最新九年级上册数学课本

合集下载

新人教版九年级数学上册全册ppt课件

新人教版九年级数学上册全册ppt课件
10x - 4.9x2. 你能根据上述规律求出物体经过多少秒落回地面吗 (精确到 0.01 s)?
1.探究因式分解法
你认为该如何解决这个问题?你想用哪种方法解这 个方程?
10x - 4.9x2 = 0
配方法 降 公式法 次

x
1
=
0,x
2
=
100 49
1.探究因式分解法
问题3 观察方程 10x - 4.9x2 = 0,它有什么特点? 你能根据它的特点找到更简便的方法吗?
x2 + 6x = -4 x2 + 6x + 9 = -4 + 9 (x + 3)2 = 5
x3 5
移项
两边加 9,左边 配成完全平方式 左边写成完全 平方形式
降次
x 3 5 ,或 x 3 5
解一次方程
x1 3 5, x2 3 5
2.推导求根公式
想一想:以上解法中,为什么在方程③两边加 9? 加其他数可以吗?如果不可以,说明理由.
• 学习重点: 一元二次方程的概念.
1.创设情境,导入新知
思考以下问题如何解决: 1.要设计一座高 2 m 的人体雕像,使它的上部 (腰以上)与下部(腰以下)的高度比,等于下部与全 部(全身)的高度比,求雕像的下部应设计为高多少米?
1.创设情境,导入新知
思考以下问题如何解决: 2.有一块矩形铁皮,长 100 cm,宽 50 cm,在它 的四角各切去一个同样的正方形,然后将四周突出部分 折起,就能制作一个无盖方盒,如果要制作的无盖方盒 的底面积为 3 600 cm2,那么铁皮各角应切去多大的正方 形?
1.复习配方法,引入公式法
问题2 能否用公式法解决一元二次方程的求根问 题呢?

九年级上册数学课本

九年级上册数学课本

・二十一章二次根式包利塔越前,从塔顶发射出的电磁波传播得越远,从而加收看到电视节目的区域就越广,如果电相壕离A km,电视节目信号的传播半筏为,km,则它们之间存在近似关系了 = /^麻,其中R是地球■半役,K^6 400 km,如果两个电视塔的高分别走hi km,4km,那么它们的件他的比为震,你生将这个太子化丽屿?这灰用到本章" 学习的二次根式的运算与化荷.如何进行二次根式的运算?如何将二次根式化筒?这是本章所臭研究的主委内容,通过本章学习可为后面一元二次才程等内容的学习打下是W.用带有根号的式子填空,看着写出的结果有什么特点:(1)加四21.1 1,要做一个两条直角边的长分别是7 an和4 on的三角尺,斜边的长应为cmi(2)面积为S的正方形的边长为, (3)要修建一个图江】)面积为6.28 m?的图形喷水池,它的半径为m (x 取3.14) i(4) 一个物体从高处自由落下,落到地面所用的时间上(单位:D与开始落下时的高度白(单位:m)满足关系九二5人加果用含有A的式子表示工,则工=.在上面的问题中,结果分别是质,A, 72, 它们都表示一些正数的算术平方根.我们知道,一个正数有两个平方相।。

的平方根为0,在实数范围内,负数没有平方根.因此,开平方时,被开方数只能是正数和0.一般地,我们把形如6Q70)的式子叫做二次根式,"L 称为二次根号.例1当”是怎样的实数时,k?在实数范围内有意义?2 I第二十一立二次极式解:由Z 220,得x^2.当/>2时,G■^在实数范围内有意义.当*是怎样的实数时,々在实数范围内有意义?石呢?练习L卖通一个面积为18 cm?的矩形,使它的长宽之比为2»3,它的长宽应取多少?2 .”图,戊平面五角生标系中* A(2, 3), B(5, 3), C(2, 5)是三角形的三个成点,求SC的帆.3 .当。

是怎样的实数时,下列各式班实效范GB内有套义?(1) y^T; (2) 72^+3.(第2 ®当4>0时,碣示。

九年级上册人教版数学教材

九年级上册人教版数学教材

九年级上册人教版数学教材一、一元二次方程。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

2. 解法。

- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。

例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。

- 配方法:将一元二次方程ax^2+bx + c = 0(a≠0)通过配方转化为(x + m)^2=n的形式求解。

例如对于方程x^2+6x - 7 = 0,配方得(x + 3)^2=16,解得x = 1或x=-7。

- 公式法:一元二次方程ax^2+bx + c = 0(a≠0)的求根公式为x=frac{-b±√(b^2)-4ac}{2a}。

例如方程2x^2-3x - 2 = 0,其中a = 2,b=-3,c=-2,代入求根公式可得x = 2或x=-(1)/(2)。

- 因式分解法:将方程化为两个一次因式乘积等于零的形式,即(mx +p)(nx+q)=0,则mx + p = 0或nx + q = 0。

例如方程x^2-3x + 2 = 0,因式分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。

3. 根的判别式。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),判别式Δ=b^2-4ac。

- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。

例如方程x^2-2x + 1 = 0,Δ=(-2)^2-4×1×1 = 0,方程有两个相等的实数根x = 1。

4. 一元二次方程的应用。

- 增长率问题:设基数为a,平均增长率为x,增长n次后的量为b,则a(1 + x)^n=b。

2024年人教版九年级数学上册全册完整课件

2024年人教版九年级数学上册全册完整课件

2024年人教版九年级数学上册全册完整课件一、教学内容1. 第一章:二次函数1.1 二次函数的概念与性质1.2 二次函数的图像与方程1.3 二次函数的应用2. 第二章:圆2.1 圆的基本概念与性质2.2 直线和圆的位置关系2.3 圆和圆的位置关系3. 第三章:概率3.1 随机事件与概率3.2 事件的独立性与相关性3.3 概率的计算与应用二、教学目标1. 理解并掌握二次函数、圆和概率的基本概念、性质及计算方法。

2. 能够运用二次函数解决实际问题,提高解决问题的能力。

3. 培养学生的空间想象能力和逻辑思维能力。

三、教学难点与重点1. 教学难点:二次函数图像与方程的转换、圆和圆的位置关系、概率的计算。

2. 教学重点:二次函数的性质、圆的基本概念、概率的实际应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、圆规、三角板。

2. 学具:直尺、圆规、三角板、计算器。

五、教学过程1. 实践情景引入:通过生活中的实例,引出二次函数、圆和概率的相关概念。

2. 例题讲解:详细讲解每个章节的典型例题,分析解题思路和方法。

1.1 例题:求解二次函数的顶点、开口方向等性质。

2.1 例题:判断直线和圆的位置关系,求解圆的方程。

3.1 例题:计算随机事件的概率,分析事件的独立性和相关性。

3. 随堂练习:布置与例题类似的练习题,巩固所学知识。

5. 课堂小结:对本节课的内容进行回顾,了解学生的学习情况。

六、板书设计1. 板书左侧:列出章节、教学目标、教学难点与重点。

七、作业设计1. 作业题目:2.1 判断直线y = 2x + 1与圆(x 3)² + (y + 2)² = 16的位置关系。

3.1 抛掷两个骰子,计算两个骰子的点数之和为7的概率。

2. 答案:1.1 顶点为(1, 1),开口向上。

2.1 直线与圆相离。

3.1 概率为1/6。

八、课后反思及拓展延伸1. 反思:针对课堂教学效果,分析学生的掌握情况,调整教学方法。

2024年新人教版九年级数学上册全册精彩课件.

2024年新人教版九年级数学上册全册精彩课件.

2024年新人教版九年级数学上册全册精彩课件.一、教学内容1. 第一章:二次函数1.1 二次函数的概念与性质1.2 二次函数的图像与方程1.3 二次函数的应用2. 第二章:勾股定理与平方根2.1 勾股定理2.2 平方根2.3 勾股定理与平方根的应用3. 第三章:概率初步3.1 随机事件与概率3.2 概率的计算3.3 概率的应用二、教学目标1. 掌握二次函数、勾股定理、平方根和概率的基本概念与性质。

2. 学会运用二次函数、勾股定理、平方根和概率解决实际问题。

3. 培养学生的逻辑思维能力和数学应用能力。

三、教学难点与重点1. 教学难点:二次函数的性质、勾股定理的证明、概率的计算。

2. 教学重点:二次函数的应用、平方根的计算、概率的实际应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入:通过生活中的实例,引出二次函数、勾股定理、平方根和概率的概念。

2. 例题讲解:详细讲解教材中的例题,引导学生理解和掌握知识点。

3. 随堂练习:针对每个知识点,设计相应的练习题,让学生及时巩固所学内容。

六、板书设计1. 用大号字体书写课题名称,如“二次函数的应用”。

2. 内容:列出本节课的主要知识点,用不同颜色粉笔标出重点和难点。

七、作业设计1. 作业题目:第一章:求给定二次函数的最大值、最小值,并画出图像。

第二章:证明给定三角形的勾股定理,并计算其面积。

第三章:计算给定概率问题,如掷骰子、抽签等。

答案:见附件。

八、课后反思及拓展延伸2. 拓展延伸:布置一些拓展性的练习题,如研究二次函数的性质、探索勾股定理的推广等,激发学生的兴趣和求知欲。

通过本课件的教学,希望学生能掌握九年级数学上册的核心知识点,提高数学素养和应用能力,为今后的学习打下坚实基础。

重点和难点解析1. 教学内容的详细性与针对性2. 教学目标的具体性与实用性3. 教学难点与重点的识别与处理4. 教学过程中的实践情景引入与随堂练习设计5. 板书设计的清晰性与结构性6. 作业设计的层次性与拓展性7. 课后反思与拓展延伸的实际操作一、教学内容的详细性与针对性教学内容的选择应紧密结合教材章节,确保覆盖所有核心知识点。

最新浙教版九年级数学上册电子课本课件【全册】

最新浙教版九年级数学上册电子课本课件【全册】
最新浙教版九年级数学上册电子课 本课件【全册】
1.3二次函数的性质
最新浙教版九年级数学上册电子课 本课件【全册】
1.4二次函数的应用
最新浙教版九年级数学上册电子课 本课件【全册】
第2章 简单是件的概率
最新浙教版九年级数学上册电子 课本课件【全册】目录
0002页 0091页 0134页 0153页 0186页 0188页 0235页 0283页 0316页 0353页 0377页 0411页 0461页图像 1.4二次函数的应用 2.1事件的可能性 2.3用频率估计概率 第3章 圆的基本性质 3.2圆形的旋转 3.4圆心角 3.6圆内接四边形 3.8弧长及扇形的面积 4.1比例线段 4.3相似三角形 4.5相似三角形的性质及其应用 4.7图形的位似
最新浙教版九年级数学上册电子课 本课件【全册】
2.1事件的可能性
最新浙教版九年级数学上册电子课 本课件【全册】
2.2简单事件的概率
最新浙教版九年级数学上册电子课 本课件【全册】
2.3用频率估计概率
最新浙教版九年级数学上册电子课 本课件【全册】
第1章 二次函数
最新浙教版九年级数学上册电子课 本课件【全册】
1.1二次函数
最新浙教版九年级数学上册电子课 本课件【全册】
1.2二次函数的图像

人教版九年级数学上册全册全套课件200页

人教版九年级数学上册全册全套课件200页

最新人教版九年级数学上册全册全套课件200页一、教学内容1. 第十三章:一元二次方程详细内容:一元二次方程的定义、解法(直接开平方法、配方法、公式法)、根的判别式、根与系数的关系、实际应用等。

2. 第十四章:不等式与不等式组详细内容:不等式的性质、一元一次不等式及不等式组的解法、不等式的应用等。

3. 第十五章:图形的相似详细内容:相似图形的定义、性质、判定方法、相似图形的应用等。

4. 第十六章:锐角三角函数详细内容:锐角三角函数的定义、互化公式、解直角三角形等。

二、教学目标1. 理解并掌握一元二次方程、不等式与不等式组、图形的相似、锐角三角函数等基础知识。

2. 能够运用所学知识解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和空间想象能力。

三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式组的解法、相似图形的判定与性质、锐角三角函数的应用。

2. 教学重点:一元二次方程的解法、不等式的性质与解法、相似图形的判定与性质、锐角三角函数的定义与互化公式。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规等。

2. 学具:课本、练习本、铅笔、圆规、三角板等。

五、教学过程1. 导入:通过实际情景引入新课,激发学生兴趣。

2. 新课讲解:详细讲解各章节知识点,结合例题进行讲解。

3. 随堂练习:针对新课内容,设计有针对性的练习题,巩固所学知识。

5. 课后作业:布置适量的课后作业,巩固所学知识。

六、板书设计1. 一元二次方程的解法2. 不等式与不等式组的解法3. 相似图形的判定与性质4. 锐角三角函数的定义与互化公式七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0。

(2)解不等式组:2x 3 > 4,x + 5 < 3。

(3)证明:若两个三角形相似,则它们的对应角相等。

(4)计算:sin30°、cos45°、tan60°。

最新人教版九年级数学上册全册全套课件200页

最新人教版九年级数学上册全册全套课件200页

最新人教版九年级数学上册全册全套课件200页一、教学内容1. 第十三章:一元二次方程13.1 一元二次方程及其解法13.2 一元二次方程的判别式13.3 一元二次方程的根与系数的关系13.4 实际问题与一元二次方程2. 第十四章:不等式与不等式组14.1 不等式及其解法14.2 不等式的性质14.3 不等式组14.4 实际问题与不等式组3. 第十五章:函数及其图像15.1 函数的概念与表示方法15.2 函数的性质15.3 一次函数15.4 一次函数的图像与性质4. 第十六章:二次函数16.1 二次函数的概念与表示方法16.2 二次函数的图像与性质16.3 二次函数的顶点式16.4 二次函数与一元二次方程16.5 实际问题与二次函数二、教学目标1. 理解一元二次方程、不等式、不等式组、函数及二次函数的基本概念,掌握它们的解法、性质、图像和应用。

2. 培养学生运用数学知识解决实际问题的能力,提高逻辑思维能力和推理能力。

3. 培养学生团队合作精神,提高自主学习能力。

三、教学难点与重点1. 教学难点:一元二次方程的根与系数的关系、不等式的性质、一次函数与二次函数的图像与性质。

2. 教学重点:一元二次方程的解法、不等式组的解法、函数的概念及其应用。

四、教具与学具准备1. 教具:多媒体教学设备、投影仪、黑板、粉笔、教鞭等。

2. 学具:课本、练习册、草稿纸、直尺、圆规、计算器等。

五、教学过程1. 导入:通过实际问题引入新课,激发学生兴趣。

2. 新课讲解:结合教材,详细讲解各章节知识点,注重理论与实践相结合。

3. 例题讲解:精选典型例题,详细讲解解题思路和方法,引导学生分析问题,提高解题能力。

4. 随堂练习:设计针对性练习,巩固所学知识,及时发现问题并进行解答。

5. 小组讨论:分组讨论,培养学生团队合作精神,提高解决问题的能力。

六、板书设计1. 用大号字体书写,突出主题。

2. 知识点:用不同颜色粉笔书写,分层次、分模块展示。

九年级上册数学目录

九年级上册数学目录

九年级上册数学目录第一章:有理数与整式• 1.1 有理数– 1.1.1 有理数的定义与性质– 1.1.2 有理数的加法与减法– 1.1.3 有理数的乘法与除法• 1.2 整式– 1.2.1 整式的定义与性质– 1.2.2 整式的加法与减法– 1.2.3 整式的乘法与除法第二章:代数式与分式• 2.1 代数式– 2.1.1 代数式的定义与性质– 2.1.2 代数式的加法与减法– 2.1.3 代数式的乘法与除法• 2.2 分式– 2.2.1 分式的定义与性质– 2.2.2 分式的加法与减法– 2.2.3 分式的乘法与除法第三章:解一元一次方程• 3.1 一元一次方程的概念• 3.2 解一元一次方程的基本方法• 3.3 解一元一次方程的实际应用第四章:解一元一次不等式• 4.1 一元一次不等式的概念• 4.2 解一元一次不等式的基本方法• 4.3 解一元一次不等式的实际应用第五章:函数的概念与性质• 5.1 函数的定义与性质• 5.2 函数的图像与性质• 5.3 函数的改变与影响第六章:等差数列• 6.1 等差数列的定义与性质• 6.2 等差数列的通项公式与求和公式• 6.3 等差数列的应用第七章:不等式关系•7.1 不等式关系的定义与性质•7.2 不等式关系的图像表示•7.3 不等式关系的求解第八章:周长与面积•8.1 平面图形的周长和面积•8.2 平面图形的相似与全等•8.3 空间图形的表面积和体积第九章:直线与圆的性质•9.1 直线与圆的性质•9.2 直线与圆的位置关系•9.3 直线与圆的交点和切点第十章:统计与概率•10.1 统计的基本概念•10.2 统计图表的解读与制作•10.3 概率的基本概念与计算方法。

人教版九年级数学上册全册完整精品课件

人教版九年级数学上册全册完整精品课件

人教版九年级数学上册全册完整精品课件一、教学内容1. 函数与方程函数的概念、表示法及其性质一元二次方程的求解及其应用一次函数、反比例函数的性质及应用2. 图形的相似与证明相似图形的判定与性质位似图形的判定与性质相似变换及其应用3. 解直角三角形锐角三角函数的概念与性质解直角三角形及其应用4. 统计与概率频数与频率可能性的大小平均数、中位数、众数的计算及应用二、教学目标1. 理解函数、方程、相似图形等基本概念,掌握其性质与应用。

2. 学会使用锐角三角函数解直角三角形,并能应用于实际问题。

3. 培养学生的数据分析与逻辑思维能力,提高解决问题的能力。

三、教学难点与重点1. 教学难点:函数的性质、相似图形的判定与性质、锐角三角函数的应用。

2. 教学重点:一元二次方程的求解、一次函数与反比例函数的性质、统计与概率的计算。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规。

2. 学具:课本、练习本、计算器、直尺、圆规。

五、教学过程1. 导入:通过生活实例,引出函数、方程等概念,激发学生的学习兴趣。

2. 新课导入:(1)讲解函数的概念、表示法及其性质。

(2)通过例题,讲解一元二次方程的求解及其应用。

(3)介绍一次函数、反比例函数的性质,分析其在实际问题中的应用。

(4)讲解相似图形的判定与性质,通过实践操作加深理解。

(5)介绍锐角三角函数的概念与性质,引导学生学会解直角三角形。

3. 随堂练习:(1)针对函数、方程、相似图形等知识点,设计具有代表性的练习题。

(2)分组讨论,互帮互学,共同解决问题。

4. 知识巩固:(1)通过典型例题,巩固函数、方程等知识。

(2)讲解统计与概率的计算方法,分析其在生活中的应用。

5. 课堂小结:六、板书设计1. 函数、方程的概念与性质。

2. 一元二次方程的求解方法。

3. 一次函数、反比例函数的性质。

4. 相似图形的判定与性质。

5. 锐角三角函数的应用。

6. 统计与概率的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档