A ;C U (A ⋃B)=C U A ∩C U B方 法 韦恩示意图 数轴分析 注意:① 区别∈与⊂、a 与{a}、φ与{φ}、{(1,2)}与{1,2}; ② A ⊆B 时,A 有两种情况:A =φ与A ≠φ一般应考虑先化简(或求解);3.确定集合的“包含关系”与求集合的“交、并、补”是学习集合的中心内容,解决问题时应根据问题所涉及的具体的数学内容来寻求方法。

高考数学集合复习知识点

高考数学集合复习知识点

《高考数学集合复习知识点全攻略》引言:高考,是千军万马过独木桥的征程,而数学作为其中的重要科目,往往起着关键作用。

在高考数学中,集合是一个基础且重要的知识点,它贯穿于整个高中数学的学习。

掌握好集合的相关知识,不仅有助于我们在高考中取得优异成绩,更能为后续的数学学习奠定坚实的基础。

那么,让我们一同深入探索高考数学集合复习的知识点吧。

一、集合的概念1. 集合的定义集合是由一些确定的、不同的对象所组成的整体。

这些对象称为集合的元素。

例如,“所有小于 10 的正整数”就可以组成一个集合。

2. 集合的表示方法(1)列举法:将集合中的元素一一列举出来,用花括号括起来。

例如,{1,2,3,4,5}。

(2)描述法:用集合中元素的共同特征来表示集合。

例如,{x|x 是小于 10 的正整数}。

二、集合的关系1. 子集如果集合 A 中的所有元素都属于集合 B,那么称集合 A 是集合 B 的子集,记作 A⊆B。

特别地,任何集合都是它自身的子集。

2. 真子集如果集合 A 是集合 B 的子集,且存在元素属于集合 B 但不属于集合 A,那么称集合 A 是集合 B 的真子集,记作 A⊂B。

3. 相等如果集合 A 和集合 B 的元素完全相同,那么称集合 A 与集合B 相等,记作 A=B。

三、集合的运算1. 交集由既属于集合 A 又属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的交集,记作A∩B。

例如,设 A={1,2,3,4},B={3,4,5,6},则A∩B={3,4}。

2. 并集由属于集合 A 或属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的并集,记作A∪B。

例如,对于上述集合 A 和 B,A∪B={1,2,3,4,5,6}。

3. 补集设全集为 U,集合 A 是 U 的子集,由 U 中所有不属于集合 A 的元素组成的集合,称为集合 A 在全集 U 中的补集,记作∁UA。

四、集合中元素的性质1. 确定性对于一个给定的集合,它的元素是确定的。

高考数学二轮复习考点知识与解题方法讲解01 集合

高考数学二轮复习考点知识与解题方法讲解01  集合

高考数学二轮复习考点知识与解题方法讲解考点01集合1、集合的概念:(1) 集合中元素特征,确定性,互异性,无序性; (2) 集合的分类:① 按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y|y=x 2},表示非负实数集,点集{(x ,y)|y=x 2}表示开口向上,以y 轴为对称轴的抛物线; (3) 集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N +={0,1,2,3,…};②描述法。

2、两类关系:(1) 元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A ⊆B 时,称A 是B 的子集;当A ≠⊂B时,称A 是B 的真子集。

3、集合运算(1)交,并,补,定义:A ∩B={x|x ∈A 且x ∈B},A ∪B={x|x ∈A ,或x ∈B},C U A={x|x ∈U ,且x ∉A },集合U 表示全集;(2) 运算律,如A ∩(B ∪C )=(A ∩B )∪(A ∩C ),C U (A ∩B )=(C U A )∪(C U B ),C U (A ∪B )=(C U A )∩(C U B )等。

集合基本运算的方法技巧:(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn 图运算;(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验. 集合常与不等式,基本函数结合,常见逻辑用语常与立体几何,三角函数,数列,线性规划等结合.venn 图法解决集合运算问题一、单选题1.(2023·海南·嘉积中学模拟预测)已知全集U =R ,集合{}2,3,4A =,集合{}0,2,4,5B =,则图中的阴影部分表示的集合为( )A .{}2,4B .{}0C .{}5D .{}0,5【答案】D【分析】根据给定条件,利用韦恩图表达的集合运算直接计算作答.【详解】依题意,图中的阴影部分表示的集合是()U A B ð,而全集U =R ,{}2,3,4A =,{}0,2,4,5B =,所以(){0,5}U A B ⋂=ð. 故选:D2.(2023·山东潍坊·模拟预测)如图,已知全集U =R ,集合{}1,2,3,4,5A =,()(){}120B x x x =+->,则图中阴影部分表示的集合中,所包含元素的个数为( )A .1B .2C .3D .4【答案】B【分析】求出集合B ,分析可知阴影部分所表示的集合为()U A B ∩ð,利用交集的定义可求得结果.【详解】因为()(){}{1201B x x x x x =+->=<-或}2x >,则{}12U B x x =-≤≤ð, 由题意可知,阴影部分所表示的集合为(){}1,2UA B =ð.故选:B.3.(2023·浙江绍兴·模拟预测)已知全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =,则( )A .{}0B .{}2,4C .{}0,1,3,5D .{}0,1,2,4【答案】A【分析】根据集合的补集与交集的运算求解即可.【详解】解:因为全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =, 所以,所以.故选:A 二、填空题4.(2020·江苏南通·三模)已知集合A ={0,2},B ={﹣1,0},则集合A B = _______ . 【答案】{﹣1,0,2}【解析】直接根据并集运算的定义求解即可. 【详解】解:∵A ={0,2},B ={﹣1,0}, ∴A B ={﹣1,0,2}, 故答案为:{﹣1,0,2}.【点睛】本题主要考查集合的并集运算,属于基础题.分类讨论方法解决元素与集合关系问题1.(2023·北京石景山·一模)已知非空集合A ,B 满足:AB =R ,AB =∅,函数()3,,32,x x A f x x x B⎧∈=⎨-∈⎩对于下列结论:①不存在非空集合对(),A B ,使得()f x 为偶函数; ②存在唯一非空集合对(),A B ,使得()f x 为奇函数; ③存在无穷多非空集合对(),A B ,使得方程()0f x =无解. 其中正确结论的序号为_________. 【答案】①③【分析】通过求解332x x =-可以得到在集合A ,B 含有何种元素的时候会取到相同的函数值,因为存在能取到相同函数值的不同元素,所以即使当x 与x -都属于一个集合内时,另一个集合也不会产生空集的情况,之后再根据偶函数的定义判断①是否正确,根据奇函数的定义判断②是否正确,解方程()0f x =判断③是否正确 【详解】①若x A ∈,x A -∈,则3()f x x =,3()f x x -=-,()()f x f x ≠- 若x B ∈,x B -∈,则()32f x x =-,()32f x x -=--,()()f x f x ≠- 若x A ∈,x B -∈,则3()f x x =,()32f x x -=--,()()f x f x ≠- 若x B ∈,x A -∈,则()32f x x =-,3()f x x -=-,()()f x f x ≠- 综上不存在非空集合对(),A B ,使得()f x 为偶函数 ②若332x x =-,则1x =或2x =-,当{}1B =,时,(1)312f =⨯-满足当1x =时31x =,所以()f x 可统一为3()f x x =,此时3()()f x x f x -=-=-为奇函数当{}2B =-,A B =R ð时,(2)3(2)28f -=⨯--=-满足当2x =-时38x =-,所以()f x 可统一为3()f x x =,此时3()()f x x f x -=-=-为奇函数所以存在非空集合对(),A B ,使得()f x 为奇函数,且不唯一③30x =解的0x =,320x -=解的23x =,当非空集合对(,)A B 满足0A ∉且23B ∉,则方程无解,又因为A B =R ,AB =∅,所以存在无穷多非空集合对(),A B ,使得方程()0f x =无解故答案为:①③【点睛】本题主要考查集合间的基本关系与函数的奇偶性,但需要较为缜密的逻辑推理 ①通过对x 所属集合的分情况讨论来判断是否存在特殊的非空集合对(,)A B 使得函数()f x 为偶函数②观察可以发现3x 为已知的奇函数,通过求得不同元素的相同函数值将解析式32x -归并到3x 当中,使得()f x 成为奇函数③通过求解解析式零点,使得可令两个解析式函数值为0的元素均不在所对应集合内即可得到答案2(2020·北京·模拟预测)对给定的正整数n ,令1{(n a a Ω==,2a ,⋯,)|{0n i a a ∈,1},1i =,2,3,⋯,}n .对任意的1(x x =,2x ,⋯,)n x ,1(y y =,2y ,⋯,)n n y ∈Ω,定义x与y 的距离1122(,)n n d x y x y x y x y =-+-+⋯+-.设A 是n Ω的含有至少两个元素的子集,集合{(,)|D d x y x y =≠,x ,}∈y A 中的最小值称为A 的特征,记作χ(A ).(Ⅰ)当3n =时,直接写出下述集合的特征:{(0A =,0,0),(1,1,1)},{(0B =,0,0),(0,1,1),(1,0,1),(1,1,0)},{(0C=,0,0),(0,0,1),(0,1,1),(1,1,1)}.(Ⅱ)当2020n =时,设2020A ⊆Ω且χ(A )2=,求A 中元素个数的最大值;(Ⅲ)当2020n =时,设2020A ⊆Ω且χ(A )3=,求证:A 中的元素个数小于202022021.【答案】(Ⅰ)答案详见解析;(Ⅱ)22019;(Ⅲ)证明详见解析.【解析】(Ⅰ)根据x 与y 的距离d 的定义,直接求出(,)d x y 的最小值即可;(Ⅱ)一方面先证明A 中元素个数至多有2 2019 个元素,另一方面证明存在集合A 中元素个数为2 2019 个满足题意,进而得出A 中元素个数的最大值;(Ⅲ)设1{A x =,2x ,}m x ⋯,定义x 的邻域2020(){|(,)1}i i N x a d a x =∈Ω…,先证明对任意的1i m 剟,()i N x 中恰有 2021 个元素,再利用反证法证明()()i j N x N x ⋂=∅,于是得到12()()()m N x N x N x ⋃⋃⋯⋃中共有2021m 个元素,但2020Ω中共有20202 个元素,所以202020212m …,进而证明结论.【详解】(Ⅰ)χ(A )3=,χ(B )2=,χ(C )1=;(Ⅱ)(a ) 一方面:对任意的1(a a =,2a ,3a ,⋯,2019a ,2020)a A ∈, 令f (a )1(a =,2a ,3a ,⋯,2019a ,2020)a , 则(d a ,f (a )2020)1212a =-=<,故f (a )A ∉, 令集合{B f =(a )|}a A ∈,则A B =∅,2020()A B ⋃⊆Ω 且A 和B 的元素个数相同,但2020Ω 中共有20202 个元素,其中至多一半属于A , 故A 中至多有2 2019 个元素.(b )另一方面:设1{(A a =,2a ,⋯,20202020122020)|a a a a ∈Ω++⋯+ 是偶数},则A 中的元素个数为0242020201920202020202020202C C C C +++⋯+= 对任意的 1(x x =,2x ,⋯,2020)x ,1(y y =,2y ,⋯,2020)y A ∈,x y ≠,易得1122(,)n n d x y x y x y x y =-+-+⋯+-与112220202020x y x y x y ++++⋯++ 奇偶性相同,故(,)d x y 为偶数,由x y ≠,得(,)0d x y >,故(,)2d x y …, 注意到(0,0,0,0,⋯,0,0),(1,1,0,0,0⋯,0)A ∈ 且它们的距离为2, 故此时A 满足题意,综上,A 中元素个数的最大值为22019.(Ⅲ)当2020n = 时,设2020A ⊆Ω 且χ(A )3=, 设1{A x =,2x ,}m x ⋯,任意的i x A ∈,定义x 的邻域2020(){|(,)1}i i N x a d a x =∈Ω…, (a ) 对任意的,()i N x 中恰有 2021 个元素,事实上①若(,)0i d a x =,则i a x =,恰有一种可能;,②若(,)1i d a x =,则a 与i x ,恰有一个分量不同,共2020种可能;综上,()i N x 中恰有2021个元素, (b ) 对任意的,()()i j N x N x ⋂=∅,事实上,若()()i j N x N x ⋂≠∅,不妨设()()i j a N x N x ∈⋂,1(j x x =',2x ',⋯,2020)x ', 则20201(,)i j k k k d x x x x ==-'∑20201(||)kk k xa a x =-+-'∑…20202020112k k k k x a a x ===-+-'∑∑…,这与χ(A )3=,矛盾,由 (a ) 和 (b ),12()()()m N x N x N x ⋃⋃⋯⋃中共有2021m 个元素,但2020Ω中共有20202 个元素, 所以,注意到m 是正整数,但202022021不是正整数,上述等号无法取到,所以,集合A 中的元素个数m 小于202022021.【点睛】本题考查集合的新定义,集合的含义与表示、集合的运算以及集合之间的关系,反证法的应用,考查学生分析、解决问题的能力,正确理解新定义是关键,综合性较强,属于难题.根据集合包含关系求参数值或范围一、单选题1.(2021·全国·模拟预测)已知集合{A x y ==,{}22B x x k =-+>.若A B A =,则实数k 的取值范围为( )A .()7,+∞B .(),1-∞-C .()1,7-D .()(),17,∞∞--⋃+【答案】D【分析】求出集合,A B ,再根据A B A =,知A B ⊆,列出不等式,解之即可得出答案. 【详解】解:解不等式2320x x +-≥,得13x -≤≤,即{}13A x x =-≤≤,{}{22B x x k x x k =-+>=>或}4x k <-,由A B A =,知A B ⊆,所以43k ->或1k <-,解得7k >或1k <-. 故选:D .2.(2021·全国·模拟预测)已知集合{}24A x x =<<,{}2211B x x a =--≤,若A B B =,则实数a 的取值范围是( ) A .()1,3 B .()2,3 C .[]1,3 D .[]2,3【答案】B【分析】首先通过解绝对值不等式化简集合B ,然后由题意得B A ⊆,从而建立不等式组求得a 的范围.【详解】解不等式2211x a --≤,得1a x a ≤≤+,所以{}1B x a x a =≤≤+. 由A B B =,得B A ⊆,∴214a a >⎧⎨+<⎩,解得23a <<﹒ 故选:B数轴法解决集合运算问题一、单选题1.(2023·四川·泸县五中模拟预测(文))设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞【答案】D【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解.【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以={|0}x x ≥,即()U A B ⋂ð[0,)=+∞.故选:D2.(2023·江西宜春·模拟预测(文))已知集合{A x y ==,{}2B x x =<,则A B =( ) A .R B .∅C .[]1,2D .[)1,2【答案】D【分析】求函数定义域化简集合A ,解不等式化简集合B ,再利用交集的定义求解作答.【详解】由y =1≥x ,则[1,)A =+∞,由2x <解得22x -<<,即(2,2)B =-, 所以[1,2)A B ⋂=. 故选:D3.(2023·全国·模拟预测(文))已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( )A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,1【答案】C【分析】求出集合M ,N ,然后进行并集的运算即可. 【详解】∵{}02M x x =<<,{}11N x x =-≤≤, ∴[1,2)M N ⋃=-. 故选:C .二、填空题4.(2023·重庆市育才中学模拟预测)设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.【答案】[1,3]【分析】根据交集的定义求解即可.【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 .5.(2020·上海·模拟预测)已知集合(){}2log 21A x x =-<,31B x x ⎧⎫=<⎨⎬⎩⎭,则A B =______.【答案】()3,4【分析】先解对数不等式和分式不等式求得集合A 、B ,再根据交集定义求得结果. 【详解】因为(){}{}()2log 2102224A x x x x =-<=<-<=,,()()331003x B x x x x ⎧⎫⎧⎫-=<=<=-∞⋃+∞⎨⎬⎨⎬⎩⎭⎩⎭,,,所以()3,4A B ⋂=, 故答案为:()3,4.【点睛】本题考查对数不等式和分式不等式的解法以及交集定义,属于基础题. 6.(2020·江苏·模拟预测)已知集合{}|12A x x =-<<,{}|0B x x =>,则A B =______. 【答案】{}|02x x <<【分析】利用集合的交运算即可求解.【详解】由集合{}|12A x x =-<<,{}|0B x x =>, 所以A B ={}|02x x <<. 故答案为:{}|02x x <<【点睛】本题主要考查了集合的交概念以及运算,属于基础题.7.(2020·江苏·吴江盛泽中学模拟预测)已知集合{}0,1,2A =,集合{}2|20B x x =-<,则A B =________. 【答案】{}0,1【详解】{}0,1,2A =,{}{}220=02B x x x x =-<<<,所以{}01A B =,. 【点睛】本题考查了交集运算,此题属于简单题.8.(2020·江苏镇江·三模)已知全集U =R ,A ={x |f (x )=ln (x 2﹣1)},B ={x |x 2﹣2x ﹣3<0},则=_____.【答案】{|3x x ≥或1}x <-【分析】先化简集合,A B ,再求U B ð,最后求U A B ð得解.【详解】解:A ={x |f (x )=ln (x 2﹣1)}={x |x <﹣1或x >1},B ={x |x 2﹣2x ﹣3<0}={x |﹣1<x <3},则U B ð={x |x ≥3或x ≤﹣1}, 则U A B ð={|3x x ≥或1}x <-, 故答案为:{|3x x ≥或1}x <-.【点睛】本题主要考查对数型复合函数的定义域的求法,考查一元二次不等式的解法,考查集合的交集和补集运算,意在考查学生对这些知识的理解掌握水平.一、单选题1.(2021·新高考全国11卷)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =ð( ) A .{3} B .{1,6}C .{5,6}D .{1,3}【答案】B【分析】根据交集、补集的定义可求()U A B ⋂ð. 【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð, 故选:B.2.(2021·新高考全国1卷)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( ) A .{}2 B .{}2,3C .{}3,4D .{}2,3,4【答案】B【分析】利用交集的定义可求A B . 【详解】由题设有{}2,3A B ⋂=, 故选:B .3.(2021·全国·高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( ) A .{}2 B .{}2,3 C .{}3,4 D .{}2,3,4【答案】B【分析】利用交集的定义可求A B . 【详解】由题设有{}2,3A B ⋂=, 故选:B .4.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则( )A .∅B .SC .TD .Z【答案】C【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,S T T =. 故选:C.5.(2021·全国·高考真题(理))设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则MN =( ) A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B【分析】根据交集定义运算即可【详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.6.(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则( ) A .{3} B .{1,6}C .{5,6}D .{1,3}【答案】B【分析】根据交集、补集的定义可求.【详解】由题设可得,故,故选:B.一、单选题1.(2023·全国·高三专题练习)已知集合(){}ln 3M x y x ==-,{}x N y y e ==,则() RM N ⋂=ð( )A .()3,0-B .(]0,3C .()0,3D .[]0,3【答案】B【分析】由题知{}3M x x =>,{}0N y y =>,进而根据补集运算与交集运算求解即可.【详解】解:因为(){}{}ln 33M x y x x x ==-=>,{}{}0xN y y e y y ===>,所以{} R 3M x x =≤ð,所以() R M N ⋂=ð{}(]030,3x x <≤= 故选:B2.(2023·全国·高三专题练习)已知集合{}2,1x M y y x ==>,{N x y =,则M N ⋃等于( )A .∅B .{}2C .[)1,+∞D .[)0,∞+【答案】D【分析】利用指数函数的单调性求出指数函数的值域进而得出集合M ,根据二次根式的意义求出集合N ,利用并集的定义和运算直接计算即可.【详解】{}112222x x y M y y >∴=>=∴=>.{}2200202x x x N x x -≥∴≤≤∴=≤≤.因此[0,)M N =+∞U . 故选:D3.(2023·全国·高三专题练习)已知集合{}14A x x =≤≤,{}3B x x =≤,则A B =( ) A .{}34x x -≤≤ B .{}33x x -≤≤C .{}14x x ≤≤D .{}13x x ≤≤【答案】D【分析】先化简集合B ,再去求A B . 【详解】{}{}333B x x x x =≤=-≤≤则{}{}{}143313A B x x x x x x ⋂=≤≤⋂-≤≤=≤≤ 故选:D4.(2023·全国·高三专题练习)已知集合{}62A x x =-≤≤,{}B y y x A ==∈,则A B =( )A .{}01x x ≤≤B .{}12x x ≤≤C .{}02x x ≤≤D .{}13x x ≤≤【答案】B【分析】首先根据定义域求出函数的值域,得集合B ,然后根据集合的交集运算法则求得结果.【详解】当62x -≤≤时,13,则{}13B y y =≤≤,所以{}12A B x x ⋂=≤≤. 故选:B.5.(2023·全国·高三专题练习)已知全集U =R ,集合{}2,1xA y y x ==≥,(){}2lg 9B x y x ==-,则图中阴影部分表示的集合为()A .[]3,2-B .()3,2-C .(]3,2-D .[)3,2-【答案】B【分析】先求出集合A 、B ,由韦恩图分析,求U B A ⋂ð. 【详解】由1≥x ,得22x ≥,则[)2,A =+∞,所以()U ,2A =-∞ð.\由290->x ,得33x -<<,则()3,3B =-,则图中阴影部分表示的集合为()U 3,2B A ⋂=-ð. 故选:B.6.(2023·全国·高三专题练习)已知集合{}22A x x =-≤≤,{}2230B x N x x =∈--<,则A B =( ) A .{}12x x -<≤B .{}21x x -≤<C .{}1,2D .{}0,1,2【答案】D【分析】先解不含参数的一元二次不等式,进而求出集合B ,然后根据交集的概念即可求出结果.【详解】解不等式2230x x --<得13x -<<,又x ∈N ,所以{}0,1,2B =,所以{}0,1,2A B =,故选:D.7.(2023·全国·高三专题练习)已知集合(){}ln 10A x x =-≤,{}20B x x x =-≥,则下列结论一定正确的是( ) A .B A ⊆ B .A B ≠⊂ C .[)1,A B ⋂=+∞D .A B R =【答案】B【分析】由对数函数定义域、一元二次不等式的解法分别求得集合,A B ,进而得到结果. 【详解】{}{}[)011010,1A x x x x =<-≤=≤<=,{}[]010,1B x x =≤≤=,[)0,1A B A ∴==,[]0,1A B B ==,A B ≠∴⊂.故选:B.8.(2023·全国·高三专题练习)已知集合{}2,0x A y y x ==≥,(){}ln 2B x y x ==-,则A B =( )A .[]1,2B .()1,2C .[)1,2D .(),-∞+∞【答案】C【分析】利用指数函数的性质可化简集合A ,根据对数函数性质得集合B ,然后计算交集.【详解】由已知{}2,0[1,)xA y y x ∞==≥=+,{}ln(2)B x y x ==-(){|20}{|2},2x x x x =->=<=-∞,∴[1,2)A B ⋂=. 故选:C .9.(2023·全国·高三专题练习)若集合{}23A x Z x x =∈≤,{}2,B x y x y A ==∈,则A B =( ) A .{}0,1,2 B .{}0,2 C .{}0,1 D .{}1,2【答案】C【分析】先解不等式求出集合A ,再求出集合B ,然后求两集合的交集即可 【详解】解不等式23x x ≤,得03x ≤≤,又x ∈Z ,所以{}0,1,2,3A =,所以{}132,0,,1,22B x y x y A ⎧⎫==∈=⎨⎬⎩⎭,所以{}0,1A B =.故选:C10.(2023·全国·高三专题练习)已知集合2{|230}A x x x =--≥,{B x y =,则A B ⋃=( )A .[)3,+∞B .[)2,+∞C .(][),10,-∞-⋃+∞D .(][),12,-∞-⋃+∞【答案】D【分析】根据一元二次不等式的解法和函数定义域的定义,求得集合,A B ,集合集合并集的运算,即可求解.【详解】由不等式2230x x --≥,解得1x ≤-或3x ≥,所以集合{|1A x x =≤-或3}x ≥, 又由20x -≥,解得2x ≥,所以集合{}2B x x =≥, 所以(][),12,A B ⋃=-∞-⋃+∞. 故选:D .11.(2023·全国·高三专题练习)设全集{}24U x N x =∈-<<,{}0,2A =,则U A ð为( ) A .{}1,3 B .{}0,1,3 C .{}1,1,3- D .{}1,0,1,3-【答案】A【分析】根据全集U 求出A 的补集即可.【详解】{}{}24=0,1,2,3U x N x =∈-<<,{}0,2A =,{}U =1,3A ∴ð. 故选:A.12.(2023·全国·高三专题练习)已知集合{A x y ==,{}1,2,3,4,5B =,则A B =( ). A .{}2,3 B .{}1,2,3 C .{}1,2,3,4 D .{}2,3,4【答案】C【分析】先化简集合A ,再利用集合的交集运算求解.【详解】因为集合{{}4A x y x x ===≤,{}1,2,3,4,5B =, 所以A B ={}1,2,3,4, 故选:C13.(2023·全国·高三专题练习)已知集合(){}{}22log 213,40A x x B x x =-≤=-≤,则()A B =RIð( )A .122x x ⎧⎫-≤≤⎨⎬⎩⎭B .122x x ⎧⎫<≤⎨⎬⎩⎭C .{}22x x -≤≤D .∅【答案】A【分析】先求出集合A 和集合A 的补集,集合B ,再求出()A B ⋂R ð【详解】由22log (21)3log 8x -≤=,得0218x <-≤,解得1922x <≤,所以1922A xx ⎧⎫=<≤⎨⎬⎩⎭,所以12R A x x ⎧=≤⎨⎩ð或,由240x -≤得22x -≤≤,所以{}22B x x =-≤≤,所以()A B =R I ð122x x ⎧⎫-≤≤⎨⎬⎩⎭故选:A14.(2023·全国·高三专题练习)已知集合{1,0,1,2,3,4}A =-,{}2ln 2B x x =<,图中阴影部分为集合M ,则M 中的元素个数为( )A .1B .2C .3D .4【答案】C【分析】由Venn 图得到()A M A B =⋂ð求解. 【详解】如图所示()A M A B =⋂ð,2ln 2x <,22ln ln e x ∴<,解得e e x -<<且0x ≠,(e,0)(0,e)B ∴=-又{1,0,1,2,3,4}A =-,{1,1,2}A B ∴=-,(){0,3,4}A A B ∴⋂=ð,{0,3,4}M ∴=,所以M 中元素的个数为3故选:C15.(2023·全国·高三专题练习)已知全集{}2,1,0,1,2U =--,{}21A x Z x =∈-<<,{}1,0,1B =-,则()U B A ⋂=ð( )A .∅B .{}0C .{}1D .{}0,1【答案】C【分析】根据集合的运算法则计算. 【详解】{2,1,2}U A =-ð,(){1}U B A =ð. 故选:C . 二、多选题16.(2023·全国·高三专题练习)已知集合E 是由平面向量组成的集合,若对任意,a b E ∈,()0,1t ∈,均有()1ta t b E +-∈,则称集合E 是“凸”的,则下列集合中是“凸”的有( ).A .(){},e xx y y ≥B .(){},ln x y y x ≥C .(){},210x y x y +-≥D .(){}22,1x y x y +≤【答案】ACD【分析】作出各个选项表示的平面区域,根据给定集合E 是“凸”的意义判断作答. 【详解】设OA a =,OB b =,()1OC ta t b =+-,则C 为线段AB 上一点,因此一个集合E 是“凸”的就是E 表示的平面区域上任意两点的连线上的点仍在该区域内,四个选项所表示的平面区域如图中阴影所示:A BC D 观察选项A ,B ,C ,D 所对图形知,B 不符合题意,ACD 符合题意. 故选:ACD【点睛】思路点睛:涉及符合某个条件的点构成的平面区域问题,理解不等式变为对应等式时的曲线方程的意义,再作出方程表示的曲线,作图时一定要分清虚实线、准确确定区域. 17.(2023·全国·高三专题练习)已知全集U =R ,集合1|02x A x x -⎧⎫=<⎨⎬-⎩⎭,则关于U A ð的表达方式正确的有( ) A .][(),12,-∞⋃+∞B .()(){}210xx x --≥∣ C .102x xx -⎧⎫≥⎨⎬-⎩⎭∣ D .()(),12,-∞+∞【答案】AB【分析】根据补集的概念及分式不等式及其解法即可求解. 【详解】由题意得,()(){}()1|0|2101,22x A x x x x x -⎧⎫=<=--<=⎨⎬-⎩⎭,所以][()()(){},12,|210U A x x x ∞∞=-⋃+=--≥ð, 故AB 正确,CD 错误, 故选:AB.18.(2023·全国·高三专题练习)设[]x 表示不大于x 的最大整数,已知集合[]{}22M x x =-<<,{}250N x x x =-<,则( )A .[]lg 2002=B .{}02M N x x ⋂=<<C .[]lg 2lg3lg51-+=D .{}15M N x x ⋃=-≤<【答案】ABD【分析】由对数运算可知2lg 2003<<,()lg 2lg3lg51lg30,1-+=-∈,由[]x 的定义可知AC 正误;解不等式求得集合,M N ,由交集和并集定义可知BD 正误. 【详解】对于A ,1002001000<<,2lg 2003∴<<,[]lg 2002∴=,A 正确; 对于C ,()()lg 2lg3lg5lg 2lg5lg31lg30,1-+=+-=-∈,[]lg 2lg3lg50∴-+=,C 错误; 对于BD ,[]{}{}2212M x x x x =-<<=-≤<,{}05N x x =<<,{}02M N x x ∴⋂=<<,{}15M N x x ⋃=-≤<,BD 正确.故选:ABD.19.(2023·全国·高三专题练习)给定数集M ,若对于任意a ,b M ∈,有a b M +?,且a b M -∈,则称集合M 为闭集合,则下列说法中不正确的是( ) A .集合{}4,2,0,2,4M =--为闭集合 B .正整数集是闭集合C .集合{|3,}M n n k k Z ==∈为闭集合D .若集合12,A A 为闭集合,则12A A ⋃为闭集合【答案】ABD【分析】根据集合M 为闭集合的定义,对选项进行逐一判断,可得出答案.【详解】选项A :当集合{}4,2,0,2,4M =--时,2,4M ∈,而246M +=∉,所以集合M 不为闭集合,A 选项错误;选项B :设,a b 是任意的两个正整数,则a b M +?,当a b <时,-a b 是负数,不属于正整数集,所以正整数集不为闭集合,B 选项错误; 选项C :当{}3,M n n k k Z ==∈时,设12123,3,,a k b k k k Z ==∈,则()()12123,3a b k k M a b k k M +=+∈-=-∈,所以集合M 是闭集合,C 选项正确; 选项D :设{}{}1232A n n k k Z A n n k k Z ==∈==∈,,,,由C 可知,集合12,A A 为闭集合,()122,3A A ∈⋃,而()()1223A A +∉⋃,故12A A ⋃不为闭集合,D 选项错误.故选:ABD . 三、填空题20.(2023·全国·高三专题练习)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =___________【答案】{1,2}【分析】利用交集的定义进行求解.【详解】因为{1,0,1,2}A =-,{|03}B x x =<<, 所以{1,2}A B =. 故答案为:{1,2}.。

2021-2022年高三数学第二轮专题复习分类讨论思想课堂资料

2021-2022年高三数学第二轮专题复习分类讨论思想课堂资料

2021年高三数学第二轮专题复习分类讨论思想课堂资料一、基础知识整合分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。

所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。

实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。

1.分类原则:分类应按同一标准进行,不重复,不遗漏,分层次,不越级讨论.2.分类方法:明确讨论对象以及研究的范围;确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论.3.含参数问题的分类讨论是常见题型。

4.注意简化或避免分类讨论。

二、例题解析[例1] 一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这直线方程为( ) (A) (B)(C)x y x y +-=-=70250或 (D)x y y x ++=-=70250或 [分析]设该直线在x 轴,y 轴上的截距均为a , 当a =0时,直线过原点,此时直线方程为;当时,设直线方程为x a yaa +==17,则求得,方程为。

[例2] 15sin cos cos 213ABC A B C ∆==中,已知,,求. [分析][]∴=-+=--⋅cos cos()cos cos sin sin C A B A B A B因此,只要根据已知条件,求出cos A ,si n B 即可得cosC 的值.但是由si nA 求cos A 时,是一解还是两解?这一点需经过讨论才能确定,故解本题时要分类讨论。

对角A 进行分类.[解]50cos 132B B ABC <=<∆为的一个内角 ∴<<=45901213 B B ,且sin ⑴若为锐角,由,得,此时A A A A sin cos ===123032⑵若为钝角,由,得,此时A A A A B sin ==+>12150180这与三角形的内角和为180°相矛盾。

高考数学二轮复习 第01课时 集合的语言及思想应用问题

高考数学二轮复习 第01课时 集合的语言及思想应用问题

第01课时 集合的语言及思想应用问题【考点点悟】传道解惑,高屋建瓴集合作为近、现代数学的重要基础,集合语言、集合思想也已经渗透到数学的方方面面.集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用 本课时主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用.1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题.2.注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A =∅或A ≠∅两种可能,此时应分类讨论.【小题热身】明确考点,自省反思1.设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是A.123I S S S ⋂⋃=∅()ðB.123I I S S S ⊆⋂()痧C.123(I I I S S S ⋂⋂=∅痧?D.123I IS S S ⊆⋃()痧 2.某班50人中,穿靴子的有37人,戴帽子的有18人,既穿靴子又戴帽子的有8人,则,既不穿靴子也不戴帽子的有 人.3. 若非空集合}5312|{-≤≤+=a x a x A ,}223|{≤≤=x x B ,则能使)(B A A ⊆成立的所有a 的集合是 .4. 函数f x x x P x x M (),,=∈-∈⎧⎨⎩,其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断: ①若P M ⋂=∅,则()()f P f M =∅ ②若P M ⋂≠∅,则()()f P f M ≠∅ ③若P M R ⋃=,则f P f M R ()()⋃= ④若P M R ⋃≠,则f P f M R ()()⋃≠ 其中正确判断有 个.【考题点评】分析原因,醍醐灌顶例 1. 已知集合2{|4260,}A x x mx m x R =-++=∈,若A ∩R -≠∅,求实数m 的取值范围.思路透析: 设全集23{|168240}{|1}2I m m m m m m ==--≥=≤-≥ 或 .若方程(1)的两根均为非负,则有m I ∈且4m ≥0,且26m +≥0,得m ≥32. 因此, 3{|}2m m ≥关于I 的补集{|1}m m ≤-即为所求实数m 的取值范围.点评:本题应用补集思想化正为反顺利求解,其思想也可称之为化归思想.例2. 如图一所示是一个5×4×4的长方体,上面有2×1×4,2×1×5,3×1×4的穿透的洞,剩下部分的体积为 .思路透析: 法一,将长方体分为四层,分别计算各层空洞的数量为:3、12、6、3,求和得有24个空洞,剩下的体积为80-24=56.法二,如图,用文氏图虚拟空洞的特征,然后作定性分析,应用交集思想得:所去掉的空洞共有2×4+2×5+3×4=30个,其中 2×1×4与2×1×5有2个公共的空洞, 2×1×4与3×1×4有2个公共的空洞, 3×1×4与2×1×5有3个公共的空洞, 而2×1×4、 3×1×4、2×1×5有 1个公共的空洞,故计算得空洞共有24个,即剩下的体积为80-24=56.点评:这是一道图形信息型开放题,解法二应用交集思想结合文氏图虚拟图象信息的主要特征,进行定性分析或定量计算,从而得到结论,在解题中是一种很好的尝试.例3. 在1~100的自然数中有 个能被2或3整除的数.思路透析: 设集合A={在1~100中能被2整除的数}B={在1~100中能被3整除的数},得A ∩B={在1~100中能被2且能被3整除的数}={在1~100中能被6整除的数}A ∪B={在1~100中能被2或3整除的数}∵Card(A)=50 Card(B)=33 Card(A ∩B)=16∴Card(A ∪B)=Card(A)+Card(B)-Card(A ∩B)=67点评:设集合A 、B 含有有限个元素,用card(A)、card(B)分别表示集合A 、B 中元素的个数,根据集合的性质,不难得到以下结论:(1)Card(A ∪B)=Card(A)+Card(B )-Card(A ∩B);(2)如果全集为U ,A 、B 是U 的子集,则Card(U)=Card(A ∪B)+Card[C u (A ∪B)]例4. 已知集合A ={z ||z -2|≤2,z ∈C },集合B ={w |w =21zi +b ,b ∈R },当A ∩B =B 时,求b 的值. 思路透析: 由w =21zi +b 得z =ib w 22-, ∵z ∈A ,∴|z -2|≤2,代入得|i b w 22--2|≤2,化简得|w -(b +i )|≤1. ∴集合A 、B 在复平面内对应的点的集合是两个圆面,集合A 表示以点(2,0)为圆心,半径为2的圆面,集合B 表示以点(b ,1)为圆心,半径为1的圆面.又A ∩B =B ,即B ⊆A ,∴两圆内含. 因此22)01()2(-+-b ≤2-1,即(b -2)2≤0,∴b =2.点评:复平面的运算常以集合的语言进行描述,此类语言可以结合几何语言进行解读. 例5. 设A ={(x ,y )|y 2-x -1=0},B ={(x ,y )|4x 2+2x -2y +5=0},C ={(x ,y )|y =kx +b },是否存在k 、b ∈N ,使得(A ∪B )∩C =∅,证明此结论.思路透析: ∵(A ∪B )∩C =∅,∴A ∩C =∅且B ∩C =∅3×1×4 2×1×5 2×1×4 1 2 8 6 1 1 5∵⎩⎨⎧+=+=bkx y x y 12 ∴k 2x 2+(2bk -1)x +b 2-1=0∵A ∩C =∅∴Δ1=(2bk -1)2-4k 2(b 2-1)<0∴4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1 ① ∵⎩⎨⎧+==+-+b kx y y x x 052242 ∴4x 2+(2-2k )x +(5+2b )=0∵B ∩C =∅,∴Δ2=(1-k )2-4(5-2b )<0∴k 2-2k +8b -19<0,从而8b <20,即b <2.5 ②由①②及b ∈N ,得b =2代入由Δ1<0和Δ2<0组成的不等式组,得⎪⎩⎪⎨⎧<--<+-032,018422k k k k ∴k =1,故存在自然数k =1,b =2,使得(A ∪B )∩C =∅.点评:本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题. 解决此题的闪光点是将条件(A ∪B )∩C =∅转化为A ∩C =∅且B ∩C =∅,这样难度就降低了.例6. 设f (x )=x 2+px +q ,A ={x |x =f (x )},B ={x |f [f (x )]=x }.(1)求证:A ⊆B ;(2)如果A ={-1,3},求B .思路透析: (1)证明:设x 0是集合A 中的任一元素,即有x 0∈A .∵A ={x |x =f (x )},∴x 0=f (x 0).即有f [f (x 0)]=f (x 0)=x 0,∴x 0∈B ,故A ⊆B .(2)证明:∵A ={-1,3}={x |x 2+px +q =x },∴方程x 2+(p -1)x +q =0有两根-1和3,应用韦达定理,得⎩⎨⎧-=-=⇒⎩⎨⎧=⨯---=+-313)1(),1(31q p q p ∴f (x )=x 2-x -3.于是集合B 的元素是方程f [f (x )]=x ,也即(x 2-x -3)2-(x 2-x -3)-3=x (*)的根. 将方程(*)变形,得(x 2-x -3)2-x 2=0解得x =1,3,3,-3.故B ={-3,-1,3,3}.点评: 本题为抽象函数的集合定义与表达方式预测题,编题中将集合中的元素以开放形式给出,考查了严密的逻辑思维推理.【即时测评】学以致用,小试牛刀1. 设I 是全集,集合P 、Q 满足P Q ,则下面结论中错误的是( )A.Q Q P =B.()I P Q U = ðC.I P Q =Φ ðD.()()I I I P Q P = 痧?2.在50个学生中,会讲英语的有36人,会讲日语的有20人,既不会讲英语又不会讲日语的有8人,则既会讲英语,又会讲日语的人数是( )A. 20B. 14C. 12D. 103. 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是( )A. 258B. 234C. 222D. 2104.奖券中有一半会中奖,( )张奖券.A.4B. 5C. 6D. 75. 集合M 由正整数的平方组成,即{}1,4,9,16,25,...M =,若对某集合中的任意两个元素进行某种运算,运算结果仍在此集合中,则称此集合对该运算是封闭的. M 对下列运算封闭的是( )A. 加法B. 减法C. 乘法D. 除法【课后作业】学练结合,融会贯通一、填空题:1.设A 、B 、I 均为非空集合,且满足I B A ⊆⊆,则下列各式中正确的序号是 . ①()I A B I = ð ②()()I I A B I = 痧 ③()I A B =∅ ð ④()()I II A B B = 痧? 2. 已知集合}1|{2==x x M 与集合}1|{==ax x N ,若N ⊂≠M 则实数a 的所有可能值的个数是 .3.对于两个集合1S 、2S 我们把一切有序对),(y x 所组成的集合(其中21,S y S x ∈∈),叫做1S 和2S 的笛卡尔积,记作21S S ⨯.如果{}2,11=S ,{}1,0,12-=S ,则21S S ⨯的真子集的个数为 个.4.90名学生中参加数学竞赛的有63名,参加化学竞赛的有52名,两项竞赛都参加的至多有 名?至少有 名?5.已知集合(){}2,210,02A x y xx y x =-+-=≤≤且, (){}0,=+-=a y x y x B ,若B A 中有两个元素,则求实数a 的取值范围为 . 6. 已知集合{}0<=x x A ,{}22230B x x ax a A B =-++=≠∅ ,若,则实数a 的取值范围为 .7. 设1a ,2a ,3a ,4a ,5a 为自然数,A={1a ,2a ,3a ,4a ,5a },B={21a ,22a ,23a ,24a ,25a },且1a <2a <3a <4a <5a ,并满足A ∩B={1a ,4a },1a +4a =10,A ∪B 中各元素之和为256,则集合A= .二、解答题:8. 集合A ={x |x 2-ax +a 2-19=0},B ={x |log 2(x 2-5x +8)=1},C ={x |x 2+2x -8=0},求当a 取什么实数时,A ∩B ∅和A ∩C =∅同时成立.9. 设A ={X ∣X=a 2+b 2,a 、b ∈Z },X 1,X 2∈A ,求证:X 1×X 2∈A .10.已知{a n }是等差数列,d 为公差且不为0,a 1和d 均为实数,它的前n 项和记作S n ,设集合A ={(a n ,nS n )|n ∈N *},B ={(x ,y )|41 x 2-y 2=1,x ,y ∈R }. 试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明.(1)若以集合A 中的元素作为点的坐标,则这些点都在同一条直线上;(2)A ∩B 至多有一个元素;(3)当a 1≠0时,一定有A ∩B ≠∅.第01课时 集合的语言及思想应用问题参考答案【小题热身】1. C2. 33. [6,9]4. 2【即时测评】1. C2. B3. C4. B5. C【课后作业】一、填空题:1. ①③④2. 33. 634. 52 , 255. ⎪⎭⎫⎢⎣⎡45,16. (]1,-∞-7. {1,2,3,9,12 }或{1,3,5,9,11 }.二、解答题:8. 解析:log 2(x 2-5x +8)=1,由此得x 2-5x +8=2,∴B ={2,3}.由x 2+2x -8=0,∴C ={2,-4},又A ∩C =∅,∴2和-4都不是关于x 的方程x 2-ax +a 2-19=0的解,而A ∩B ∅,即A ∩B ≠∅,∴3是关于x 的方程x 2-ax +a 2-19=0的解,∴可得a =5或a =-2.当a =5时,得A ={2,3},∴A ∩C ={2},这与A ∩C =∅不符合,所以a =5(舍去);当a =-2时,可以求得A ={3,-5},符合A ∩C =∅,A ∩B ∅,∴a =-2. 9.证明:设X 1=a 2+b 2,X 2=c 2+d 2,a 、b 、c 、d ∈Z则X 1×X 2=(a 2+b 2)(c 2+d 2)=a 2c 2+b 2d 2+b 2c 2+a 2d 2=a 2c 2+2ac·bd+b 2d 2+b 2c 2-2bc·ad+a 2d 2=(ac+bd)2+(bc-ad)2又a 、b 、c 、d ∈Z ,故ac+bd 、bc-ad ∈Z ,从而X 1X 2∈A. 10. 解析:(1)正确.在等差数列{a n }中,S n =2)(1n a a n +,则21=n S n (a 1+a n ),这表明点(a n ,nS n )的坐标适合方程y 21=(x +a 1),于是点(a n , nS n )均在直线y =21x +21a 1上. (2)正确.设(x ,y )∈A ∩B ,则(x ,y )中的坐标x ,y 应是方程组⎪⎪⎩⎪⎪⎨⎧=-+=1412121221y x a x y 的解,由方程组消去y 得:2a 1x +a 12=-4(*),当a 1=0时,方程(*)无解,此时A ∩B =∅;当a 1≠0时,方程(*)只有一个解x =12124a a --,此时,方程组也只有一解⎪⎪⎩⎪⎪⎨⎧-=--=1211214424a a y a a y ,故上述方程组至多有一解. ∴A ∩B 至多有一个元素.(3)不正确.取a 1=1,d =1,对一切的x ∈N *,有a n =a 1+(n -1)d =n >0,nS n >0,这时集合A 中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a 1=1≠0.如果A ∩B ≠∅,那么据(2)的结论,A ∩B 中至多有一个元素(x 0,y 0),而x 0=5224121-=--a a <0,y 0=43201=+x a <0,这样的(x 0,y 0)∉A ,产生矛盾,故a 1=1,d =1时A ∩B =∅,所以a 1≠0时,一定有A ∩B ≠∅是不正确的.。

高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理

高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理

第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。

高三数学集合知识点归纳总结

高三数学集合知识点归纳总结

高三数学集合知识点归纳总结在高三数学学习的过程中,集合是一个非常重要的概念。

集合是数学中研究对象的一个基础概念,对于解决问题和理解其他数学知识都扮演着重要的角色。

因此,我们需要对集合的相关知识点进行归纳总结,以便更好地掌握和应用。

1. 集合的基本概念集合是由一些特定对象组成的整体。

其中,组成集合的对象称为元素,记作"a∈A"。

如果元素a属于集合A,我们可以说a是A 的元素,反之亦然。

另外,如果一个集合不包含任何元素,我们称其为空集,记作"∅"。

2. 集合的表示方法集合可以通过列举元素的方式表示,也可以通过描述元素的特性表示。

例如,集合A={1, 2, 3}表示A是由元素1、2、3组成的集合;集合B={x|x是正整数}表示B是由所有正整数组成的集合。

3. 常见集合在数学中,有一些常见的集合,如自然数集合N、整数集合Z、有理数集合Q和实数集合R等。

这些集合在解决数学问题时经常被使用。

4. 集合的运算4.1 并集两个集合A和B的并集,记作A∪B,表示由所有属于A或属于B的元素组成的集合。

例如,若A={1, 2, 3},B={2, 3, 4},则A∪B={1, 2, 3, 4}。

4.2 交集两个集合A和B的交集,记作A∩B,表示由既属于A又属于B的元素组成的集合。

例如,若A={1, 2, 3},B={2, 3, 4},则A∩B={2, 3}。

4.3 差集两个集合A和B的差集,记作A-B,表示由属于A但不属于B 的元素组成的集合。

例如,若A={1, 2, 3},B={2, 3, 4},则A-B={1}。

4.4 互斥集合如果两个集合A和B的交集为空集,即A∩B=∅,则称A和B互斥。

4.5 包含关系若集合A的所有元素都属于集合B,即A的任意元素都是B的元素,则称B包含A,记作A⊆B。

5. 集合的性质5.1 交换律集合的并集和交集操作满足交换律,即A∪B=B∪A,A∩B=B∩A。

2022年高中数学高考重点难点讲解:集合思想及应用

2022年高中数学高考重点难点讲解:集合思想及应用

难点 1 集合思想及应用-2=0},B={,|-1=0,且0≤≤2},如果A ∩B ≠,●案例探究⎩⎨⎧+=+=b kx y x y 12⎩⎨⎧+==+-+b kx y y x x 052242⎪⎩⎪⎨⎧<--<+-032,018422k k k k 533x 3x 42π+kx 22ππ+k 12m b y a x -n S n 4121⎩⎨⎧≤≤=+-=+-+)20(01022x y x y mx x 0知,方程①只有负根,不符合要求当m ≤-1时,由12=-m -1>0及12=1>0知,方程①只有正根,且必有一根在区间0,1]内,从而方程①至少有一个根在区间[0,2]内故所求m 的取值范围是m ≤-1歼灭难点训练一、1解析:对M 将分成两类:=2n 或=2n1n ∈Z,M={|=n π4π,n ∈Z}∪{|=n π43π,n ∈Z},对N 将分成四类,=4n 或=4n1,=4n2,=4n3n ∈Z,N={|=n π2π,n ∈Z}∪{|=n π43π,n∈Z}∪{|=n ππ,n ∈Z}∪{|=n π45π,n ∈Z}答案:C2解析:∵A ∪B=A ,∴BA,又B ≠,∴⎪⎩⎪⎨⎧-<+≤--≥+12171221m m m m 即2<m ≤4答案:D二、=0或a ≥894解析:由A ∩B 只有1个交点知,圆22=1与直线b y a x -=1相切,则1=22b a ab +,即ab=22b a +答案:ab=22b a +三、5解:og22-58=1,由此得2-58=2,∴B={2,3}由22-8=0,∴C={2,-4},又A ∩C=,∴2和-4都不是关于的方程2-aa2-19=0的解,而A ∩B ,即A ∩B ≠,∴3是关于的方程2-aa2-19=0的解,∴可得a=5或a=-2当a=5时,得A={2,3},∴A ∩C={2},这与A ∩C=不符合,所以a=5舍去;当a=-2时,可以求得A={3,-5},符合A ∩C=,A ∩B ,∴a=-26解:1正确在等差数列{an}中,Sn=2)(1n a a n +,则21=nS n a1an,这表明点an,n S n )的坐标适合方程21=a1,于是点an, n S n 均在直线=2121a1上 2正确设,∈A ∩B,则,中的坐标,应是方程组⎪⎪⎩⎪⎪⎨⎧=-+=1412121221y x a x y 的解,由方程组消去得:2a1a12=-4*,当a1=0时,方程*无解,此时A ∩B=;当a1≠0时,方程*只有一个解=12124a a --,此时,方程组也只有一解⎪⎪⎩⎪⎪⎨⎧-=--=1211214424a a y a a y ,故上述方程组至多有一解∴A ∩B 至多有一个元素 3)1=1,d=1,对一切的∈N*,有an=a1n -1d=n>0,n S n>0,这时集合A 中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a1=1≠∩B ≠,那么据2)的结论,A ∩B 中至多有一个元素0,0),而0=5224121-=--a a <0,0=43201=+x a <0,这样的0,0)A,产生矛盾,故a1=1,d=1时A ∩B=,所以a1≠0时,一定有A ∩B ≠是不正确的 7解:由w=21ib 得=i bw 22-,∵∈A,∴|-2|≤2,代入得|i bw 22--2|≤2,化简得|w -bi|≤1∴集合A 、B 在复平面内对应的点的集合是两个圆面,集合A 表示以点2,0)为圆心,半径为2的圆面,集合B 表示以点b,1为圆心,半径为1的圆面又A ∩B=B ,即BA ,∴两圆内含 因此22)01()2(-+-b ≤2-1,即b -22≤0,∴b=281证明:设0是集合A 中的任一元素,即有0∈A∵A={|=f},∴0=f0即有f [f0]=f0=0,∴0∈B,故AB2证明:∵A={-1,3}={|2q=},∴方程2-1q=0有两根-1和3,应用韦达定理,得⎩⎨⎧-=-=⇒⎩⎨⎧=⨯---=+-313)1(),1(31q p q p∴f=2--3于是集合B 的元素是方程f [f ]=,也即2--32-2--3-3=*的根 将方程*变形,得2--3)2-2=0解得=1,3,,-故B={-,-1,,3}。

对集合概念的理解及集合思想的应用

对集合概念的理解及集合思想的应用

对集合概念的理解及集合思想的应用作者:江小娟来源:《中学课程辅导高考版·学生版》2010年第09期集合是整个高中数学的基础,与许多内容有着广泛的联系.也是历年高考必考的基本知识之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的应用.本文通过对集合知识的梳理和对集合思想应用的研究,帮助同学们加深对集合概念、集合语言、集合思想的理解与应用.一、集合的基本概念:利用集合的基本概念解题时应注意:(1)集合元素的确定性、互异性和无序性;(2)集合中代表元的选取;(3)空集是任何集合的子集;(4)重视图示法的作用,利用数形结合思想.例1 (1)集合M={y|y=x2-1},N={x|y=3-x2}},则M∩N= .(2)集合M={(x,y)|y=x2-1},N={(x,y)|y=3-x2},则M∩N= .分析:集合的代表元指明集合元素的特征.故首先应明确集合中的代表元.对(1),集合M表示函数y=x2-1的值域,集合N表示函数y=3-x2的定义域.对(2),集合M和N都是点集,M∩N即抛物线y=x2-1和半圆y=3-x2的交点组成的集合.解(1)M={y|y≥-1},N={x|-3≤x≤3}.由于集合M也可写成M={x|x≥-1},故M∩N={x|-1≤x≤3 }.(2)联立方程y=x2-1y=3-x2,得:x=2y=1或x=-2y=1,故M∩N={(2,1),(-2,1)}.例2 已知集合A={x|x2+x-6=0},B={x|mx+1=0},且A∪B=A,则实数m的取值集合是 .分析:A∪B=A B A,注意到需分B=和B≠两种情况进行分类讨论.解 A={x|x2+x-6=0}={-3,2},∵A∪B=A,∴B A.当B=时,m=0;当B=时,x=-1m, ∴-1m=2或-1m=-3,∴m=-12或m=13.∴实数m的取值集合是0,-12,13.注:A∪B=A B A,A∩B=A A B是两个常用结论.例3 向50名学生调查对A,B两事件的态度,有如下结果:赞成A的人数是全体的35,赞成B 的比赞成A的多3人,其余的不赞成;且对A、B都不赞成的学生数比对A、B都赞成的学生数的13多1人.问对A,B都赞成的学生有多少人?分析:在集合问题中,常用到图示法来直观地表示集合,如:数轴法,韦恩图法等.本题可利用韦恩图形象地表示出各数量之间的联系.解赞成A的人数为50×35=30,赞成B的人数为30+3=33.如图,记50名学生组成的集合为U,赞成事件A的学生全体为集合A;赞成事件B的学生全体为集合B.假设对A,B都赞成的学生人数为x,则对A,B都不赞成的学生人数为x3+1,赞成A而不赞成B的人数为30-x,赞成B而不赞成A的人数为33-x,由题意:(30-x)+(33-x)+x+(x3+1)=50,故x=21.故对A、B都赞成的同学有21人.二、集合思想的应用集合与高中数学的许多内容有着广泛的联系,中学数学所研究的各种对象都可以看作集合或集合中的元素,用集合语言可以明了地表述数学概念,准确、简捷地进行数学推理.1. 集合与函数例4 已知函数f(x)=4x2-2(p-2)x-2p2-p+1在区间\上至少存在一个实数c,使f(c)>0,求p的取值组成的集合P.分析:本题可以用二次方程根的分布求解,但需分类讨论且分类情况较多,运算量大.可先求p 的取值组成的集合P在实数集R上的补集C P R,即“f(x)≤0在\上恒成立”.解由补集的含义知C P R={p|当x∈\时,f(x)≤0恒成立}.∵f(x)的开口向上,∴C P R={p|f(-1)≤0且f(1)≤0}.f(-1)≤0,f(1)≤0.即:2p2-p-1≥0,2p2+2p-9≥0.解之得:p≤-3或p≥32.∴C P R={p|p≤-3或p≥32},∴P={p|-3注:运用取补集的方法简化了解题步骤.集合的补集思想实际是一种“正难则反”的思想.2. 集合与二次方程根的分布问题例5 已知集合P={x|x2-3x+2≤0},S={x|x2-2ax+a≤0}.若P S,求实数a的取值集合A.分析:集合之间的包含关系可转化为二次方程的根的分布问题.“P S”即“方程x2-2ax+a=0的两根x1≤1,x2≥2.”解∵P={x|1≤x≤2},S={x|x1≤x≤x2}.如图:若P S,即方程x2-2ax+a=0的两根x1≤1,x2≥ 2. 令f(x)=x2-2ax+a,∴f(1)≤0,f(2)≤0.,即1-2a+a≤0,4-4a+a≤0.解之得:a≥43.3. 集合与简易逻辑对命题p和q,令集合P={x|x满足p},集合Q={x|x满足q},全集为U,则有:(1)若P Q,则p是q的充分条件,q是p的必要条件;(2)若P Q,则p是q的充分不必要条件,q是p的必要不充分条件;(3)若P=Q则p是q的充要条件.例6 设命题p:|4x-3|≤1;命题q:x2-(2a+1)x+a2+a≤0.若┐p是┐q的必要不充分条件,求实数a的取值范围.分析:“┐p是┐q的必要不充分条件”“p是q的充分不必要条件”.令集合P={x|x满足p},集合Q={x|x满足q},可将条件转化为Q P再求解.解由|4x-3|≤1,得:-1≤4x-3≤1,故x∈\12,1\〗.由x2-(2a+2)x+a2+a≤0得:(x-a)(x-a-1)≤0,故x∈\.∵┐p是┐q的必要不充分条件,∴p是q的充分不必要条件,即\12,1\〗\.∴a≤12,a+1≥1.故所求实数a的取值范围是\12\〗.集合是近代数学中的一个重要概念,与高中数学的许多内容有着广泛的联系.在复习中,要善于把在某些方面有类似性质的对象(或满足某一条件的对象)放在一起视为一个集合,然后利用集合的有关概念或通过集合的思想来研究和解决问题.(作者:江小娟,江苏省苏州中学)。

高考数学二轮专题复习:集合与常用逻辑用语

高考数学二轮专题复习:集合与常用逻辑用语

集合与常用逻辑用语【考纲解读】1.通过实例了解集合的含义,体会元素与集合的从属关系,知道常用数集及其记号,了解集合中元素的确定性,互异性,无序性.会用集合语言表示有关数学对象.2.掌握集合的表示方法----列举法和描述法,并能进行自然语言与集合语言的相互转换,了解有限集与无限集的概念.3.了解集合间包含关系的意义,理解子集、真子集的概念和意义,会判断简单集合的相等关系.4.理解并集、交集的概念和意义,掌握有关集合并集、交集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.掌握并集、交集的求法.5.了解全集的意义,理解补集的概念.掌握全集与补集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.掌握补集的求法.6.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析种命题的相互关系;理解必要条件、充分条件与充要条件的意义.7.了解逻辑联结词“或”、“且”、“非”的含义.8.理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.【考点预测】3.注意弄清元素与集合、集合与集合之间的包含关系.4.能根据Venn图表达的集合关系进行相关的运算.5.注意区分否命题与命题的否定,前者是同时否定条件和结论,而后者只否定结论.6.原命题与其逆否命题等价,当直接判定命题条件的充要性有困难时,可等价地转化为对该命题的逆否命题进行判断.7.全称命题的否定是存在性命题,存在性命题的否定是全称命题.【考点在线】考点一集合的概念例1.已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N=()A.(0,1),(1,2) B.{(0,1),(1,2)}C.{y|y=1,或y=2} D.{y|y≥1}从而选B的错误,这是由于在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是点,因此M、N是数集而不是点集.②集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x∈R},这三个集合是不同的.这类题目主要考察不等式的性质成立的条件,以及条件与结论的充要关系.【备考提示】:正确理解集合中的代表元素是解答好本题的关键.练习1:若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于()A.P B.Q C. D.不知道【答案】B【解析】事实上,P、Q中的代表元素都是y,它们分别表示函数y=x2,y= x2+1的值域,由P={y|y≥0},Q={y|y≥1},知QP,即P∩Q=Q.∴应选B.考点二集合元素的互异性集合元素的互异性,是集合的重要属性,教学实践告诉我们,集合中元素的互异性常常被学生在解题中忽略,从而导致解题的失败,下面再结合例题进一步讲解以期强化对集合元素互异性的认识.(a2-3a-8), a3+例2.若A={2,4, a3-2a2-a+7},B={1, a+1, a2-2a+2,-12a2+3a+7},且A∩B={2,5},则实数a的值是________.【答案】2【解析】∵A∩B={2,5},∴a3-2a2-a+7=5,由此求得a=2或a=±1. A={2,4,5}.当a=1时,a2-2a+2=1,与元素的互异性相违背,故应舍去a=1.当a=-1时,B={1,0,5,2,4},与A∩B={2,5}相矛盾,故又舍去a=-1.当a=2时,A={2,4,5},B={1,3,2,5,25},此时A∩B={2,5},满足题设.故a=2为所求.【解析】分两种情况进行讨论.(1)若a+b=a c且a+2b=a c2,消去b得:a+a c2-2a c=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=a c2且a+2b=a c,消去b得:2a c2-a c-a=0,.∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-12考点三集合间的关系例3.设集合A={a|a=3n+2,n∈Z},集合B={b|b=3k-1,k∈Z},则集合A、B的关系是________.【答案】A=B【解析】任设a∈A,则a=3n+2=3(n+1)-1(n∈Z),∴ n∈Z,∴n+1∈Z.∴ a∈B,故A B⊆.①又任设b∈B,则 b=3k-1=3(k-1)+2(k∈Z),∵ k∈Z,∴k-1∈Z.∴ b∈A,故B A⊆②由①、②知A=B.【名师点睛】这里说明a∈B或b∈A的过程中,关键是先要变(或凑)出形式,然后再推理.【备考提示】:集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此应予以重视.反映集合与集合关系的一系列概念,都是用元素与集合的关系来定义的.因此,在证明(判断)两集合的关系时,应回到元素与集合的关系中去.考点四要注意利用数形结合思想解决集合问题集合问题大都比较抽象,解题时要尽可能借助文氏图、数轴或直角坐标系等工具将抽象问题直观化、形象化、明朗化,然后利用数形结合的思想方法使问题灵活直观地获解.例4.设全集U={x|0<x<10,x∈N*},若A∩B={3},A∩C U B={1,5,7},C U A∩C U B={9},则集合A、B是________.【答案】A={1,3,5,7},B={2,3,4,6,8}.【解析】由题意,画出图如下:由图可知: A={1,3,5,7},B={2,3,4,6,8}.【名师点睛】本题用推理的方法求解不如先画出文氏图,用填图的方法来得简捷,由图不难看出.【备考提示】:熟练数形结合的思想是解答好本题的关键.练习4.集合A={x|x2+5x-6≤0},B={x|x2+3x>0},求A∪B和A∩B.【答案】A∪B=R,A∩B={x|-6≤x<-3或0<x≤1}.【解析】本题采用数轴表示法,根据数轴表示的范围,可直观、准确的写出问题的结果.∵ A={x|x2-5x-6≤0}={x|-6≤x≤1},B={x|x2+3x>0}={x|x<-3,或x>0}.如图所示,∴ A∪B={x|-6≤x≤1}∪{x|x<-3,或x>0}=R.A∩B={x|-6≤x≤1}∩{x|x<-3,或x>0}={x|-6≤x<-3,或0<x≤1}.【易错专区】问题1:空集例1.已知集合A={x|x2-3x+2=0},B={x|x2-a x+a-1=0},且A∪B=A,则a的值为______.解:∵ A∪B=A,,∴⊆B A∵ A={1,2},∴ B=∅或B={1}或B={2}或B={1,2}.若B=∅,则令△<0得a∈∅;若B={1},则令△=0得a=2,此时1是方程的根;若B={2},则令△=0得a=2,此时2不是方程的根,∴a∈∅;若B={1,2}则令△>0得a∈R且a≠2,把x=1代入方程得a∈R,把x=2代入方程得a=3.1.(2011年高考山东卷文科1)设集合 M ={x|(x+3)(x-2)<0},N ={x|1≤x ≤3},则M ∩N =( )(A )[1,2) (B)[1,2] (C)( 2,3] (D)[2,3]【答案】A【解析】因为{}|32M x x =-<<,所以{}|12M N x x ⋂=≤<,故选A.2. (2011年高考海南卷文科1)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =⋂,则P 的子集共有( )A.2个B.4个C.6个D.8个【答案】B【解析】因为{}1,3M N ⋂=中有两个元素,所以其子集个数为224=个,选B. 3.(2011年高考安徽卷文科2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则()U S C T 等于( )(A )}{,,,1456 (B) }{,15 (C) }{4 (D) }{,,,,12345 【答案】B【解析】{}1,5,6U T =,所以(){}1,6U S T =.故选B.4.(2011年高考广东卷文科2)已知集合(){,|A x y x y =、为实数,且}221x y +=,5. (2011年高考江西卷文科2)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A.M N ⋃B.M N ⋂C.()()U U C M C N ⋃D.()()U U C M C N ⋂【答案】D【解析】{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U .6.(2011年高考福建卷文科1)若集合M={-1,0,1},N={0,1,2},则M∩N 等于A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}【答案】A【解析】因为{}{}{}1,0,10,1,20,1M N ⋂=-⋂=,故选A.7.(2011年高考湖南卷文科1)设全集{1,2,3,4,5},{2,4},U U M N M C N ===则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4}答案:B解析:画出韦恩图,可知N ={1,3,5}。

吉林省东北师范大学附属中学高考数学二轮专题复习 集合与常用逻辑用语教案 文

吉林省东北师范大学附属中学高考数学二轮专题复习 集合与常用逻辑用语教案 文

专题一:集合、常用逻辑用语、不等式、函数与导数第1讲集合与常用逻辑用语【高考考情解读】 1.本讲在高考中主要考查集合的运算、充要条件的判定、含有一个量词的命题的真假判断与否定,常与函数、不等式、三角函数、立体几何、解析几何、数列等知识综合在一起考查.2.试题以填空题方式呈现,考查的基础知识和基本技能,题目难度中等偏下.1.集合的概念、关系与运算(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.(3)集合的运算:∁U(A∪B)=(∁UA)∩(∁UB),∁U(A∩B)=(∁UA)∪(∁UB),∁U(∁UA)=A. 2.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理.3.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.4.简单的逻辑联结词用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作“p∧q”;用逻辑联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作“p∨q”;对一个命题p全盘否定,就得到一个新命题,记作“綈p”.5.全称量词与存在量词“∀x∈M,p(x)”的否定为“∃x0∈M,綈p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,綈p(x)”.考点一集合间的关系及运算例1(1)(2012·课标全国改编)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为________.(2)设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为________.弄清“集合的代表元素”是解决集合问题的关键.答案(1)10(2)(-∞,-1]∪(0,1)解析(1)∵B={(x,y)|x∈A,y∈A,x-y∈A},A={1,2,3,4,5},∴x=2,y=1;x=3,y=1,2;x=4,y=1,2,3;x=5,y=1,2,3,4.∴B={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)},∴B中所含元素的个数为10.(2)因为A={x|y=f(x)}={x|1-x2>0}={x|-1<x<1},则u=1-x2∈(0,1],所以B={y|y=f(x)}={y|y≤0},A∪B=(-∞,1),A∩B=(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1).(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对于给出已知集合,进行交集、并集与补集运算时,可以直接根据它们的定义求解,也可以借助数轴、韦恩(Venn)图等图形工具,运用分类讨论、数形结合等思想方法,直观求解.(1)(2013·山东改编)已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是________.(2)设全集U =R ,集合P ={x|y =ln(1+x)},集合Q ={y|y =x},则 右图中的阴影部分表示的集合为________.答案 (1)5 (2){x|-1<x<0,x ∈R}解析 (1)x -y ∈{}-2,-1,0,1,2,即B 中元素有5个.(2)由1+x>0得x>-1,即P ={x|x>-1};Q ={y|y≥0},因此结合题意得,题中的阴影部分表示的集合是P∩(∁RQ)={x|-1<x<0,x ∈R}.考点二 四种命题与充要条件例2 (1)已知a ,b ,c ∈R ,命题“若a +b +c =3,则a2+b2+c2≥3”的否命题是________________.(2)(2013·青岛模拟)设x ,y ∈R ,则“x2+y2≥9”是“x>3且y≥3”的________条件.(填“充要、充分不必要、必要不充分、既不充分也不必要”)(1)从“否命题”的形式入手,但要注意“否命题”与“命题的否定”的区别.(2)结合图形与性质,从充要条件的判定方法入手.答案 (1)若a +b +c≠3,则a2+b2+c2<3(2)必要不充分解析 (1)命题的否命题是原命题的条件与结论分别否定后组成的命题,所以应填“a +b +c≠3,则a2+b2+c2<3”.(2)如图:x2+y2≥9表示以原点为圆心,3为半径的圆上及圆外的点,当x2+y2≥9时,x>3且y≥3并不一定成立,当x =2,y =3时,x2+y2≥9,但x>3且y≥3不成立;而x>3且y≥3时,x2+y2≥9一定成立,应填必要不充分条件.一个命题的否命题、逆命题、逆否命题是根据原命题适当变更条件和结论后得到的形式上的命题,解这类试题时要注意对于一些关键词的否定,如本题中等于的否定是不等于,而不是单纯的大于、也不是单纯的小于.进行充要条件判断实际上就是判断两个命题的真假,这里要注意断定一个命题为真需要进行证明,断定一个命题为假只要举一个反例即可.(1)设x ∈R ,则“x>12”是“2x2+x -1>0”的________条件. (2)给出以下三个命题:①若ab≤0,则a≤0或b≤0;②在△ABC 中,若sin A =sin B ,则A =B ;③在一元二次方程ax2+bx +c =0中,若b2-4ac<0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是________.(填序号)答案 (1)充分不必要 (2)②解析 (1)不等式2x2+x -1>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x>12或x<-1,故由x>12⇒2x2+x -1>0,但2x2+x -1>0D ⇒/x>12,故填充分不必要条件. (2)在△ABC 中,由正弦定理得sin A =sin B ⇔a =b ⇔A =B.故填②.考点三逻辑联结词、全称量词和存在量词例3(1)命题“存在一个无理数,它的平方是有理数”的否定是________________.(2)若命题“∃x∈R,使x2+(a-1)x+1<0”是假命题,则实数a的取值范围是________.答案(1)任意一个无理数,它的平方不是有理数(2)[-1,3]解析(1)通过否定原命题得出结论.原命题的否定是“任意一个无理数,它的平方不是有理数”.(2)方法一令f(x)=x2+(a-1)x+1,若命题“∃x∈R,使得x2+(a-1)x+1<0”是真命题,则由x2+(a-1)x+1<0有解可得Δ=(a-1)2-4=a2-2a-3>0,解得a∈(-∞,-1)∪(3,+∞),故所求实数a的取值范围为-1≤a≤3.方法二也可转化为:∀x∈R,x2+(a-1)x+1≥0恒成立,从而Δ≥0,解得-1≤a≤3.(1)全称命题(存在性命题)的否定是其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定,而命题的否定则直接否定结论.(2)若利用某些条件直接判定或探求有困难时,往往可以将条件进行等价转化.若是由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.(1)下列命题中,真命题是________.(填序号)①∃m∈R,使函数f(x)=x2+mx(x∈R)是偶函数;②∃m∈R,使函数f(x)=x2+mx(x∈R)是奇函数;③∀m∈R,使函数f(x)=x2+mx(x∈R)都是偶函数;④∀m∈R,使函数f(x)=x2+mx(x∈R)都是奇函数.(2)已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x0∈R,x20+2ax0+2-a=0”.若命题p、q均是真命题,则实数a的取值范围是________.答案(1)①(2)a≤-2或a=1解析(1)对于①,当m=0时,f(x)=x2是偶函数,故①正确.当m=1时,f(x)=x2+x是非奇非偶函数,故③④错误;又y=x2是偶函数,则f(x)=x2+mx不可能是奇函数,故②错误.(2)命题p为真时a≤1;“∃x0∈R,x20+2ax0+2-a=0”为真,即方程x2+2ax+2-a=0有实根,故Δ=4a2-4(2-a)≥0,解得a≥1或a≤-2.若p、q均为真命题,则a≤-2或a=1. 1.解答有关集合问题,首先正确理解集合的意义,准确地化简集合是关键;其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和韦恩图加以解决.2.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.3.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.4.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立的、一真一假的.1.已知集合A={z∈C|z=1-2ai,a∈R},B={z∈C||z|=2},则A∩B=________.答案{1+3i,1-3i}解析 A∩B 中的元素同时具有A ,B 的特征,问题等价于|1-2ai|=2,a ∈R ,解得a =±32. 故A∩B ={1+3i,1-3i}.2. 下列命题中,正确命题的个数是________.①若命题p 为真命题,命题q 为假命题,则命题“p ∧q”为真命题;②“sin α=12”是“α=π6”的充分不必要条件; ③l 为直线,α,β为两个不同的平面,若l ⊥β,α⊥β,则l ∥α;④命题“∀x ∈R,2x>0”的否定是“∃x0∈R,2x0≤0”. 答案 1解析 对①,只有当p ,q 全是真命题时,p ∧q 为真;对②,sin α=12⇒α=2kπ+π6或2kπ+5π6,k ∈Z ,故“sin α=12”是“α=π6”的必要不充分条件;对③,l ⊥β,α⊥β⇒l ∥α或l ⊂α;对④,全称命题的否定是存在性命题.3. 已知函数f(x)=4sin2⎝⎛⎭⎫π4+x -23cos 2x -1,且给定条件p :x<π4或x>π2,x ∈R.若条件q :-2<f(x)-m<2.且綈p 是q 的充分条件,求实数m 的取值范围.解 由条件q 可得⎩⎪⎨⎪⎧ m>f x -2,m<f x +2.∵綈p 是q 的充分条件,∴在π4≤x≤π2的条件下,⎩⎪⎨⎪⎧ m>f x -2,m<f x +2恒成立.又f(x)=2⎣⎡⎦⎤1-cos ⎝⎛⎭⎫π2+2x -23cos 2x -1 =2sin 2x -23cos 2x +1=4sin ⎝⎛⎭⎫2x -π3+1. 由π4≤x≤π2,知π6≤2x -π3≤2π3, ∴3≤4sin ⎝⎛⎭⎫2x -π3+1≤5, 故当x =5π12时,f(x)max =5, 当x =π4时,f(x)min =3. ∴只需⎩⎪⎨⎪⎧m>5-2,m<3+2成立,即3<m<5. ∴m 的取值范围是3<m<5.(推荐时间:40分钟)1. (2013·课标全国Ⅰ改编)已知集合A ={1,2,3,4},B ={x|x =n2,n ∈A},则A∩B =________.答案 {1,4}解析 ∵x =n2,n ∈A ,∴x =1,4,9,16.∴B ={1,4,9,16}.∴A∩B ={1,4}.2. (2012·安徽改编)命题“存在实数x ,使x>1”的否定是________.答案 对任意实数x ,都有x≤1解析 利用存在性命题的否定是全称命题求解.“存在实数x ,使x>1”的否定是“对任意实数x ,都有x≤1”.3. (2013·福建改编)已知集合A ={1,a},B ={1,2,3},则“a =3”是“A ⊆B”的________条件. 答案 充分不必要解析 a =3时A ={1,3},显然A ⊆B.但A ⊆B 时,a =2或3.4. (2013·湖北改编)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x|12x≤1,B ={}x|x2-6x +8≤0,则A∩∁RB =________.答案 {x|0≤x<2或x>4}解析 A ={x|x≥0},B ={x|2≤x≤4},∴A∩∁RB ={x|x≥0}∩{x|x>4或x<2}={x|0≤x <2或x>4}.5. 设U ={0,1,2,3},A ={x ∈U|x2+mx =0},若∁UA ={1,2},则实数m =________. 答案 -3解析 ∵∁UA ={1,2},∴A ={0,3},∴0,3是方程x2+mx =0的两根,∴m =-3.6. (2012·天津)已知集合A ={x ∈R||x +2|<3},集合B ={x ∈R|(x -m)(x -2)<0},且A∩B =(-1,n),则m =________,n =________.答案 -1 1解析 A ={x|-5<x<1},因为A∩B ={x|-1<x<n},B ={x|(x -m)(x -2)<0},所以m =-1,n =1.7. 已知R 是实数集,M ={x|2x<1},N ={y|y =x -1+1},则N∩(∁RM)=________. 答案 [1,2]解析 M ={x|2x<1}={x|x<0或x>2}, N ={y|y =x -1+1}={y|y≥1},∁RM ={x|0≤x≤2},∴N∩(∁RM)={x|1≤x≤2}=[1,2].8. 设p :x x -2<0,q :0<x<m ,若p 是q 成立的充分不必要条件,则m 的取值范围是__________. 答案 (2,+∞)解析 p :0<x<2,若p 是q 成立的充分不必要条件,则m>2.9. 设A 是整数集的一个非空子集,对于k ∈A ,如果k -1A ,且k +1A ,那么称k 是A 的一个“孤立元”,给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.答案 6解析 所求不含“孤立元”的集合中的元素必是连续三个整数,故有{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.10.(2013·陕西改编)设a ,b 为向量,则“|a·b|=|a||b|”是“a ∥b”的________条件.答案 充要解析 由|a||b||cos 〈a ,b 〉|=|a||b|,则有cos 〈a ,b 〉=±1.即〈a ,b 〉=0或π,所以a ∥b.由a ∥b ,得向量a 与 b 同向或反向,所以〈a ,b 〉=0或π,所以|a·b|=|a||b|.11.已知集合A ={1,2,3,4},B ={2,4,6,8},定义集合A×B ={(x ,y)|x ∈A ,y ∈B},则集合A×B 中属于集合{(x ,y)|logxy ∈N}的元素个数是________.答案 4解析 由给出的定义得A×B ={(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8)}.其中log22=1,log24=2,log28=3,log44=1,因此一共有4个元素.12.已知p :∃x ∈R ,mx2+2≤0,q :∀x ∈R ,x2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是________.答案 [1,+∞)解析 ∵p ∨q 为假命题,∴p 和q 都是假命题.由p :∃x ∈R ,mx2+2≤0为假命题,得綈p :∀x ∈R ,mx2+2>0为真命题,∴m≥0. ① 由q :∀x ∈R ,x2-2mx +1>0为假命题,得綈q :∃x ∈R ,x2-2mx +1≤0为真命题,∴Δ=(-2m)2-4≥0⇒m2≥1⇒m≤-1或m≥1. ② 由①和②得m≥1.13.给出下列命题:①∀x ∈R ,不等式x2+2x>4x -3均成立;②若log2x +logx2≥2,则x>1;③“若a>b>0且c<0,则c a >c b”的逆否命题; ④若p 且q 为假命题,则p ,q 均为假命题.其中真命题是________.(填序号)答案 ①②③解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log2x +1log2x≥2,得x>1;③中由a>b>0,得1a <1b,而c<0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确.14.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x0∈R ,使得x20-x0>0”的否定是:“∀x ∈R ,均有x2-x<0”;③命题“x2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c},q :{a}⊆{a ,b ,c},p 且q 为真命题.其中真命题的序号是________.(填写所有真命题的序号)答案 ①④解析 对①,因为命题“若α=β,则cos α=cos β”为真命题,所以其逆否命题亦为真命题,①正确;对②,命题“∃x0∈R ,使得x20-x0>0”的否定应是:“∀x ∈R ,均有x2-x≤0”,故②错;对③,因为由“x2=4”得“x =±2”,由“x =-2”得“x2=4”,所以“x2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确.15.对于集合M 、N ,定义:M -N ={x|x ∈M 且xD ∈/N},M N =(M -N)∪(N -M).设A ={y|y =x2-3x ,x ∈R},B ={x|y =log2(-x)},则A B =________.答案 (-∞,-94)∪[0,+∞) 解析 A ={y|y≥-94},B ={x|x<0},A -B ={x|x≥0},B -A ={x|x<-94}, 则A B =(A -B)∪(B -A)=(-∞,-94)∪[0,+∞). 16.设平面点集A =⎩⎨⎧⎭⎬⎫x ,y ⎪⎪y -x ⎝⎛⎭⎫y -1x ≥0,B ={(x ,y)|(x -1)2+(y -1)2≤1},则A∩B 所表示的平面图形的面积为________.答案 π2解析 由题意知A∩B 所表示的平面图形为图中阴影部分,曲线y =1x与直线y =x 将圆(x -1)2+(y -1)2=1分成S1,S2,S3, S4四部分.∵圆(x -1)2+(y -1)2=1与y =1x的图象都关于直线y =x 对称, 从而S1=S2,S3=S4,而S1+S2+S3+S4=π,∴S 阴影=S2+S4=π2.专题一—集合与常用逻辑用语[平行班]专题一.1 集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A 的任意一个元素都是集合B 的元素(若A a ∉则B a ∈),则称集合A 为集合B 的子集,记为A ⊆B 或B ⊇A ;如果A ⊆B ,并且A ≠B ,这时集合A 称为集合B 的真子集,记为A B 或B A.4.集合的相等:如果集合A 、B 同时满足A ⊆B 、B ⊇A ,则A=B.5.补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记 为 A C s .6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常 记作U.7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集, 记作A ⋂B.8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并 集,记作A ⋃B.9.空集:不含任何元素的集合称为空集,记作Φ.10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N ,正整数集记作N+或N *,整数集记作Z ,有理数集记作Q ,实数集记作R.二、疑难知识1.符号⊆,,⊇,,=,表示集合与集合之间的关系,其中“⊆”包括“”和“=”两种情况,同样“⊇”包括“”和“=”两种情况.符号∈,∉表示元素与集合之间的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B=Φ易漏掉的情况.5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、V enn 图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n 个元素的集合的所有子集个数为:n 2,所有真子集个数为:n2-1三、经典例题[例1] 已知集合M={y|y =x2+1,x ∈R},N={y|y =x +1,x ∈R},则M∩N=( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y|y=1,或y=2}D .{y|y≥1} 错解:求M∩N 及解方程组⎩⎨⎧+=+=112x y x y 得⎩⎨⎧==10y x 或 ⎩⎨⎧==21y x ∴选B错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是实数对(x,y),因此M 、N 是数集而不是点集,M 、N 分别表示函数y=x2+1(x ∈R),y=x +1(x ∈R)的值域,求M∩N 即求两函数值域的交集.正解:M={y|y=x2+1,x ∈R}={y|y≥1}, N={y|y=x +1,x ∈R}={y|y ∈R}.∴M∩N={y|y≥1}∩{y|(y ∈R)}={y|y≥1}, ∴应选D .注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x ∈R}、{(x,y)|y=x2+1,x ∈R},这三个集合是不同的.[例2] 已知A={x|x2-3x +2=0},B={x|ax -2=0}且A ∪B=A ,求实数a 组成的集合C . 错解:由x2-3x +2=0得x=1或2.当x=1时,a=2, 当x=2时,a=1.错因:上述解答只注意了B 为非空集合,实际上,B=时,仍满足A ∪B=A.当a=0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A ∪B=A ∴B A 又A={x|x2-3x +2=0}={1,2}∴B=或{}{}21或 ∴C={0,1,2} [例3]已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有: ( )A .m+n ∈A B. m+n ∈B C.m+n ∈C D. m+n 不属于A ,B ,C 中任意一个 错解:∵m ∈A ,∴m=2a,a Z ∈,同理n=2a+1,a ∈Z, ∴m+n=4a+1,故选C错因是上述解法缩小了m+n 的取值范围.正解:∵m ∈A, ∴设m=2a1,a1∈Z, 又∵n B ∈,∴n=2a2+1,a2∈ Z ,∴m+n=2(a1+a2)+1,而a1+a2∈ Z , ∴m+n ∈B, 故选B.[例4] 已知集合A={x|x2-3x -10≤0},集合B={x|p +1≤x≤2p -1}.若BA ,求实数p 的取值范围.错解:由x2-3x -10≤0得-2≤x≤5. 欲使B A ,只须3351212≤≤-⇒⎩⎨⎧≤-+≤-p p p∴ p 的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设. 正解:①当B≠时,即p +1≤2p -1p≥2.由B A 得:-2≤p +1且2p -1≤5.由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A ∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a +b,a +2b},B={a,ac,ac2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac2,消去b 得:a +ac2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac2且a +2b=ac ,消去b 得:2ac2-ac -a=0,∵a≠0,∴2c2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-21.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6] 设A 是实数集,满足若a ∈A ,则a -11∈A ,1≠a 且1∉A.⑴若2∈A ,则A 中至少还有几个元素?求出这几个元素.⑵A 能否为单元素集合?请说明理由.⑶若a ∈A ,证明:1-a 1∈A.⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒ 21∈A ⇒ 2∈A∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a -11即12+-a a =0该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a ∈A ⇒ a -11∈A ⇒ a --1111∈A ⇒111---a a ∈A ,即1-a 1∈A ⑷由⑶知a ∈A 时,a -11∈A , 1-a 1∈A .现在证明a,1-a 1, a -11三数互不相等.①若a=a -11,即a2-a+1=0 ,方程无解,∴a ≠a -11②若a=1-a 1,即a2-a+1=0,方程无解∴a ≠1-a 1③若1-a 1 =a -11,即a2-a+1=0,方程无解∴1-a 1≠a -11.综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.[例7] 设集合A={a |a =12+n ,n ∈N+},集合B={b |b =542+-k k ,k ∈N+},试证:A B . 证明:任设a ∈A ,则a =12+n =(n +2)2-4(n +2)+5 (n ∈N+),∵ n ∈N*,∴ n +2∈N*∴ a ∈B 故 ①显然,1{}*2,1|N n n a a A ∈+==∈,而由B={b |b =542+-k k ,k ∈N+}={b |b =1)2(2+-k ,k ∈N+}知1∈B ,于是A≠B ②由①、② 得A B .点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题1.集合A={x|x2-3x -10≤0,x ∈Z},B={x|2x2-x -6>0, x ∈ Z},则A ∩B 的非空真子集的个数为( )A .16B .14C .15D .322.数集{1,2,x2-3}中的x 不能取的数值的集合是( )A .{2,-2 }B .{-2,-5 }C .{±2,±5 }D .{5,-5}3. 若P={y|y=x2,x ∈R},Q={y|y=x2+1,x ∈R},则P∩Q 等于( )A .PB .QC .D .不知道4. 若P={y|y=x2,x ∈R},Q={(x ,y)|y=x2,x ∈R},则必有( )A .P∩Q=B .P QC .P=QD .P Q5.若集合M ={11|<x x },N ={x |2x ≤x },则M N = ( )A .}11|{<<-x xB .}10|{<<x xC .}01|{<<-x xD .∅6.已知集合A={x|x2+(m +2)x +1=0,x ∈R},若A∩R +=,则实数m 的取值范围是_________.7.(06高考全国II 卷)设a R ∈,函数2()22.f x ax x a =--若()0f x >的解集为A ,{}|13,B x x A B φ=<<≠,求实数a 的取值范围。

(统考版)2023高考数学二轮专题复习:集合、复数与常用逻辑用语课件

(统考版)2023高考数学二轮专题复习:集合、复数与常用逻辑用语课件
1−i 2
zത 2+i 3+4i
解析:因为z=2+ =2+
=2-i,所以തz=2+i,则 = =
,所以复
1+i
2
z 2−i
5
zത
数 在复平面内所对应的点在第一象限.z zത=(2-i)(2+i)=4-i2=5,则选项A,
z
C,D正确,选项B错误.故选B.
练后领悟
1.复数的概念及运算问题的解题技巧
(1)与复数有关的代数式为纯虚数的问题,可设为mi(m∈R且m≠0),
(4)A∩ B=A⇔A⊆B,A∪ B=A⇔B⊆A.
考点二
复数——求实、虚部是根本
考点二
复数——求实、虚部是根本
导向性
原则性
考查数学运算,逻辑推理核心素养.
主干知识、必考点、注意概念要点.
1.[2022·湖南高一期中]已知复数z=m+i(m∈R),则“|z|>
“m>3”的(
)
A.充分不必要条件
B.充要条件
D.若复数z在复平面内对应的点在角α的终边上,则sin
答案:D
2 5
α=
5
)
3.[2022·河南新乡高二期中]若复数z在复平面内对应的点位于第二
象限,则(
)
A.z2不可能为纯虚数
B.z2在复平面内对应的点可能位于第二象限
C.z2在复平面内对应的点一定位于第三象限
D.z2在复平面内对应的点可能位于第四象限
中有3个元素,则集合B为{1,2,3}的非空真子集,有23-2=6种取法;此时共
有1×6=6种取法;综上所述:不同的取法共有9+15+6=30种.
故选C.
练后领悟
1.解决集合问题的三个注意点

二轮复习之对集合理解及集合思想应用问题(提高篇)

二轮复习之对集合理解及集合思想应用问题(提高篇)

教学过程一、高考解读有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。

考试形式多以一道选择题为主,分值5分。

预测2015年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。

具体题型估计为:(1)题型是1个选择题或1个填空题;(2)热点是集合的基本概念、运算和工具作用二、复习预习(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作A⊆B(或BA⊂);集合相等:构成两个集合的元素完全一样。

若A⊆B且B⊇A,则称A等于B,记作A=B;若A⊆B且A≠B,则称A是B的真子集,记作AB;(2)简单性质:1)A⊆A;2)Φ⊆A;3)若A⊆B,B⊆C,则A⊆C;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n-1个真子集);三、知识讲解考点11、全集与补集:(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ;(2)若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集;(3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S2、交集与并集:(1)一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集。

交集}|{B x A x x B A ∈∈=⋂且。

(2)一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集。

}|{B x A x x B A ∈∈=⋃或并集注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

专题1-1 集合及集合思想应用(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(解析版)

专题1-1 集合及集合思想应用(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(解析版)

专题1-1 集合及集合思想应用目录讲高考 (1)题型全归纳 ................................................................................................................................................... 3 【题型一】集合中元素表示 ................................................................................................................... 3 【题型二】集合元素个数 ........................................................................................................................ 4 【题型三】知识点交汇处的集合元素个数........................................................................................ 5 【题型四】由元素个数求参 ................................................................................................................... 7 【题型五】子集关系求参 ........................................................................................................................ 8 【题型六】集合运算1:交集运算求参 .......................................................................................... 10 【题型七】集合运算2:并集运算求参 .......................................................................................... 12 【题型八】集合运算3:补集运算求参 .......................................................................................... 13 【题型九】应用韦恩图求解 ................................................................................................................ 15 【题型十】集合中的新定义 ................................................................................................................ 18 专题训练 .. (20)讲高考1.(2022·全国·高考真题(理))设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()UA B ⋃=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-【答案】D【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-, 所以(){}U 2,0A B ⋃=-. 故选:D.2.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( ) A .∅ B .S C .T D .Z 【答案】C【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆, 因此,S T T =. 故选:C.3.(2021·北京·高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤ C .{}|01x x ≤<D .{}|02x x ≤≤【答案】B【分析】结合题意利用并集的定义计算即可.【详解】由题意可得:{}|12A B x x =-<≤.故选:B.4.(2021·浙江·高考真题)设集合{}1A x x =≥,{}12B x x =-<<,则A B =( ) A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<【答案】D【分析】由题意结合交集的定义可得结果.【详解】由交集的定义结合题意可得:{}|12A B x x =≤<.故选:D.5.(2021·全国·高考真题(文))已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()UM N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:{}1,2,3,4M N =,则(){}5U M N =.故选:A.6.(2007·全国·高考真题(文))已知集合{}cos sin ,02E θθθθπ=<≤≤∣,{}tan sin F θθθ=<∣,那么E F 为区间( )A .,2ππ⎛⎫ ⎪⎝⎭B .3,44ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭ D .35,44ππ⎛⎫ ⎪⎝⎭【答案】A【解析】先分别利用正弦函数、余弦函数和正切函数的图象化简集合E ,F ,再利用交集的运算求解.【详解】∵5{cos sin ,02}44E πθθθθπθθπ⎧⎫=<≤≤=<<⎨⎬⎩⎭∣∣, {}tan sin ,2F k k k πθθθθπθππ⎧⎫=<=+<<+∈⎨⎬⎩⎭Z ∣∣,∵2E F πθθπ⎧⎫=<<⎨⎬⎩⎭∣.故选:A.7.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( )A .34π B .π C .2π D .3π 【答案】B【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后可求区域的面积. 【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且2362332BO =⨯⨯=,故361226PO =-=.因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,而三角形ABC 内切圆的圆心为O ,半径为2364136=⨯,故S 的轨迹圆在三角形ABC 内部,故其面积为π故选:B题型全归纳【题型一】集合中元素表示【讲题型】例题1:已知集合{}{,}A =∅∅,下列选项中均为A 的元素的是( ) (1){}∅(2){}{}∅(3)∅(4){}{},∅∅ A .(1)(2) B .(1)(3) C .(2)(3) D .(2)(4) 【答案】B【分析】根据元素与集合的关系判断. 集合A 有两个元素:{}∅和∅, 故选:B例题2、设集合{|24k M x x πππ+==-,}k Z ∈,{|42k N x x ππ==+,}k Z ∈,则( ) A .M N B .M N C .M N ⊆ D .M N【答案】B 【分析】对于集合N ,令2()k m m =∈Z 和21()k m m Z =-∈,即得解. 【详解】{|24k M x x ππ==+,}k Z ∈,{|42k N x x ππ==+,}k Z ∈, 对于集合N ,当2()k m m =∈Z 时,22m x ππ=+,m Z ∈; 当21()k m m Z =-∈时,24m x ππ=+,m Z ∈.M N ∴,故选:B .1.以下四个写法中:∵ {}00,1,2∈;∵{}1,2∅⊆;∵{}{}0,1,2,3=2,3,0,1;∵A A ⋂∅=,正确的个数有( ) A .1个 B .2个 C .3个 D .4个 【答案】C对于∵,{}00,1,2∈正确;对于∵,因为空集是任何集合的子集,所以{}1,2∅⊆正确;对于∵,根据集合的互异性可知{}{}0,1,2,3=2,3,0,1正确;对于∵, A ∅=∅,所以A A⋂∅=不正确;四个写法中正确的个数有3个,故选C.2.下面五个式子中:∵{}a a ⊆;∵{}a ∅⊆;∵{a }∈{a ,b };∵{}{}a a ⊆;∵a ∈{b ,c ,a };正确的有( ) A .∵∵∵ B .∵∵∵∵ C .∵∵ D .∵∵ 【答案】A【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. ①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确; {}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确; a 是{},,b c a 的元素,所以⑤正确. 故选:A.3.若{}21,3,a a ∈,则a 的可能取值有( )A .0B .0,1C .0,3D .0,1,3 【答案】C【分析】根据元素与集合的关系及集合中元素的性质,即可判断a 的可能取值. 0a =,则{}1,3,0a ∈,符合题设;1a =时,显然不满足集合中元素的互异性,不合题设;3a =时,则{}1,3,9a ∈,符合题设;∵0a =或3a =均可以.故选:C【题型二】集合元素个数【讲题型】例题1.已知集合11|3381x A x Z -⎧⎫=∈<≤⎨⎬⎩⎭,2|03x B x N x +⎧⎫=∈<⎨⎬-⎩⎭,则集合{}|,,z z xy x A y B =∈∈的元素个数为( ) A .6 B .7 C .8 D .9 【答案】B 【分析】解指数不等式求得集合A ,解分式不等式求得集合B ,由此求得集合{}|,,z z xy x A y B =∈∈的元素个数. 【详解】 由113381x -<≤得411333x --<≤,411x -<-≤,解得32x -<≤,所以{}2,1,0,1,2A =--.由203x x +<-解得23x -<<,所以{}1,0,1,2B =-.所以{}|,,z z xy x A y B =∈∈{}2,0,2,4,1,1,4=---,共有7个元素.故选:B. 例题2.,若n A 表示集合n A 中元素的个数,则5A =_______,则12310...A A A A ++++=_______. 【答案】11; 682. 【详解】 试题分析:当时,,,即,,由于不能整除3,从到,,3的倍数,共有682个,1.若集合{}2N log3A x x =∈<,{B x y ==,则A B 的元素个数为( )A .3B .4C .5D .6 【答案】C【分析】分别求出集合,A B ,然后,由交集定义求得交集后可得元素个数.由题意得,{}{}081,2,3,4,5,6,7A x x =∈<<=N ,{}3B x x =≥,故{}3,4,5,6,7A B =,有5个元素. 故选:C2.已知集合{}1,0,1A =-,(),|,,xB x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为A .3B .4C .6D .9 【答案】B【分析】根据几何A 中的元素,可求得集合B 中的有序数对,即可求得B 中元素个数.因为x A ∈,y A ,xy∈N ,所以满足条件的有序实数对为()1,1--,()0,1-,()0,1,()1,1.故选:B.3.集合{}2*|70,A x x x x =-<∈N ,则*6|,B y y A y N ⎧⎫=∈∈⎨⎬⎩⎭中元素的个数为A .1个B .2个C .3个D .4个 【答案】D{}{}{}2**|70,|07,1,2,3,4,5,6A x x x x x x x =-<∈=<<∈=N N , {}*6|,1,2,3,6B y y A y ⎧⎫=∈∈=⎨⎬⎩⎭N ,则B 中的元素个数为4个.本题选择D 选项.【题型三】知识点交汇处的集合元素个数【讲题型】例题1.1.已知全集{(,)|,}U x y x R y R =∈∈,集合S U ⊆,若S 中的点在直角坐标平面内形成的图形关于原点、坐标轴、直线y x =均对称,且(2,3)S ∈,则S 中的元素个数至少有 A .4个 B .6个 C .8个 D .10个 【答案】C求出点(2,3)关于原点、坐标轴、直线y x =的对称点,其中关于直线y x =对称点,再求它关于原点、坐标轴、直线y x =的对称点,开始重复了.从而可得点数的最小值.因为(2,3)S ∈,S 中的点在直角坐标平面内形成的图形关于原点、坐标轴、直线y x =对称,所以(2,3),(2,3),(2,3),(3,2),(32),S S S S S --∈-∈-∈∈--∈,(32),S ∈,-(32),S -∈,所以S 中的元素个数至少有8个, 故选:C.例题2.若正方体12341234A A A A B B B B -的棱长为1,则集合{}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为( )A .1B .2C .3D .4【答案】A【分析】将1111=()i j i j AB A A A B B B ++代入11i j A B A B ⋅,结合111j A B A A ⊥和111j A B B B ⊥({}2,3,4j ∈)化简即可得出集合中元素的个数.∵当11i j A B A B ≠时 正方体12341234A A A A B B B B -∴111j A B A A ⊥ 故:1110j A B A A ⋅= ({}2,3,4j ∈)∴111j A B B B ⊥ 故:1110j A B B B ⋅= ({}2,3,4j ∈)1111()i j i j A B A A A B B B =++∴11111111()i j i j A B A B A B A A A B B B ⋅=⋅++2111111111j j A B A A A B A B B B =⋅++⋅= {}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为1.∵11=i j A B A B 时.2111111111i j x A B A B A B A B A B =⋅=⋅==此时{}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为1.综上所述, {}{}{|,1,2,3,4,1,2,3,4}x x A B A B i j =⋅∈∈中元素的个数为1.故选:A.1.设集合{2,1,0,1,2}A =--,{1,0,1}B =-,22(,)1,,43x y C x y x A y B ⎧⎫⎪⎪=+≤∈∈⎨⎬⎪⎪⎩⎭,则集合C 中元素的个数为( ) A .11 B .9 C .6 D .4 【答案】A【分析】由题意可得出:x 从1-,0,1任选一个;或者x 从2-,2任选一个;结合题中条件,确定对应的选法,即可得出结果.解:根据条件得:x 从1-,0,1任选一个,y 从而1-,0,1任选一个,有9种选法; 2x =-或2时,0y = ,有两种选法;共11种选法; ∴C 中元素有11个. 故选A .2.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为 A .77 B .49C .45D .30【答案】C因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.3.若集合(){},,,|04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,|04,04,,,t u v w t u v w t u v w 且=≤<≤≤<≤∈N ,用()card X 表示集合X 中的元素个数,则()()card card F E +=A .50B .100C .150D .200 【答案】D当4s =时,p ,q ,r 都是取0,1,2,3中的一个,有44464⨯⨯=种,当3s =时,p ,q ,r 都是取0,1,2中的一个,有33327⨯⨯=种,当2s =时,p ,q ,r 都是取0,1中的一个,有2228⨯⨯=种,当1s =时,p ,q ,r 都取0,有1种,所以()card 642781100E =+++=,当0=t 时,u 取1,2,3,4中的一个,有4种,当1t =时,u 取2,3,4中的一个,有3种,当2t =时,u 取3,4中的一个,有2种,当3t =时,u 取4,有1种,所以t 、u 的取值有123410+++=种,同理,v 、w 的取值也有10种,所以()card F 1010100=⨯=,所以()()card card F 100100200E +=+=,故选D .【题型四】由元素个数求参【讲题型】例题1.若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =( )A .4B .2C .0D .0或4 【答案】A2=40,0 4.0.A a a a a A A ∴∆-=∴==集合中只有一个元素,或又当时集合中无元素,故选 考点:该题主要考查集合的概念、集合的表示以及集合与一元二次方程的联系. 例题2.已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则 A .8k > B .8k ≥C .16k >D .16k ≥【答案】C试题分析:因为{}21log A x N x k =∈<<中到少有3个元素,即集合A 中一定有2,3,4三个元4【练题型】1.已知集合{}2220A x x ax a =++≤,若A 中只有一个元素,则实数a 的值为( ) A .0 B .0或2- C .0或2 D .2 【答案】C 【分析】根据题意转化为抛物线222y x ax a =++与x 轴只有一个交点,只需2480a a =-=△即可求解.若A 中只有一个元素,则只有一个实数满足2220x ax a ++≤,即抛物线222y x ax a =++与x 轴只有一个交点,∵2480a a =-=△,∵0a =或2.故选:C 2..已知{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈.定义集合{}12121122(,)(,),(,),A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕的元素个数n 满足( )A .77n =B .49n ≤C .64n =D .81n ≥ 【答案】A先理解题意,然后分∵当11x =±,10y =时,∵当10x =,11y =±时, ∵当10x =,10y =时,三种情况讨论即可.解:由{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈,∵当11x =±,10y =时, 124,3,2,1,0,1,2,3,4x x +=----, 123,2,1,0,1,2,3y y +=---,此时A B ⊕的元素个数为9763⨯=个,∵当10x =,11y =±时, 123,2,1,0,1,2,3x x +=---, 124,3,2,1,0,1,2,3,4y y +=----,这种情况和第∵种情况除124,4y y +=-外均相同,故新增7214⨯=个, ∵当10x =,10y =时, 123,2,1,0,1,2,3x x +=---,123,2,1,0,1,2,3y y +=---,这种情况与前面重复,新增0个, 综合∵∵∵可得:A B ⊕的元素个数为6314077++=个, 故选:A.3.如果集合{}2210A x ax x =++=中只有一个元素,则a 的值是( ) A .0B .0或1C .1D .不能确定【答案】B因为A 中只有一个元素,所以方程2210ax x ++=只有一个根,当a=0时,12x =-;当0a ≠时,440,1a a ∆=-==,所以a=0或1.【题型五】子集关系求参【讲题型】例题1.已知集合{}(){}1,0A B x x x a ==-<,若A B ⊆,则a 的取值范围是( ) A .(),1-∞ B .()1,+∞ C .(),2-∞ D .()2,+∞【答案】D【分析】先化简集合A ,,B 再根据A B ⊆得解. 【详解】112x =>≤≤,故[]1,2A =, 当0a <时,(,0)B a =,显然不满足A B ⊆; 当0a =时,B =∅,显然不满足A B ⊆;当0a >时,(0,)B a =,若2A B a ⊆⇒>.故选:D例题2.已知集合{}2230A x x x =--<,非空集合{}21B x a x a =-<<+,B A ⊆,则实数a 的取值范围为( ). A .(],2-∞B .1,22⎛⎤ ⎥⎝⎦C .(),2-∞D .1,22⎛⎫ ⎪⎝⎭【答案】B先化简集合A ,再由B A ⊆建立不等式组即可求解 【详解】{}{}223013A x x x x x =--<=-<<,由B A ⊆且B 为非空集合可知,应满足211312a a a a-≥-⎧⎪+≤⎨⎪+>-,解得1,22a ⎛⎤∈ ⎥⎝⎦故选:B1.若集合{}|2135A x a x a =+≤≤-,{}|516B x x =≤≤,则能使A B ⊆成立的所有a 组成的集合为( ) A .{}|27a a ≤≤ B .{}|67a a ≤≤C .{}7|a a ≤D .∅【答案】C考虑A =∅和A ≠∅两种情况,得到21353516215a a a a +≤-⎧⎪-≤⎨⎪+≥⎩,解得答案.【详解】当A =∅时,即2135a a +>-,6a <时成立;当A ≠∅时,满足21353516215a a a a +≤-⎧⎪-≤⎨⎪+≥⎩,解得67a ≤≤;综上所述:7a ≤.故选:C.2. {}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m < B .23m ≤≤ C .3m ≤ D .23m <<【答案】C由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C.3.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( )A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,【答案】A解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-;∵当0a =时,B =∅,满足B A ⊆,符合题意;∵当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭.故选:A .【题型六】集合运算1:交集运算求参【讲题型】例题1.已知集合(){},0A x y x ay a =+-=,()(){},2310B x y ax a y =++-=.若AB =∅,则实数=a ( )A .3B .1-C .3或1-D .3-或1 【答案】A【分析】将问题转化为“直线0x ay a +-=与直线()2310ax a y ++-=互相平行”,由此求解出a 的取值.【详解】因为A B =∅,所以直线0x ay a +-=与直线()2310ax a y ++-=没有交点, 所以直线0x ay a +-=与直线()2310ax a y ++-=互相平行,所以()1230a a a ⨯+-⨯=,解得1a =-或3a =,当1a =-时,两直线为:10x y -+=,10x y -+-=,此时两直线重合,不满足, 当3a =时,两直线为:330x y +-=,3910x y +-=,此时两直线平行,满足, 所以a 的值为3, 故选:A.例题2.已知集合{}2230A x N x x *=∈--<,{}20B x ax =+=,若A B B =,则实数a 的取值集合为( )A .{}1,2--B .{}1,0-C .2,0,1D .{}2,1,0-- 【答案】D【分析】先求出集合A ,由A B B =得到B A ⊆,再分类讨论a 的值即可.【详解】{}{}22301,2A x N x x *=∈--<=,因为A B B =,所以B A ⊆,当0a =时,集合{}20B x ax φ=+==,满足B A ⊆; 当0a ≠时,集合{}220B x ax x a ⎧⎫=+===-⎨⎬⎩⎭,由B A ⊆,{}1,2A =得21a -=或22a-=,解得2a =-或1a =-, 综上,实数a 的取值集合为{}2,1,0--.故选:D .1.已知集合{}12A x x =<<,集合{B x y =,若A B A =,则m 的取值范围是( )A .(]0,1B .(]1,4C .[)1,+∞D .[)4,+∞ 【答案】D由A B A =可得出A B ⊆,可知B ≠∅,解出集合B ,结合题意可得出关于实数m 的不等式,由此可解得实数m 的取值范围.【详解】A B A =且{}12A x x =<<,则A B ⊆,B ∴≠∅. 若0m <,则20m x -<,可得B =∅,不合乎题意;若0m ≥,则{{B x y x x ==,2≥,解得4m ≥.因此,实数m 的取值范围是[)4,+∞.故选:D.2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4 【答案】B【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-.故选:B.3.已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围是( ) A .()2,+∞ B .{}()12,∞⋃+ C .{}[)12,+∞D .[)2,+∞【答案】C【分析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a 或211a +-解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭,,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a 或211a +-,即 2.a综上,实数a 的取值范围为{}[)12,+∞.故选:C.【题型七】集合运算2:并集运算求参【讲题型】例题1..已知{|A x y ==,{}2|220B x x ax a =-++≤,若A B A ⋃=,那么实数a的取值范围是( ) A .(12)-, B .182,7⎡⎤⎢⎥⎣⎦C .181,7⎛⎫- ⎪⎝⎭D .181,7⎛⎤- ⎥⎝⎦【答案】D【分析】由题意,可先化简集合A,再由A B A ⋃=得B A ⊆,由此对B 的集合讨论求a,由于集合B 可能为空集,可分两类探讨,当B 是空集时,与B 不是空集时,分别解出a 的取值范围,选出正确选项【详解】解:由题意,{|{|14}A x y x x ===, 由A B A ⋃=得B A ⊆又2{|220}B x x ax a =-++≤当B 是空集时,符合题意,此时有24480a a =--<解得12a -<<当B 不是空集时,有2448014122016820a a a a a a a ⎧∆=--⎪⎪⎨-++⎪⎪-++⎩解得1827a ≤≤综上知,实数a 的取值范围是181,7⎛⎤- ⎥⎝⎦故选:D例题2.设常数a∵R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A∵B=R ,则a 的取值范围为( ) A .(﹣∞,2) B .(﹣∞,2] C .(2,+∞) D .[2,+∞) 【答案】B【详解】试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.1.设集合{}2|(3)30A x x a x a =-++=,{}2|540B x x x =-+=,集合A B 中所有元素之和为8,则实数a 的取值集合为( )A .{0}B .{03},C .{013,4},,D .{13,4},【答案】C【详解】试题分析:B={1,4},2(3)30x a x a -++=两根是x=3,x=a ,当a=0、1、3、4时,满足集合A B ⋃中所有元素之和为8,故选C.2.非空集合{|03}A x N x =∈<<,2{|10,}B y N y my m R =∈-+<∈,A B A B =,则实数m 的取值范围为( )A .510,23⎛⎤ ⎥⎝⎦B .170,4⎛⎤ ⎥⎝⎦C .102,3⎛⎤ ⎥⎝⎦D .517,24⎛⎤ ⎥⎝⎦【答案】A【分析】由题知{}1,2A B ==,进而构造函数()21f x x mx =-+,再根据零点存在性定理得()()()302010f f f ⎧≥⎪<⎨⎪<⎩,解不等式即可得答案. 【详解】解:由题知{}0{|}13,2A x N x =∈<=<,因为A B A B =,所以A B =,所以{}2{|10,}1,2B y N y my m R =∈-+<∈=,故令函数()21f x x mx =-+,所以,如图,结合二次函数的图像性质与零点的存在性定理得: ()()()302010f f f ⎧≥⎪<⎨⎪<⎩,即103052020m m m -≥⎧⎪-<⎨⎪-<⎩,解得51023m <≤,所以,实数m 的取值范围为510,23⎛⎤⎥⎝⎦.故选:A3.已知集合{}1,3M =,{}1,3N a =-,若{}1,2,3M N =,则a 的值是( )A .-2B .-1C .0D .1 【答案】B【分析】根据集合N 和并集,分别讨论a 的值,再验证即可.【详解】因为{}1,2,3M N =,若110a a -=⇒=,经验证不满足题意; 若121a a -=⇒=-,经验证满足题意.所以1a =-.故选:B.【题型八】集合运算3:补集运算求参【讲题型】例题1.已知集合,集合,集合,若A B C ⋃⊆,则实数m 的取值范围是______________.【答案】1,12⎡⎤-⎢⎥⎣⎦【详解】由题意,{|12}A B x x ⋃=-<< , ∵集合{|10}C x mx A B C >,=+⋃⊆ ,∵111102022m x m m m m -∴-≥∴≥-∴-≤<,<,,,<; ∵m 0= 时,成立;∵1101101m x m m m m -∴-≤-∴≤∴≤>,>,,,<, 综上所述,112m -≤≤,故答案为112m -≤≤. 例题2..已知集合1121A x R x ⎧⎫=∈≤⎨⎬+⎩⎭,()(){}2210B x R x a x a =∈---<,若()R A B =∅,则实数a 的取值范围是 A .[)1,+∞ B .[)0,+∞ C .()0,∞+ D .()1,+∞ 【答案】B解分式不等式求得集合A ,对a 进行分类讨论,结合()R A B =∅,求得实数a 的取值范围. 【详解】由1121210,021212121x x x x x x +--≤-=≤++++()2210210x x x ⎧-+≤⇔⎨+≠⎩12x ⇔<-或0x ≥.所以{1|2A x x =<-或}0x ≥,所以1|02R A x x ⎧⎫=-≤<⎨⎬⎩⎭.由()()2210x a x a ---=,解得2x a =或21x a =+.2122a a a +≥=≥,当1a =时,221a a =+,此时B =∅,满足()R A B =∅;当1a ≠时,{}2|21B x a x a =<<+,由()R A B =∅得201a a ≥⎧⎨≠⎩,即0a ≥且1a ≠.综上所述,实数a 的取值范围是[)0,+∞. 【讲技巧】补集运算:1.符号语言:∁U A ={x |x ∈U ,且x ∉A }.2.图形语言:【练题型】 1.设全集{}1,2,3,4,5U =,集合{}21,1,4A a =-,{}2,3UA a =+,则a 的值为( )A .2±B .C .2-D .2【答案】D【分析】根据集合A 及其补集情况分情况讨论即可.【详解】由已知得{}21,2,4,1,3a a U -+=,所以21335a a ⎧-=⎨+=⎩或21533a a ⎧-=⎨+=⎩,解得2a =,故选:D.2.已知全集{}22,4,U a =,集合{}4,3A a =+,{}1U A =,则a 的所有可能值形成的集合为( )A .{}1-B .{}1C .{}1,1-D .∅【答案】A【解析】由U A U ⊆,可得21a =,即1a =±,当1a =时,不符合元素的互异性,1a =-时,符合题意.【详解】由U A U ⊆,即{}1{}22,4,a ⊆,则21a =,解得1a =±,若1a =,则34a +=,而{}4,3A a =+,不符合集合中元素的互异性,舍去; 若1a =-,则{}2,4,1U =,{}4,2A =,{}1UA =,符合题意.所以a 的所有可能值形成的集合为{}1-.故选:A.3.已知全集{}{}2{2,3,23},1,2,3U U a a A a C A a =+-=+=+,则a 的值为__________ 湖北省荆州市沙市中学2022-2023学年高一上学期第一次月考数学试题 【答案】2【分析】要求a 的值,需正确理解原集和补集的含义,由于参数a 为未知数,此题应该进行分类讨论【详解】由补集概念及集合中元素互异性知a 应满足 ()()()()22222233(1)323|1|23(2)|1|3232(3)232233(4)2123433a a a a a a a a A a a B a a a a a a ⎧+=+=+-⎪+=+-⎧⎪⎪⎨+=⎪⎨+-≠⎪⎪+-≠⎪⎪+-≠+-≠⎩⎩或 分两种情况进行讨论:在A 中,由(1)得a=0依次代入(2)、(3)、(4)检验,不合∵,故舍去. 在B 中,由(1)得a=-3,a=2,分别代入(2、(3)、(4)检验,a=-3不合∵,故舍去,a=2能满足∵∵∵,故a=2符合题意.答案为:2【题型九】应用韦恩图求解【讲题型】例题1.全集U =R ,集合04xA xx ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞【答案】C 【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C .例题2.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,1 【答案】C【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤, ∵(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤, 故选:C【练题型】1.若全集U =R ,集合(){}|lg 6A x y x ==-,{}|21x B x =>,则图中阴影部分表示的集合是( )【讲技巧】并集运算韦恩图:符号语言 Venn 图表示A ∪B ={x |x ∈A ,或x ∈B }交集运算韦恩图符号语言Venn 图表示A ∩B ={x |x ∈A ,且x ∈B }补集运算韦恩图图形语言:A .()2,3B .(]1,0-C .[)0,6D .(],0-∞ 【答案】D 【分析】根据函数定义域和指数函数单调性得到集合,A B ,阴影部分表示的集合是U B A ,计算得到答案.【详解】(){}{}|lg 66A x y x x x ==-=<,{}{}210xB x x x ==>,阴影部分表示的集合是(]()(]U,0,6,0BA =-∞-∞=-∞.故选:D.2.已知全集U R =,集合{}2313100M x x x =--<和{}2,N x x k k Z ==∈的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有A .1个B .2个C .3个D .无穷个 【答案】C【分析】由题意首先求得集合M ,然后结合韦恩图求解阴影部分所示的集合的元素个数即可.【详解】求解二次不等式2313100x x --<可得2|53M x x ⎧⎫=-<<⎨⎬⎩⎭,集合{}|2,N x x k k Z ==∈表示所有的偶数组成的集合, 由韦恩图可知,题中的阴影部分表示集合M N ⋂,由于区间2,53⎛⎫- ⎪⎝⎭中含有的偶数为0,2,4,故{}0,2,4M N ⋂=,即阴影部分所示的集合的元素共有3个. 本题选择C 选项.3.已知集合{|{||1|2}M x y N x x ==+≤,且 M 、M 都是全集 I 的子集,则右图韦恩图中阴影部分表示的集合为A .{|1}x x ≤B .{|31}z z -≤≤C .{|3z z -≤<D .{|1x x <≤【答案】C【详解】试题分析:{{}|,|31{|I M x x N x x C M x x ==-≤≤⇒=I N C M ⇒⋂={|3x x -≤<,故选C .【题型十】集合中的新定义【讲题型】例题1定义运算.()(),()()()(),()()C A C B C A C B A B C B C A C A C B -⎧*=⎨-<⎩若{}()(){}221,2,20A B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =_______.【答案】3【分析】由新定义1A B *=得集合B 可以是单元素集合,也可以是三元素集合,把问题转化为讨论方程2220x ax x ax 根的个数,即等价于研究两个方程20x ax 、220x ax ++=根的个数.【详解】2220x ax x ax等价于20x ax∵或220x ax ++=∵.由{}1,2A =,且*1A B =,得集合B 可以是单元素集合,也可以是三元素集合. 若集合B 是单元素集合,则方程∵有两相等实根,∵无实数根,可得0a =;若集合B 是三元素集合,则方程∵有两不相等实根,∵有两个相等且异于∵的实数根,即280a a ≠⎧⎨∆=-=⎩,解得a =±综上所述,0a =或a =±3C S. 例题2..对于集合M ,定义函数()1,1,M x Mf x x M -∈⎧=⎨∉⎩,对于两个集合,A B ,定义集合()(){}|1A B A B x f x f x *=⋅=-. 已知集合{}A x x =>,()(){}|330B x x x x =-+>,则A B *=__________.【答案】(,3][0,1)(3,)-∞-+∞.【分析】解不等式求得集合A 与集合B ,根据新定义函数()M f x 以及新定义集合A B *的概念,求得A B *中x 的取值范围.【详解】当0x >x 两边平方并化简得220x x +-<,即()()210x x +-<,解得2<<1x -,由于0x >,故x 的范围是()0,1.当0x ≤x >恒成立,故x 的取值范围是(],0-∞.综上所述,(),1A =-∞.故()1,11,1A x f x x -<⎧=⎨≥⎩∵. 由()()330x x x -+>,解得30x -<<或3x >,故()()3,03,B =-⋃+∞.故()()()(][]1,3,03,1,,30,3B x f x x ⎧-∈-⋃+∞⎪=⎨∈-∞-⋃⎪⎩∵.要使()()1A B f x f x ⋅=-,由∵∵可知,(,3][0,1)(3,)x -∞-∞∈+. 故答案为(,3][0,1)(3,)-∞-+∞.【练题型】1.设A 、B 、C 是集合,称(,,)A B C 为有序三元组,如果集合A 、B 、C 满足||A B =||||1B C C A ==,且A B C =∅,则称有序三元组(,,)A B C 为最小相交(其中||S 表示集合S 中的元素个数),如集合{1,2}A =,{2,3}B =,{3,1}C =就是最小相交有序三元组,则由集合{1,2,3,4,5,6}的子集构成的最小相交有序三元组的个数是________ 【答案】7680 【分析】令S ={1,2,3,4,5,6},由题意知,必存在两两不同的x ,y ,z ∵S ,使得A∩B ={x },B ∩C ={y},C ∩A ={z },而要确定x ,y ,z 共有6×5×4种方法;对S 中剩下的3个元素,每个元素有4种分配方式,即可得到最小相交的有序三元组(A ,B ,C )的个数.【详解】令S ={1,2,3,4,5,6},如果(A ,B ,C )是由S 的子集构成的最小相交的有序三元组,则存在两两不同的x ,y ,z ∵S ,使得A ∩B ={x },B ∩C ={y },C ∩A ={z },(如图),要确定x ,y ,z 共有6×5×4种方法;对S 中剩下的3个元素,每个元素有4种分配方式,即它属于集合A ,B ,C 中的某一个或不属于任何一个,则有43种确定方法.所以最小相交的有序三元组(A ,B ,C )的个数6×5×4×43=7680. 故答案为:7680 2..集合{}6666,11135,2333,10,99111,1,198,1000,0,M π=---有10个元素,设M 的所有非空子集为()1,2,,1023i M i =⋅⋅⋅,每一个i M 中所有元素乘积为()1,2,,1023i m i =⋅⋅⋅,则1231023m m m m +++⋅⋅⋅+=_____.【答案】1-【分析】将这1023个子集分成以下几种情况:∵含0的子集;∵不含0,含1-且还含有其他元素的子集;∵不含0,不含1-但含有其他元素的子集;∵只含1-的子集一个.将每种情况下的i m 计算出来,并根据∵∵中的集合是一一对应的,求满足的i m ,可得答案. 【详解】M 所有非空子集为()1,2,,1023i M i =⋅⋅⋅,这1023个子集分成以下几种情况: ∵含0的子集512个,这些子集均满足0i m =;∵不含0,含1-且还含有其他元素的子集255个; ∵不含0,不含1-但含有其他元素的子集有255个; ∵只含1-的子集一个{}1-,满足1i m =-.其中∵∵中的集合是一一对应的,且满足i m 对应成相反数,因此,12310235120255011m m m m ++++=⨯+⨯-=-. 故答案为:1-.3.设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,称0x 为集合X 的聚点,则在下列集合中:∵{}0x x ∈≠Z ;∵{},0x x x ∈≠R ;∵1,x x n n *⎧⎫=∈⎨⎬⎩⎭N ;∵,1n x x n n *⎧⎫=∈⎨⎬+⎩⎭N 以0为聚点的集合有______.上海市延安中学2022-2023学年高一上学期第一次月考数学试题 【答案】∵∵【解析】根据集合聚点的新定义,结合集合的表示及集合中元素的性质,逐项判定,即可求解.【详解】由题意,集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,称0x 为集合X 的聚点,∵对于某个0a >,比如0.5a =,此时对任意的{}0x x x ∈∈≠Z ,都有00x x -=或者01x x -≥,也就是说不可能000.5x x <-<,从而0不是{}0x x ∈≠Z 的聚点;∵集合{}0x x ∈≠R ,对任意的a ,都存在2ax =(实际上任意比a 小得数都可以),使得02ax a <=<,∵0是集合{}0x x ∈≠R 的聚点;∵集合1,x x n n *⎧⎫=∈⎨⎬⎩⎭N 中的元素是极限为0的数列,对于任意的0a >,存在1n a >,使10x a n<=<,∵0是集合1,x x n n *⎧⎫=∈⎨⎬⎩⎭N 的聚点;∵中,集合,1nx x n n *⎧⎫=∈⎨⎬+⎩⎭N 中的元素是极限为1的数列,除了第一项0之外,其余的都至少比0大12,∵在12a <的时候,不存在满足得0x a <<的x ,∵0不是集合,1nx x n n *⎧⎫=∈⎨⎬+⎩⎭N 的聚点. 故答案为:∵∵.一、单选题1.已知集合{}N 23A x x =∈-<<,则集合A 的所有非空真子集的个数是( ) A .6 B .7 C .14 D .15 【答案】A【分析】根据自然数集的特征,结合子集的个数公式进行求解即可. 【详解】因为{}{}N 230,1,2A x x =∈-<<=,所以集合A 的元素个数为3,因此集合A 的所有非空真子集的个数是3226-=, 故选:A2.设全集{0,1,2,3,4,5}U =,集合{0,1,2,3},{2,3,4,5}A B ==,则()UA B =( )A .{0}B .{0,1}C .{0,1,2,3}D .{0,1,2,3,4,5}【答案】C 【分析】先求UB ,再求并集即可.【详解】由题可知:{0,1}U B =, 而{0,1,2,3}A =,所以(){0,1,2,3}U A B =. 故选:C3.如图,设U 是全集,,,M P S 是U 的三个子集,则阴影部分所表示的集合为( )A .()M P SB .()U M P S ⋂⋂C .()M P SD .()U M P S ⋂⋃【答案】B【分析】根据韦恩图,利用集合的运算即可求解.【详解】由图象可知:阴影部分对应的集合的元素x S ∉,∴U x S ∈,且x MP ∈, 因此()U x MP S ∈.故选:B . 4.设集合P ,Q 都是实数集R 的子集,且()R P Q =∅,则P Q =( )A .∅B .RC .QD .P【答案】D【分析】由题设交集的结果知P Q ⊆,进而可得P Q .【详解】由()R P Q =∅知:P Q ⊆,所以P Q P =.故选:D5.设集合{}2,,0A a a =-,{}2,4B =,若{}4A B ⋂=,则实数a 的值为( )A .2±B .2或-4C .2D .-4【答案】B【分析】根据给定条件可得4A ∈,由此列出方程求解,再验证即可得解.【详解】因{}4A B ⋂=,则4A ∈,即4a =-或24a =,当4a =-时,{}16,4,0A =,{}4A B ⋂=,符合题意,当24a =时,解得2a =或2a =-,若2a =,则{}2,4,0A =-,{}4A B ⋂=,符合题意,若2a =-,则{}2,4,0A =,{}2,4A B =,不符合题意,于是得2a =或4a =-,所以实数a 的值为2或4-.故选:B6.集合{1A x x =<-或3}x ≥,{}10B x ax =+≤,若B A ⊆,则实数a 的取值范围是( )A .113a a ⎧⎫-≤<⎨⎬⎩⎭B .113a a ⎧⎫-≤≤⎨⎬⎩⎭C .{}10a a a <-≥或D .10013a a a ⎧⎫-≤<<<⎨⎬⎩⎭或 【答案】A【分析】根据B A ⊆,分B =∅和B ≠∅两种情况,建立条件关系即可求实数a 的取值范围.【详解】B A ⊆,∴①当B =∅时,即10ax +≤无解,此时0a =,满足题意; ②当B ≠∅时,即10ax +≤有解当0a >时,可得1x a ≤-,要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<当a<0时,可得1x a ≥-,要使B A ⊆,则需要013a a<⎧⎪⎨-≥⎪⎩,解得103a -≤< 综上,实数a 的取值范围是113a a ⎧⎫-≤<⎨⎬⎩⎭故选:A.7.用()C A 表非空集合A 中元素的个数,定义()()()()()()()(),*,C A C B C A C B A B C B C A C A C B ⎧-≥⎪=⎨-<⎪⎩,若{}(){}21,20A B x x x ax ==++=∣,且*1A B =,设实数a 的所有可能取值构成集合S ,则()C S =( )A .4B .3C .2D .9【答案】C【分析】由新定义,确定()1C A =,再由新运算确定()C B ,并由集合B 的定义确定()2C B =,然后由判别式求得a 值,得集合S ,从而得结论.【详解】由已知()1C A =,又*1A B =,所以()0C B =或()2C B =,又2(2)0x x ax ++=中0x =显然是一个解,即0B ∈,因此()1C B ≥,所以()2C B =, 所以220x ax ++=有两个相等的实根且不为0,280a ∆=-=,a =±{S =-,所以()2C S =.故选:C .8.已知集合{}12A x x =->,集合{}10B x mx =+<,若A B A ⋃=,则m 的取值范围是( )A .1,03⎡⎤-⎢⎥⎣⎦B .1,13⎡⎤-⎢⎥⎣⎦C .[0,1]D .1,0(0,1]3⎡⎫-⎪⎢⎣⎭ 【答案】B【分析】将集合A 化简,根据条件可得B A ⊆,然后分0m =,0m <,0m >讨论,化简集合B ,列出不等式求解,即可得到结果. 【详解】因为1212x x ->⇒->或12x -<-,解得3x >或1x <- 即{}31A x x x =><-或,因为A B A ⋃=,所以B A ⊆当0m =时,B =∅,满足要求.当0m >时,则110mx x m +<⇒<-,由B A ⊆, 可得111m m-≤-⇒≤,即01m <≤ 当0m <时,则110mx x m+<⇒>-,由B A ⊆, 可得1133m m -≥⇒≥-,即103m -≤< 综上所述,1,13m ⎡⎤∈-⎢⎥⎣⎦故选:B.二、填空题9.若集合{}3|1A x x =-≤<,{}|B x x a =≤,且{|1}A B x x ⋃=<,则实数a 的取值范围为_________.【答案】[)3,1-【分析】根据已知条件{}|1A B x x =<,运用集合并集运算定义,列出关于参数a 的不等式,即可求得参数的取值范围.【详解】已知{}3|1A x x =-≤<,{}|B x x a =≤,{}|1A B x x =<,∴31a -≤<,故参数a 的取值范围为[)3,1-.故答案为:[)3,1-10.已知A ={a 1,a 2,a 3,a 4},B ={}222124a a a ,,且a 1<a 2<a 3<a 4,其中ai ∈Z (i =1,2,3,4),若A ∩B ={a 2,a 3},a 1+a 3=0,且A ∪B 的所有元素之和为56,求a 3+a 4=_____.【答案】8【分析】先通过()A B B ⊆,判断得20a ≥,分类讨论20a >与20a =的情况,得到11a =-,20a =,31a =,再求A B ⋃的元素,进而得到24456a a +=,解得47a =,故得答案.【详解】由130a a +=得13a a =-,所以2213a a =,又因为()A B B ⊆,即{}{}22223124a a a a a ⊆,,,,所以20a ≥, (1)若20a >,因为2Z a ∈,所以21a ≥,此时222a a ≤,22331a a a <=,244a a <,即2432a a a >>,故{}2423a a a ∉,,从而{}{}222312a a a a =,,, 所以221232==a a a a ⎧⎨⎩,则2443213a a a a ===,即30a =或1,与32a a >矛盾; (2)若20a =,则4320a a a >>=,244a a >,即2432a a a >>,所以{}2423a a a ∉,, 从而{}{}222312a a a a =,,,显然222223130a a a a a ====,,即30a =或1, 而30a =与32a a >矛盾,故31a =,131a a =-=-,又{}212344A B a a a a a =,,,,,故21234456a a a a a ++++=, 将11a =-,20a =,31a =代入,得到24456a a +=,解得47a =或48a =-(舍去),所以348a a +=.故答案为:8.11.已知集合B 和C ,使得{}1,2,3,4,5,6,7,8,9,10B C ⋃=,B C =∅,并且C 的元素乘积等于B 的元素和,写出所有满足条件的集合C =___________.【答案】{}6,7或{}1,4,10或{}1,2,3,7.【分析】求得,B C 中所有元素之和后,根据C 中元素个数得到其元素所满足的关系式,依次判断C 中元素不同个数时可能的结果即可.【详解】{}1,2,3,4,5,6,7,8,9,10B C =,,B C ∴中所有元素之和为121055++⋅⋅⋅+=;若C 中仅有一个元素,设{}C a =,则55a a =-,解得:552a =,不合题意; 若C 中有且仅有两个元素,设{}(),C ab a b =<,则()55ab a b =-+,当6a =,7b =时,()55ab a b =-+,{}6,7C ∴=;若C 中有且仅有三个元素,设{}(),,C a b c a b c =<<,则()55abc a b c =-++;当1a =,4b =,10c =时,()55abc a b c =-++,{}1,4,10C ∴=若C 中有且仅有四个元素,设{}(),,,C a b c d a b c d =<<<,则()55abcd a b c d =-+++,当1a =,2b =,3c =,7d =时,()55abcd a b c d =-+++,{}1,2,3,7C ∴=; 若C 中有且仅有五个元素,若{}1,2,3,4,5C =,此时1234512055⨯⨯⨯⨯=>,∴C 中最多能有四个元素;综上所述:{}6,7C =或{}1,4,10或{}1,2,3,7.故答案为:{}6,7或{}1,4,10或{}1,2,3,7.【点睛】关键点点睛:本题解题关键是能够通过对C 中元素个数的分类讨论,依次从小至大排列C 中元素可能的取值,根据满足的关系式分析即可得到满足题意的集合.12.已知集合M ={x ∈N |1≤x ≤21},集合A 1,A 2,A 3满足①每个集合都恰有7个元素; ②A 1∪A 2∪A 3=M .集合Ai 中元素的最大值与最小值之和称为集合Ai 的特征数,记为Xi (i =1,2,3),则X 1+X 2+X 3的最大值与最小值的和为___.【答案】132【分析】判断集合的元素个数中的最小值与最大值的可能情况,然后按照定义求解即可.【详解】集合M ={x ∈N |1≤x ≤21},由集合A 1,A 2,A 3满足①每个集合都恰有7个元素; ②A 1∪A 2∪A 3=M 可知最小的三个数为1,2,3;21必是一个集合的最大元素,含有21集合中的元素,有21,20,19,…,16和1,2,3中一个组成,这样特征数最小,不妨取1,这时X 1最小值为22;15必是一个集合的最大元素,含有15集合中的元素,有15,14,13,…,10和2,3中一个组成,这样特征数最小,不妨取2,这时X 2最小值为17;9必是一个集合的最大元素,含有9集合中的元素,有9,8,7,…,4和3组成,这样特征数最小,这时X 3最小值为10;则X 1+X 2+X 3的最小值为22+17+12=51.同理可知最大的三个数为21,20,19;含有21集合中的元素,有21,18,17,16,16,15,13;这样特征数最大,为34; 含有20的集合中元素为20,12,11,10,9,8,7,这样特征数最大,为27; 含有19的集合中元素为19,6,5,4,3,2,1,特征数最大,且为20;则X 1+X 2+X 3的最大值为34+27+20=81;所以X 1+X 2+X 3的最大值与最小值的和为51+81=132.故答案为:132.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档