建模思想

建模思想
建模思想

专题讲座

初中数学建模思想的策略研究

一.什么是数学建模?

1.1 数学建模(Mathematical Modeling )是建立数学模型并用它解决问题这一过程的简称,有代表的定义如下:

( 1 )、普通高中数学课程标准[4] 中认为,数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育的重要内容和基本内容 .

( 2 )、叶其孝在《数学建模教学活动与大学数学教育改革》一书中认为,数学建模(Mathematical Modeling) 就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“ 规律” 建立起变量、参数间的确定的数学问题( 也可称为一个数学模型) ,求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。

两种定义的区别在于课程标准对数学建模的定义没有强调建立特定的解决问题的数学模型。数学建模的过程中当然会运用数学思想、方法和知识解决实际问题,但仅仅如此很难称得上是“数学建模”。处理很多事情,比如法律和组织上的问题,常常会用到分类讨论的思想、转化的思想、类比的思想,而并没有建立数学模型,这就不能说是进行了数学建模。这里所谈(实际上,同大部分人认为的一样)的数学建模,其过程是要建立具体的数学模型的。

什么是数学模型?根据徐利治先生在《数学方法论选讲》一书中所谈到,所谓“数学模型”(Mathematic Model )是一个含义很广的概念,粗略的讲,数学模型是指参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一个数学结构。广义的说,一切数学概念、数学理论体系、数学公式、数学方程以及由之构成的算法系统都可以称为数学模型;狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。

本论文所谈到的数学建模,其过程一定是建立了一定的数学结构。

另外,我们所谈的数学建模主要侧重于解决非数学领域内的问题。这类问题往往来自于日常生活、经济、工程、医学等其他领域,呈现“原胚”状态,需要分析、假设、抽象等加工,才能找出其隐含的数学关系结构。

一般地,数学建模的过程可用下面的框图表示:

1.2 什么是中学数学建模?

这里的“中学数学建模”有两重含义,

一是按数学意义上的理解、在中学中做的数学建模。主要指基于中学范围内的数学知识所进行的建模活动,同其它数学建模一样,它仍以现实世界的具体问题为解决对象,但要求运用的数学知识在中学生认知水平内,专业知识不能要求太高,并且要有一定的趣味性和教学价值。

二是按课程意义理解,它是本文要展开讨论的,一种要在中学中实施的特殊的课程形态。它是一种以“问题引领、操作实践”为特征的活动型课程。学生要通过经历建模特有的过程,真实地解决一个实际问题,由此积累做数学、学数学、用数学的经验,提升对数学及其价值的认识。其设置目的是希望通过教师对数学建模有目标、有层次的教与学的设计和指导,影响学生的学习过程,改变传统的学习方式,实现激发学生自主思考,促进学生合作交流,提高学生学习兴趣,发展学生创新精神,培养学生应用意识和应用数学的能力,最终使学生提升适应现代社会要求的可持续发展的素养。

二.《全日制义务教育数学课程标准(修改稿)》有关数学建模的内容

教育部新启动的《义务教育阶段数学课程标准》的修订中,东北师大史宁中校长提议,将原来的“双基”增加到“四基”,增加了“基本数学活动经验和基本数学思想”。基本活动经验是指学生亲自或间接经历了活动过程而获得的经验。另外,《全日制义务教育数学课程标准(修改稿)》在“数与代数”的内容中提出了“要初步形成模型思想”,对“综合与实践” 部分内容加以明确并提供了具体课例。上述变化正是课标对培养学生数学应用能力的应措。相比数学建模,综合与实践部分是学习数学建模的最初阶段,因此内容包含的更加基本、广泛,下面我们将分别介绍全日制义务教育数学课程标准(修改稿)提出的“模型思想”,“综合与实践” 的内容,以及内容在实验稿基础上的变化,最后在通过实例来说明综合与实践部分的学习内容。

( 1 )模型思想

2007 年12 初全日制义务教育数学课程标准(修改稿)提出在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力和推理能力,初步形成模型思想。模型思想的建立是帮助学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包

括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。

(2 )“综合与实践”部分与实验稿相比有如下变化:

目的和内涵进一步明确,统一了名称,给出了明确的定义:“综合与实践”,是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。针对问题情境,学生综合所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间、数学与其他学科之间的联系,加深对所学数学内容的理解。

明确要求“综合与实践”应当保证每学期至少一次。三个学段“综合与实践”的要求和教学目标有了差异。

(3)“综合与实践”的常用教学形式和案例

按照教学内容不同,“综合与实践”可以分为三种内容形式:体现数学知识内部联系;体现数学与生活联系;体现数学与其它学科联系。

若按照活动开展的地点不同,可以分为课堂内、课堂内外结合、课堂外三种形式。为了配合课程标准的编制和修改,我和北大附中、北达资源中学的老师们做了不少课例研究,以下就是我们试验过的,对应这三种形式的教学案例。

三.新高中数学课程标准中与数学建模相关的部分

新高中数学课程标准在研制过程中,对是否增加数学建模的要求是有争议的。一些专家认为,中学数学是打基础的阶段,核心是学好将来需要的基础知识,应用不必强调,强调了也没有用——在大跃进时期我们曾强调过“理论联系实际”,文革中我们的教学内容里加入了类似“三机一泵”,地主如何算“变天帐”一类的内容,弱化了基础理论的学习,效果是不好的。但一批数学家深刻注意到了数学的发展和变化,姜伯驹、李大潜、丁石孙、叶其孝等先生都分别撰文阐明在中学培养学生数学应用能力的重要性。我们多年开展中学数学建模竞赛和中学数学建模教学的实践也证明了,数学建模对培养中学生应用能力的良好作用。种种努力,使数学建模最终成为新高中数学标准中规定的高中数学内容的一部分。

新高中数学标准在基本理念的第5 条即是发展学生的数学应用意识,认为高中数学课程应提供基本内容的实际背景,反映数学的应用价值,开展“数学建模”的学习活动,设立体现数学某些重要应用的专题课程。高中数学课程应力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。由此在数学内容中特别加入了:数学探究、数学建模。这些内容不单独设置,渗透在每个模块或专题中。标准要求高中阶段至少各应安排一次较为完整的数学探究、数学建模活动。

(1) 数学探究

与前面所说的探究性学习、课题学习稍有区别,标准中所提出的数学探究侧重于围绕一个数学问题展开,被看做是一种新的学习方式。数

学探究即数学探究性课题学习,是指学生围绕某个数学问题,自主探究、

学习的过程。这个过程包括:观察分析数学事实,提出有意义的数学问

题,猜测、探求适当的数学结论或规律,给出解释或证明。数学探究是

高中数学课程中引入的一种新的学习方式,有助于学生初步了解数学概

念和结论产生的过程,初步理解直观和严谨的关系,初步尝试数学研究

的过程,体验创造的激情,建立严谨的科学态度和不怕困难的科学精神;

有助于培养学生勇于质疑和善于反思的习惯,培养学生发现、提出、解

决数学问题的能力;有助于发展学生的创新意识和实践能力。

(2) 数学建模

这里标准中谈到的数学建模,内容即是一般意义上的数学建模。数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育重要和基本的内容。数学建模可以通过以下框图体现:

数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。

课程标准提出的教学要求是:

1 .在数学建模中,问题是关键。数学建模的问题应是多样的,应来自于学生的日常生活、现实世界、其他学科等多方面。同时,解决问题所涉及的知识、思想、方法应与高中数学课程内容有联系。

2 .通过数学建模,学生将了解和经历上述框图所表示的解决实际问题的全过程,体验数学与日常生活及其他学科的联系,感受数学的实用价值,增强应用意识,提高实践能力。

3 .每一个学生可以根据自己的生活经验发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的方法,从而获得综合运用知识和方法解决实际问题的经验,发展创新意识。

4 .学生在发现和解决问题的过程中,应学会通过查询资料等手段获取信息。

5 .学生在数学建模中应采取各种合作方式解决问题,养成与人交流的习惯,并获得良好的情感体验。

6 .高中阶段至少应为学生安排1 次数学建模活动。还应将课内与课外有机地结合起来,把数学建模活动与综合实践活动有机地结合起来。

标准未对数学建模的课时和内容做具体安排。学校和教师可根据各自的实际情况,统筹安排数学建模活动的内容和时间。例如,可以结合统计、线性规划、数列等内容安排数学建模活动。

与传统应用题相比,数学建模所解决的问题往往呈现一种“混沌”状态,没有明显的数据和关系可用,所给的条件也不一定有用,得出的结论往往不唯一,建立的数学模型也要在实践中反复修改验证,由于具有这些特点,数学建模是学习“数学应用”的最佳方式之一,能让学生更好地体验数学是怎样运用于实际的过程,形成他们的数学经验。

四,初中数学建模的若干简要案例

4.1 初中数学建模学习案例1 :----- 与自行车有关的问题(小组学习实践)

课题:了解自行车中的数学问题,应用学过的数学知识,解决以下问题。

问题1 :用自己或同学的一辆自行车为观察对象,观察并解决下列问题:

( 1 )我观察的这辆自行车是什么牌子的?

( 2 )它的直径是_______cm ,轮子转动一周,在地面走过的距离是

_______cm ,精确到1cm 。

( 3 )自行车中轴的大齿轮盘的齿数是_______齿,后轴的小齿轮(飞轮)的齿数是_______,中轴的大齿轮被踏动一周时,后轴的小齿轮在链条传动下,不计算惯性将转动_______周(保留2 位小数)。

问题2 :如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程。

问题3 :如果你的(或你的朋友)自行车是可以变速的自行车(如山地车、多飞轮的自行车)、请你观察一下在这辆自行车上有几个(中轴上的)大轮盘,几个飞轮,它们都各有多少齿?记录这些数据。如果你骑车时每一秒脚蹬一圈,请你根据上面测量的数据计算出这辆自行车运行时最大的速度和最小的速度各是每小时多少公里?:

选做问题4 :你认为对问题3 中的自行车的各个齿轮的齿数安排的合理吗?你能发现或提出什么样的问题?如果有可能请你做设计改进的话,你会做什么?

求解工作的表格省略

4.2 初中数学数学建模案例2 :----- 线路设计问题(自学、探索、创新实践)

课题:为所在小区设计一个最佳的邮政投递路线, 、一个合理的保安巡逻路线。

实施建议:1: 按居住地成立4-6 人的小组,对你们要研究的小区, 进行观察, 收集必要的数据和信息,( 如平面图, 楼的门洞的朝向, 道路情况, 小区的进出口位置

等). 发挥各自的特长,分工合作完成测量方案的设计、实测、作图、计算、论证、比较、计算机文稿录入、结果介绍等。

2: 复习必要的知识, 如一笔画方法, 最短邮路的画法和算法等 .

3: 画出小区的平面示意图, ( 最好复印一下, 以避免后面画坏时重画), 在图上完成邮政投递路线的设计, ( 使邮递员走的路线最短).

4 :实践环节:先不加思索按投递要求随意地走一遍, 再按你设计的路线, 实际走一遍, 测算出路程看一看相差多少? ( 记录数据)

创新实践项目: 为你们居住的小区设计一个合理的保安巡逻路线、或合理的送奶的路线。首先思考” 合理” 的含义

4.3 初中数学数学建模案例3 :--- 穿衣镜的最佳设计(个人的创意与设计)

课题:自己提出几个有关穿衣镜设计的问题,给出你们认为最合理、最佳、最有创意的设计方案或解决办法。

实施建议:

1. 成立工作小组,讨论本小组的工作目标、分工、。

2 .有可能的话到家具店、超市、(别忘了带尺子或相机)有关杂志或网站上收集一点相关资料,可以发现问题或提出你们更好的设计。

3 .分工合作完成你们的设计,最好有一个图、或一个小的模型,可以用纸板做。

4 .准备在全班交流,可以用实物、照片、模型、“ ppt ”,等形式表现你们的成果和创意,如果给你3 分钟讲演、展示,怎样让班里同学为你们的成果叫好?

4.4 数学建模的可供学生选择上的假期作业

1. 利用放寒假与父母逛商场的机会,认真注意收集春节商场“打折消费”“诱导消费”的各种广告信息,测算化1000 元可以最多实际买到价值多少的商品。计算实际打折率。开动你的大脑,为消费者设计一种收益较多的购物方式;或者为商场设计一个更好的吸引消费者的、也使的商场收益较多的购物方式。

2. 测量一个比较高的建筑物的高度,说明测量方案,测量过程和测量数据。看谁想出更好的方法?

3. 自编3 道方程和方程组的应用题,要求联系实际,有真实的实际背景,请写出题目、题解。看谁编的有趣。

4. 到超市观察各种不同包装设计的同种商品,如同一个牌号的大、小牙膏,收集它们的价格信息,找一个表示它们的重量和价格的公式。

5. 到各大商场,超市观察不同的商品的外包装,提出一个与“节约”有关的问题,将问题数学化,并用学过的知识试着解决它。进而自己在提出一些新的问题,或将自己得到的结果推广以适用于更大的范围。

6. 了解出租车的计价方式,(如起步每公里,每种车型多少钱;运行中每公里,每种车型多少钱;等候时每分钟,每种车型多少钱?)给出一个根据距离、等候时间计算付多少钱的方法或公式。

7. 调查邮局中不同重量、寄往本市、外地、港澳、国外的平信(包括航空)的邮资表,如果限定信封上只准贴至多 3 枚邮票,请你设计邮票应该有哪些面值?

8. 自己找到的用学过和还没有学过的数学知识解决的实际问题,(可以只提出问题,或仅仅提供一个解决问题的想法。)

(学生实际的学习成果从略)

五.我们的体会和认识

5.1 开展数学建模学习不仅是学习方式的改变,而且是育人模式的变化。

人才培养模式集中而具体的体现形式是教育教学模式。改革传统的以“ 升学—应试” 为目标的学校教育教学模式,创建以全体学生全面发展为目标的、体现素质教育方向和要求的新型教育教学模式,是当前学校实施素质教育的首要任务。而创建体现素质教育思想和要求的教育教学模式重要的着眼点就是要改变学生那种单纯地被动接受教师知识传输的学习方式,帮助和指导学生在开展有意义接受学习的同时,形成一种对知识技能进行主动探求、并重视实际问题解决的主动积极的学习方式。这就是培养学生在教师指导下,从自身的学习生活和社会生活、自然界以及人类自身的发展中选取研究专题(专题、主题),以探究的方式主动地获取知识、应用知识、解决问题的数学建模。这对于培养学生的创新精神和实践能力、创造能力、终身学习的能力具有十分重要的意义。而数学建模活动的实际结果告诉我们,它不仅对好学生、而且对学习有一定困难的学生都能起到培养兴趣、激发创造的目的。数学建模的成果还可以为学生建立一种更表现学生素质的评价体系。数学建模的过程可以为不同水平的学生都提供体验成功的机会,真正把筛子变成泵。

实际上,数学建模的教学过程(或者更自然地说是师生一起学和做的过程)对教师的成长和专业发展,更新教育观念,主动参与并推进素质教育,有着越来越重要的作用。

它表现在下面的几个方面:

首先,它可以帮助教师转变教学观,更有利于发挥教师的主导作用和学生的主体作用。教师的主导作用体现在创设好的问题环境, 激发学生自主地探索解决问题的积极性和创造性上; 学生的主体作用体现在问题的探索、发现、解决的深度和方式尽量由学生自主控制和完成。它体现了教学过程由以教为主到以学为主的重心的转移。课堂的主活动不应都是教师的讲授, 而应是学生自主的自学、讨论、调查、探索、解决问题。教师要自觉适时地改变他的教育角色,平等地参与学生的探索、学习活动。教师不应只是“讲演者”、不应是“总是正确的指导者”,而应不时扮演下列角色:模特--他不仅演示正确的开始,也表现失误

的开端和“拨乱返正”的思维技能;参谋--提一些求解的建议,提供可参考的信息,但并不代替学生做出决断;询问者--故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度;仲裁者和鉴赏者--评判学生工作及成果的价值、意义、优劣,鼓励学生的有创造性的想法和作法;在教学的组织中体现“学法”,把教和学融为一体。

其次,它可以可以帮助教师转变学习观。

过去在封闭式教育中,教师是知识的输出者。由于教育被定位为在学校这个“围墙”内,由知识的拥有者和惟一源泉——教师向知识的需求者——学生输出知识的活动,教师和学生之间的关系就是教师“单向输出”和学生“被动接受”的关系。在数学建模的实践活动中,问题环境充分敞开,教师不可能也不再是学生获取知识的惟一源泉,而且常常会无计可施,教师的指导作用更多地表现在“策略”的指导。教师把握教学目标时应立足于“做”而不是讲,立足于学生对问题的分析,对解决问题过程的理解,而不以仅仅有正确的解答为满足。要让学生在问题、困难、挑战、挫折、取胜的交替体验中;在选择、判断、协作、交流的轮换操作中; 经历一个个学、用知识, 进而发现问题, 走向新的学、用知识的过程。从而培养能力、激发兴趣、形成学生主动学习的良性循环。

同时,它还可以改变教师自己的成材观、发展观。

事实上,数学建模对教师也很陌生, 对许多问题教师可能都不会, 怎么教学生? 在数学建模过程中表现出的问题形式与内容的多样,问题解决方法的多样性、新奇性和个性的展示,问题解决过程和结果层次的多样性,无疑是对参与者创造力的一种激发、挑战、考验和有效的锻炼。教师在陌生的问题前感到困难、失去相对于学生的优势是自然的,常常出现的。这里有两个认识需要改变,一是数学建模教学能力提高的主要途径恰恰是自己多参与,多独立的思考和实际去“做”;二是数学建模的教学过程中,教师的角色不应该总是“正确的指导者,总是正确的化身”,而应该平等地参与,适时扮演“同事、参谋、建议者、欣赏者”。教师要在自己的视野内努力寻找宜于学生使用的数学建模问题,做好每个问题解决过程的记录,学生成功的经验和自己在挫折中得到的教训对于今后的数学建模的教学设计有重要的价值,也是教师由数学建模的生手到行家的有效途径之一。

5.2 对在数学新课程中开展数学建模活动的小结:

选材:联系学生和教材的实际。

资源:你的学生、家长、同事、朋友和他们的实践,相关刊物和网站。

内容:好入手、有趣味、可深入设计:强调------ 开放思维、实践活动、

小组功能、过程体验;

鼓励:(使用)计算工具、提出问题、多途求解、情感交流、共享成果;

促进:学习过程的良性循环、对学生产生积极的评价、课内知识的学习。

互动对话

话题一:数学建模在义务教育阶段数学课程标准的要求,高中标准的要求各是什么?如何做好过渡?

要点:见《初中培养数学建模思想的策略研究》课程的第三部分(白永潇主准备)

话题二:数学建模活动如何与常规课程“整合”?

要点:回归“综合与实践”,重在学习方式的转变(鲍静宜为主准备几个案例)

话题三:数学建模没有教材、没有教参怎么开课?

要点:(1 )数学建模不是一个“教”的课程,是一个导学、伴学的课程。

( 2 )死的资源不少,活的资源更多,关键是教师的问题意识和资源意识

(张思明准备案例,白永潇、鲍静宜讨论)

话题四:基础薄弱的学生常规课程学习都困难,还能学数学建模吗?

要点:(1 )学习困难的因素分析:没兴趣、没动力、没得到过积极评价

( 2 )数学建模活动可以激发兴趣,改善评价,独立个性和创造

(张思明准备案例,白永潇、鲍静宜讨论)

课例《打包问题》评析

《打包问题》是应用已学过的表面积计算、不等式比较法、分类讨论等数学知识和方法,解决一个具体的实际问题。张思明老师采用以讨论式为主的教学方式,在师生互动、多向交流解决问题的过程中,体现学法指导,培养学生独立思考、善于合作、勇于探索的精神,提高学生发现问题、解决问题的能力,以及合理使用计算工具的习惯。

这节课教学的特点突出,主要体现在以下几个方面:

1. 教学过程脉络清晰,充分展现了学生发现、提出、解决问题的过程,既培养了学生的应用意识,又有利于学生综合能力的提高。

这节课设计了一系列问题,贯串着解决打包问题的主线。首先,通过实物展示(一条烟,一包火柴,一盒磁带…… )提出本节课要研究解决的问题:哪一种包装形式更能节省外包装材料呢?进而更数学地提问:怎样打包可使表面积最小?

然后以香烟打包为例,按照实际情况,先试着摆出几种打包方案,定义一种“ 规则打包” 法,让学生分组讨论不同打包方式有多少种?教师提供基本数据,引导学生合作求解,并组织学生讨论交流,教师进行问题导学。

在由计算得出结论以后,教师引导学生进一步讨论:既然对香烟来说第六种打包形式的表面积最小,可为什么外面买的香烟都不是这样打包的?这是开放性问题,有多种答案,师生共同讨论给出。接着又把问题引向深入:是不是10 包同样尺寸的长方体型的物体打成一包,第六种打包形式一定是表面积最小呢?教师导学,学生思考交流,得到结论。

在解决了香烟的打包问题以后,教师安排学生进行巩固性练习:即火柴和磁带的打包问题,由学生独立解决。然后,又提出发展性问题( 对优秀学生方采用) :将6 包改成12 包或8 包,结果怎样?有没有一个更一般的处理这类问题模型或程序?

这样的教学设计,既实现了学生积极主动学习,又充分体现了教师问题导学的作用。表现在

①教师通过适当的规定和铺垫,保证了讨论过程中实质环节内容的把握,使学生集中精力解决实际问题。

②时时注意“数学问题”与“实际问题”的区别与联系,既培养了学生的应用意识,又提高了解决实际问题的能力。

③使学生在做数学、用数学的过程中学数学,体验数学的意义和作用,体验数学建模的过程。

这样教学,使学生在问题解决的过程中,培养良好的思维品质,提高学习与应用数学的能力,体验如何思路清晰地处理实际问题,掌握分析解决问题的方式方法,这一切都有利于培养学生的创新精神,体现了素质教育的实施。

2. 教师营造了宽松和谐的学习氛围,使学生在充满活力的课堂上得到良好的学习和情感体验,有利于学生的发展。这节课的教学过程,师生之间多向互动,置疑反思,充满活力,充分体现了新课程理念下新型的师生关系。学生是学习的主人,在小组学习的过程中,既有热烈的讨论,智慧的碰撞;又有高效率的分工合作。在教师的组织和引导下,学生积极思考,充分活动,自始至终学习兴趣浓厚,体验了解决实际问题的喜悦。

突出反映在以下几个环节:

①在组织学生分组讨论求解方案时,教师在巡视中既了解学生的研究情况把握反馈信息,又与学生平等交流,鼓励学生提出自己的见解,并让学生弄清原因,明白道理,实现了课堂教学的高效益。

②对巩固性练习、发展性练习,为了培养学生良好的数学直觉,先让学生凭直觉摆放出表面积最小的打包方式,现场交流学生的结果和发现,教师及时表扬鼓励学生的主动参与,学生兴致盎然。

这节课教学资源准备充分,教学手段使用灵活,教学过程将实物展示、幻灯片演示、师生板书相结合,既注重学生的积极参与,又恰当地进行问题导学,有效地促进了学生的自主学习。使学生在“做”、“学”、“问”的学习生活中体验发现、创造的乐趣。

思考与活动

思考题:可任选择一个问题回答

1. 义务教育数学课程标准(修改稿)中对“综合与实践”是怎样定位的?您认为规定学习这些内容对初中学生的数学学习有何价值?

2. 对比小学、初中和高中的综合与实践,怎样从整体上分析、把握综合与实践的内容和教学要求?

3. 如何开发初中数学建模的教学资源?以您自己收集、开发的问题为例,分析什么样的问题是“数学建模”的好问题。

4. 结合您以往的教学实践分析说明开展“数学建模”对学生成长的作用,分析提升您的教学经验;或分析尚不能开展“数学建模”的问题、困难、原因何在,提出您寻求突破的想法和策略。

5. 您认为开展数学“综合与实践”的教学,对数学教师的专业发展有怎样的作用,谈谈您的认识、体会和困惑。

实践题:可任选一个做

6. 选取初中的数学课内学习一个数学内容(片段)做一个数学建模的活动设计。说明设计的功能和创新点。

7. 做一个数学课外活动的“综合与实践”的活动设计,说明设计的功能和创新点。

8. 做一个“综合与实践”的评价设计,说明如何利用评价的功能,引导和鼓励学生主动学习、相互合作、激发兴趣、培养习惯、突破创新等方面的思考和做法。

9 . 设计一个以“综合与实践”或数学建模为主题的校本教研的小课题,说明课题内容、意义、研究方法、预期目标进行说明或论证。

10 . 在以下问题中选择一个,自己实际做一个全过程的数学建模,给出你的研究过程和结果报告。

初中数学建模学习的选题建议

1. 圆珠笔的容量讨论,0.3 、0.5 、0 .7mm 的笔芯都是一样的含墨量,合理吗?(上网、实测、讨论)

2. 煤气灶的使用技巧,进气旋纽多少度时,燃烧效率最高?不同角度(4 种)用同一个壶,烧开一升的水的实验,记录时间和用气量。找到一个公式,给出最佳角度。

3. 暖瓶保温的最佳水位:同一个暖瓶灌入100 度的热水,记录水位的不同,定时观察温度的变化(用温度计,注意气温计不行)。最后找到保温效果最好的水位线。

4. 多大的电视机应该放在多大的屋子里?先确定最佳的视觉角度和位置,在调查各形彩电的尺寸,结合客厅和卧室的不同,给出你的结果。

5. 在网上或市场上调查液晶显示器的价格变化,和估计寿命,给出你的配置或购买的策略。

6. 节能灯省钱吗?普通灯泡价钱便宜,但寿命短,节能灯发光效率高,但价格贵,调查讨论市场上两种灯的瓦数和价钱,从网上或产品说明书中了解产品的使用寿命,进行比较讨论,给出你认为合理的选购策略。

7. 设计一个实用的方法,利用手边有的东西,如字典、快译通、计算机上的英语软件(如金山词霸)来估计自己的词汇量。说明想法、道理、实测的结果。

8. 对课本使用经济性的讨论,从课本的纸材、页数、字数、信息量、重量、使用年限等角度来分析现行课本的设计优缺点,提出你认为合理的课本设计和使用的方案。

9. 对信息时代提高选择有用信息效率的思考和建议。调查你家电视可以接受多少频道,每天家里的报纸平均有多少版,其他信息有多少种,每天用于阅读信息的时间有多少,当你需要某种信息时,你检索它的方法和所化的时间,从中发现提出问题和解决办法。

10. 通过调查你所在的班或年级在一些方面的数据,说明一些问题:如学生手机拥有量、名牌运动鞋、名牌书包等数据说明学生消费的变化和问题;通过学生视力、请假天数、身高、体重、肺活量等数据说明学生们身体变化的问题;用数据对教室的灯光照度、桌椅的高矮、书包的大小、吃早餐的人数等对我们的生活和学习环境提出改进的建议。

参考资料

1. 叶其孝. 数学建模教学活动与大学数学教育改革[M]. 湖南教育出版社, 2003.

2. 白永潇张思明. 数学课题学习的实践与探索[M]. 高等教育出版社, 200

3.

3. 潘小明. 试论中学数学建模教育[J]. 吉安师专学报. 1999(第6期).

4. 孙晓天主编. 数学课程发展的国际视野[M]. 高等教育出版社, 2004.

5 张守波李淑文. 日本中学数学教材中的课题学习[J]. 数学通报. 2004(第6期).

6. 奚定华. 中学数学中的研究性学习[J]. 上海中学数学. 2005.

7. 数学课程标准研制组. 全日制义务教育数学课程标准(实验稿)解读[M]. 北京师范大学出版社, 2002.

8. 数学课程标准研制组. 普通高中数学课程标准(实验)解读[M]. 江苏教育出版社, 2006.

9.李天佑. 浅析高中学生数学建模活动中的困难及对策[J]. 数学教学研究. 2009(第3期).

10. 马庆燕. 中学数学建模教学的难点及对策[J]. 好家长.新教育. 2007(第4期).

11. 李仪文. 从计算机教学中的数学建模谈起[J]. 铁道师院学报. 1997, 14(第4期).

12. 李志林欧宜贵. 计算机模拟建模[J]. 工程数学学报. 2005, 22(第8期).

13.陈明椿. 数学教育中的数学建模方法[D]. 福建师范大学, 2002.

14. 陈雪雯. 初中数学建模教学实践研究[D]. 广西师范大学, 2007.

15.范忠良. 新课程标准视野下的数学建模研究[D]. 首都师范大学, 2006.

16. 勾立业. 高等数学建模教育研究[D]. 吉林大学, 2007.

17. 金月波. 中学数学建模教学研究[D]. 湖南师范大学; 2004

18. 李波. 中外数学建模竞赛比较分析[D]. 首都师范大学;2001.

19. 李存保. 从课内外结合考虑数学建模[D]. 首都师范大学; 2006.

20. 李蕙萱. 建构主义观点下的中学数学建模教学研究与实践[D]. 福建师范大

学;2003.

21. 李林. 中学数学建模教与学[D]. 福建师范大学, 2003.

22. 梁邦屏. 数学建模在中学研究性学习中的应用研究[D]. 华中师范大学, 2006.

23. 刘连广. 中学“数学建模”教学在贫困地区的实践与研究[D]. 贵州师范大学, 2008.

24. 秦小龙. 利用“数学建模兴趣小组”培养学生数学应用能力的实践研究[D]. 华东师范大学; 2006.

25. 邵东生. 中学数学建模教学研究与实践[D]. 福建师范大学;2001.

26. 沈小青. 数学建模教学模式论[D]. 福建师范大学;2003.

27. 谭玉华. 真实情境驱动的高中数学建模教学[D]. 华东师范大学; 2004.

28. 王畅. 新课程下中学数学建模活动的研究[D]. 湖南师范大学, 2007.

29. 王奋平. 中学数学建模教学研究[D]. 西北师范大学, 2005.

30. 张宝塔. 中学数学建模及其教学研究[D]. 福建师范大学; 2001.

31.朱中华. 中学数学建模活动的实践与认识[D]. 华中师范大学;2001.

32. 罗萍. 数学课题学习的探索[J]. 新西部(下半月). 2009(07).

33. 普粉丽,杜先存. 初中数学课题学习的理论探讨[J]. 思茅师范高等专科学校学报. 2008(06).

34. 涂德军. 盘马弯弓故不发——对义务教育七年级数学课题学习的反思[J]. 科技信息(学术研究). 2007(18).

从几个生活实例看数学建模及其应用

从几个生活实例看数学建模及其应用 [内容摘要] 本文通过几个生活中的事例,并运用数学建模,来分析问题,以便更方便的得出解决问题的方案。从中通过将数学建模的抽象理论实例化,生动化,我们能够更清楚看出数学在生活中无处不在,无处不用。 [关键词] 数学建模生活数学 数学,作为一门研究现实世界数量关系和空间形式的科学,与生活是息息相关的。作为用数学方法解决实际问题的第一步,数学建模自然有着与数学相当的意义。在各种不同的领域中,人们一直在运用数学建模来描绘,刻画某种生活规律或者生活现象,以便找到其中解决问题的最佳方案或得到最佳结论。例如,运用模拟近似法建模的方法,在社会科学,生物学,医学,经济些学等学科的实践中,来建立微分方程模型。在这些领域中的一些现象的规律性仍是未知的,或者问题太过复杂,所以在实际应用中总要通过一些简化,近似的模型来与实际情况比对,从而更加容易的得出规律性。 本文通过数学模型在生活中运用的几个例子,来了解,探讨数学模型的相关知识。 一、数学模型的简介 早在学习初等代数的时候,就已经碰到过数学模型了,例如在三个村庄之间建立一个粮仓,使其到三个村子的距离只和最短。我们可以通过建立方程组以及线性规划来解决该问题。

当然,真实实际问题的数学建模通常要复杂得多,但是建立数学建模的基本内容已经包含在解决这类代数应用题的过程中了。那就是:根据建立模型的目的和问题的背景作出必要的简化假设;用字母表示待求的未知量;利用相应的物理或其他规律,列出数学式子;求出数学上的解答;用这个答案解释问题;最后用实际现象来验证结果。 一般来说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。 二、数学模型的意义 1)在一般工程技术领域,数学建模仍然大有用武之地。 2)在高新技术领域,数学建模几乎是必不可少的工具。 3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。 三、数学建模实例 例1、某饲养场每天投入6元资金用于饲养、设备、人力,估计可使一头60kg重的生猪每天增重。目前生猪出售的市场价格为12元/kg,但是预测每天会降低元,问该场应该什么时候出售这样的生猪问题分析投入资金可使生猪体重随时间增长,但售价随时间减少,应该存在一个最佳的出售时机,使获得利润最大。根据给出的条件,可作出如下的简化假设。 模型假设每天投入6元资金使生猪的体重每天增加的常数为r(=);生猪出售的市场价格每天降低常数g(=元)。

数学建模方法大全

数学中国国赛专题培训(一) 《数学建模思想方法大全及方法适用范围》 主讲人:厚积薄发(冰强,Bruce Jan) 第一篇:方法适用范围 一、统计学方法 1.1多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1)回归方程的显著性检验(可以通过sas和spss来解决) (2)回归系数的显著性检验(可以通过sas和spss来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验 (5)进行后继研究(如:预测等) 1.2聚类分析 1、方法概述 该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。 这种模型的的特点是直观,容易理解。 2、分类 聚类有两种类型: (1)Q型聚类:即对样本聚类; (2)R型聚类:即对变量聚类;

建立数学模型的方法、步骤、特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

第二讲数学建模的基本方法和步骤

第二讲 数学建模的基本方法与步骤 数学建模面临的实际问题就是多种多样的,建模的目的不同、分析的方法不同、采用的数学工具不同,所得模型的类型也不同,我们不能指望归纳出若干条准则,适用于一切实际问题的数学建模方法。下面所谓基本方法不就是针对具体问题而就是从方法论的意义上讲的。(注:用最初等的方法解决,越受人尊重) 一 数学建模的基本方法 一般说来数学建模的方法大体上可分为机理分析与测试分析两种。 ????????????? 机理分析: 是根据对客观事物特性的认识,找出反映内部机理的数 量规律,建立的数学模型常有明确的物理或现实意义。 建模方法测试分析: 将研究对象看作一个“黑箱”(意思是内部机理看不清 楚),通过对测量数据的统计分析,找出与数据拟合最 好的模型。 面对于一个实际问题用哪一种方法建模,主要取决于人们对研究对象的了解程度与建模目的。如果掌握了一些内部机理的知识,模型也要求具有反映内部特征的物理意义,建模就应以机理分析为主。而如果对象的内部机理规律基本上不清楚,模型也不需要反映内部特征,那么可以用测试分析。对于许多实际问题也常常将两种方法结合起来,用机理分析建立模型结构,用测试分析确定模型的参数。 二 数学建模的一般步骤 建模要经过哪些步骤并没有一定的模式,通常与问题性质与建模的目的等有关。下面给出建模的一般步骤,如图1、2所示。 ⑴ 模型准备:了解实际背景,明确建模目的,搜索必要信息,弄清对象的主要特征,形成一个比较清晰的“问题”(即问题的提出)。情况明才能方法对,在这个阶段要深入调查研究,虚心向实际工作者请教,尽量掌握第一手资料。

⑵模型假设:根据对象的特征与建模目的,抓住问题的本质,忽略次要因素,作出必要的、合理的简化假设。对于建模的成败这就是非常重要与困难的一步。假设不合理或太简单,会导致错误的或无用的模型;假设作得过分详细,试图把复杂对象的众多因素都考虑进去,会使您很难或无法继续下一步的工作。常常需要在合理与简化之间作出恰当的折衷,要不段积累经验,并注意培养与充分发挥对事物的洞察力与判断力。 ⑶模型的建立:根据假设,用数学的语言、符号描述对象的内在规律,得到一个数学结构。这里除了需要一些相关的专门知识外,还常常需要较为广阔的应用数学方面的知识,要善于发挥想象力,注意使用类比法,分析对象与熟悉的其她对象的共性,借用已有的数学模型。建模时还应遵循的一个原则就是尽量采用简单数学工具,因为您的模型总希望更多的人了解与使用,而不就是只供少数专家欣赏。 ⑷模型求解:使用各种数学方法、数学软件与计算机技术对模型求解。 ⑸模型分析:对求解结果进行数学上的分析,如对结果进行误差分析,分析模型对数据的稳定性或灵敏性等。 ⑹模型检验:把求解与分析结果翻译回到实际问题,与实际现象、数据进行比较,检验模型的合理性与适用性。如果结果与实际不符,问题常常出现在模型假设上,应该修改或补充假设,重新建模。这一步对于模型就是否真的有用就是非常关键的,要以严肃认真的态度对待。 ⑺模型应用:这与问题的性质、建模的目的以及最终结果有关,一般不属于本书讨论的范围。 应该指出,并不就是所有问题的建模都要经过这些步骤,有时各步骤之间的界限也不那么分明,建模时不要拘泥于形式上的按部就班。 三数学建模的全过程 数学建模的全过程可分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型回到现实对象的循环,如图1、3所示。 表述就是根据建模目的与信息将实际问题“翻译”成数学问题,即将现实问题“翻译”成抽象的数学问题,属于归纳法。数学模型的求解选择适当的数学方

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

论数学建模思想教学(1)

论数学建模思想教学 1在线性代数教学中融入数学建模思想的意义 1.1激发学生的学习兴趣,培养学生的创新水平 教育的本质是让学生在掌握知识的同时能够学以致用。但是当前的线性代数教学重理论 轻应用,学生上课觉得索然无味,主动学习的积极性差,创新性就更无从谈起。如果教师能够将数学建模的思想和方法融入到线性代数的日常教学中,不但能够激发学生学习线性代数的兴趣,而且能够调动学生使用线性代数的知识解决实际问题的积极性,使学生理解到线性代数的真正价值,从而改变线性代数无用的观点,同时还能够培养学生的创新水平。 1.2提升线性代数课程的吸引力,增加学生的受益面 数学建模是培养学生使用数学工具解决实际问题的最好表现。若在线性代数的教学中渗透数学建模的思想和方法,除了能够激发学生学习线性代数的兴趣,使学生了解到看似枯燥的定义、定理并非无源之水,而是具有现实背景和实际用途的,这能够大大改善线性代数课堂乏味沉闷的现状,从而提升线性代数课程的吸引力。由数学建模的教学现状能够看到学生的受益面很小,不过任何高校的理工类、经管类专业都会开设高等数学、线性代数以及概率统计这3门公共数学必修课,若能在线性代数、高等数学及概率统计等公共数学必修课的教学中渗透数学建模的思想和方法,学生的受益面将会大大增加。 1.3促动线性代数任课教师的自我提升 要想将数学建模的思想和方法融入线性代数课程中,就要求线性代数任课教师不但要具有良好的理论知识讲授技能,更需要具备利用线性代数知识解决实际问题的水平,这就迫使线性代数任课教师要持续学习新知识和新技术,促动自身知识的持续更新,进而达到提升教 学和科研水平的效果。 2在线性代数教学中融入数学建模

建模概念

1.设计(Design) 在角色设计上的一些想法: 人们常会以一些准则为依据来建构立体的角色 例如为表达生气的情绪而赋予角色一把枪 一个愚人通常会有一个大头等 这样所设计出来的角色通常较不具人性 而这些准则对角色的描述上只不过是冰山一角 并非全部 当你开始建构你的角色时 应该试着在你脑海中发展一个非常清楚的角色描述若不然,则你的建构过程将会有如龟速一样慢 且会把时间花在一些无关紧要的琐碎小事上

认真思考你的角色若真的存在这个世界时的情况!! 例如碰到某些情况发生时角色的反应会是如何? 他很容易发怒吗? 他是个压抑自己情绪的角色吗? 他的脸部和肢体语言很丰富吗? 他惹人注意吗? 它闻起来有味道吗? 他多大年纪? 试着自己设定问题并且自己回答 那么你的建构过程将会在这些问题的基础上顺利地进行一旦当你可分辨应该关心何种问题时

设计角色的过程将会变得非常自由化且有弹性 不要怕弄得一团糟 总能理出个头绪来 2.概念(Concepts) 了解概念后你将会建构出一个活灵活现的角色而不是一个呆若木鸡的雕像而已计算机永远有无法解决的问题而导致它只能完成有限的工作 直到现在为止 我们常会因为计算机的问题而气恼地将它关机 因此你必须知道一些这种问题而去避免它 所以建构角色不只是要知道肌肉的解剖图等知识 像这种计算机的恼人问题也是必须了解的 另外像软件的操作原理等也应彻底了解 例如你是如何动画一个旋转的立方体? 阶层(hierarchy)和绑定(constraint)有何不同? 执行命令的顺序为何如此重要? 你是如何有效地使用材质设定? 渲染器到底执行哪些事? 为什么表达式(expressions)很实用且它们是如何工作? 为什么你不该在一条直线上放很多顶点在上面? 成为一个角色工程师:

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

初中数学建模方法及应用

龙源期刊网 https://www.360docs.net/doc/b212429770.html, 初中数学建模方法及应用 作者:肖永刚 来源:《新课程·中学》2017年第03期 摘要:在新课标中要求培养学生的创新能力,在初中数学教学中培养学生的建模能力, 是培养数学创新能力的重要方法,也能增强学生利用数学知识解决问题的能力。对培养初中生数学建模方法及应用进行了论述。 关键词:初中数学;建模思想;数学应用 利用数学建模的方法是学习初中数学的新方法,是素质教育和新课标的要求,能为学生的数学能力发展提供全新途径,提高学生运用数学工具解决问题的能力,让学生在用数学工具解决问题中体会到数学学习的意义,从而提高数学学习兴趣。 一、数学建模的概念 数学建模就是对具体问题分析并简化后,运用数学知识,找出解决方法并利用数学式子来求解,从而使问题得以解决。数学建模方法有以下几个步骤:一是对具体问题分析并简化,然后用数学知识建立关系式(模型),二是求解数学式子,三是根据实际情况检验并选出正确答案。初中阶段数学建模常用方法有:函数模型、不等式模型、方程模型、几何模型等。 二、数学建模的方法步骤 要培养学生的数学建模方法,可按以下方法步骤进行: 1.分析问题题意为建模做准备。对具体问题包含的已知条件和数量关系进行分析,根据问题的特点,选择使用数学知识建立模型。 2.简化实际问题假设数学模型。对实际问题进行一定的简化,再根据问题的特征和要求以及解题的目的,对模型进行假设,要找出起关键作用的因素和主要变量。 3.利用恰当工具建立数学模型。通过建立恰当的数学式子,来建立模型中各变量之间的关系式,以此来完成数学模型的 建立。 4.解答数学问题找出问题答案。通过对模型中的数学问题进行解答,找出实际问题的答案。

数学建模的方法和步骤

数学建模的方法和步骤 建立数学模型没有固定的模式,通常它与实际问题的性质、建模的目的等有关.当然,建模的过程也有共性,一般来说大致可以分为以下的几个步骤: 1.形成问题 要建立现实问题的数学模型,首先要对所要解决的问题有一个十分明晰的提法.只有明确问题的背景,尽量弄清对象的特征,掌握有关的数据,确切地了解建立数学模型要达到的目的,才能形成一个比较明晰的“问题”. 2.假设和简化 根据对象的特征和建模的目的,对问题进行必要的、合理的假设和简化.如前所述,现实问题通常是纷繁复杂的,我们必须紧抓住本质的因素(起支配作用的因素),忽略次要的因素.此外,一般地说,一个现实问题不经过假设和简化,很难归结成数学问题.因此有必要对现实问题作一些简化,有时甚至是理想化. 3.模型的构建 根据所作的假设,分析对象的因果关系,用适当的数学语言刻画对象的内在规律,构建现实问题中各个量之间的数学结构,得到相应的数学模型。这里,有一个应遵循的原则:即尽量采用简单的数学工具. 4.检验和评价 数学模型能否反映原来的现实问题,必须经受多种途径的检验.这里包括:①数学结构的正确性,即有没有逻辑上自相矛盾的地方;②适合求解,即是否会有多解或无解的情况出现;③数学方法的可行性,即迭代方法是否收敛,以及算法的复杂性等.而最重要和最困难的问题是检验模型是否真正反映原来的现实问题.模型必须反映现实,但又不等同于现实;模型必须简化,但过分的简化则使模型远离现实,无法解决现实问题.因此检验模型的合理性和适用性,对于建模的成败是非常重要的.评价模型的根本是看它能否准确地解决现实问题.此外,是否容易求解也是评价模型的一个重要标准. 5.模型的改进 模型在不段检验过程中经过不断修正,逐步趋向完善,这是建模必须遵循的重要规律,一旦在检验中发现问题,人们必须重新审视在建模时所作的假设和简化的合理性,检查是否正确刻画对象内在的量之间的相互关系和服从的客观的规律.针对发现的问题作出相应的修正.然后,再重复上述检验修改的过程,直到获得某种程度的满意模型为止. 6.模型的求解 经过检验,能比较好地反映原现实问题的数学模型.最后将通过求解得到数学上的结果;再通过“翻译”回到现实问题,得到相应的结论.模型若能获得解的确切表达式固然最好,但现实中多数场合需依靠电子计算机数值求解.电子计算技术的飞速发展,使数学模型这一有效的工具得以发扬光大.

数学建模模型与应用

Mathematica软件常用功能 【实验目的】 1. 用Mathematica软件进行各种数学处理; 2. 用Mathematica软件进行作图; 3. 用Mathematica软件编写程序. 【注意事项】 Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名。 系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Conjugate[z]等。 乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,Tan[x]^y。 自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。当你赋予变量任何一个值,除非你明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,它将始终保持原值不变。 一定要注意四种括号的用法:()圆括号表示项的结合顺序,如 (x+(y^x+1/(2x)));[]方括号表示函数,如Log[x],BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如 {2x,Sin[12 Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[[1]]=1。 Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔)。当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果。 命令行“Shift+Enter”才是执行这个命令。

数学建模中常用思想和方法

数学建模中常用思想和方法 系统分类:科研笔记|关键词:模型目标数学建模回归分析 matlab 在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。 用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。 拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势): matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。 在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。 回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。相对应的有线性回归、多元二项式回归、非线性回归。 逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。(主要用SAS来实现,也可以用matlab软件来实现)。 聚类分析:所研究的样本或者变量之间存在程度不同的相似性,要求设法找出一些能够度量它们之间相似程度的统计量作为分类的依据,再利用这些量将样本或者变量进行分类。 系统聚类分析—将n个样本或者n个指标看成n类,一类包括一个样本或者指标,然后将性质最接近的两类合并成为一个新类,依此类推。最终可以按照需要来决定分多少类,每类有多少样本(指标)。 系统聚类方法步骤: 1. 计算n个样本两两之间的距离 2. 构成n个类,每类只包含一个样品 3. 合并距离最近的两类为一个新类

数学建模方法和步骤

数学建模的主要步骤: 第一、模型准备 首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征. 第二、模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步.如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化. 第三、模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构.这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天.不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值. 第四、模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术.一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重. 第五、模型分析 对模型解答进行数学上的分析."横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次.还要记住,不论那种情况都需进行误差分析,数据稳定性分析. 数学建模采用的主要方法有: (一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模 型. 1、比例分析法:建立变量之间函数关系的最基本最常用的方法. 2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法. 3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用. 4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式. 5、偏微分方程:解决因变量与两个以上自变量之间的变化规律. (二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型 1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法. 2、时序分析法:处理的是动态的相关数据,又称为过程统计方法. 3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.

数学建模——excel

§10.4 EXCEL在数学建模中的应用 10.4.1 简介 Microsoft Excel是目前应用最为广泛的办公室表格处理软件之一。它在数学统计中也有广泛应用。Excel具有强有力的数据库管理功能、丰富的宏命令和函数、强有力的决策支持工具,具有分析能力强、操作简便、图表能力强等特点。 10.4.2 Excel 中的统计工具简介 1.统计函数 Excel提供78个统计函数。在主菜单中的“插入”中选择“函数”,单击后就可以得到一组常用的统计函数,如均值AVERAGE、方差VAR、中位数 MEDIAN、秩RANK、最大值MAX、最小值MIN、计数COUNT,离散和连续分布的分布函数、概率函数、分位点等,如图10.所示。在选定函数的同时,在命令的下方会出现一条说明,表明命令的意义及每个参数的含义。 图10. 例如正态分布分布函数 NORMDIST,返回给定均值和标准差的正态分布分布函数或正态分布概率密度函数。 语法:NORMDIST(x, mean, standard_dev , cumulative) 说明: x 为需要计算其分布的数值,Mean 为分布的均值,Standard_dev 为分布的标准差,Cumulative 为一逻辑值,指明函数的形式。如果 cumulative 为 TRUE,函数 NORMDIST 返回分布函数;如果为 FALSE,返回概率密度函数。 (1)如果 mean 或 stand_dev 为非数值型,函数 NORMDIST 返回错误值 #VALUE!。(2)如果 standard_dev < 0,函数 NORMDIST 返回错误值 #NUM!。 (3)如果 mean= 0 且 standard_dev = 1,函数 NORMDIST 返回标准正态分布,即函数NORMSDIST。

初中数学建模思想的策略研究定稿版

初中数学建模思想的策略研究精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

初中数学建模思想的策略研究 勐海县布朗山乡九年制学校雷鑫 一.什么是数学建模 1.1 数学建模( Mathematical Modeling )是建立数学模型并用它解决问题这一过程的简称,有代表的定义如下: ( 1 )、普通高中数学课程标准 [4] 中认为,数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育的重要内容和基本内容 . ( 2 )、叶其孝在《数学建模教学活动与大学数学教育改革》一书中认为,数学建模(Mathematical Modeling) 就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“ 规律” 建立起变量、参数间的确定的数学问题 ( 也可称为一个数学模型 ) ,求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。 两种定义的区别在于课程标准对数学建模的定义没有强调建立特定的解决问题的数学模型。数学建模的过程中当然会运用数学思想、方法和知识解决实际问题,但仅仅如此很难称得上是“数学建模”。处理很多事情,比如法律和组织上的问题,常常会用到分类讨论的思想、转化的思想、类比的思想,而并没有建立数学模型,这就不能说是进行了数学建模。这里所谈(实际上,同大部分人认为的一样)的数学建模,其过程是要建立具体的数学模型的。

什么是数学模型?根据徐利治先生在《数学方法论选讲》一书中所谈到,所谓“数学模型”( Mathematic Model )是一个含义很广的概念,粗略的讲,数学模型是指参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一个数学结构。广义的说,一切数学概念、数学理论体系、数学公式、数学方程以及由之构成的算法系统都可以称为数学模型;狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。 本论文所谈到的数学建模,其过程一定是建立了一定的数学结构。 另外,我们所谈的数学建模主要侧重于解决非数学领域内的问题。这类问题往往来自于日常生活、经济、工程、医学等其他领域,呈现“原胚”状态,需要分析、假设、抽象等加工,才能找出其隐含的数学关系结构。 一般地,数学建模的过程可用下面的框图表示: 1.2 什么是中学数学建模 这里的“中学数学建模”有两重含义, 一是按数学意义上的理解、在中学中做的数学建模。主要指基于中学范围内的数学知识所进行的建模活动,同其它数学建模一样,它仍以现实世界的具体问题为解决对象,但要求运用的数学知识在中学生认知水平内,专业知识不能要求太高,并且要有一定的趣味性和教学价值。 二是按课程意义理解,它是本文要展开讨论的,一种要在中学中实施的特殊的课程形态。它是一种以“问题引领、操作实践”为特征的活动型课程。学生要通过经历建模特有的过

概念模型设计

渤海大学自动化办公聊天室系统 系统概念模型(E-R图) 张佳佳(10060140)渤海大学信息科学与技术学院

将需求分析得到的用户需求抽象为信息结构即概念模型的过程就是概念结构设计。它是整个数据库设计的关键。概念结构是独立于计算机硬件结构、独立于支持数据库的DBMS。概念结构设计的方法有: 1)自顶向下:首先定义全局概念结构的框架,然后逐步细化。 2)自底向上:首先定义各局部应用的概念结构,然后将它们集成起来,得到全局概念结构。 3)逐步扩张:首先定义最重要的核心概念结构,然后向外扩充。 4)混合策略:即将自顶向下和自底向上相结合,用自顶向下策略设计一个全局概念结构的框架,以它为骨架集成由自底向上策略中设计的各局部概念结构。 在对本系统数据库的具体设计过程中,所采用的是自底向上的设计方法,即自顶向下地进行需求分析,得到每一集体的应用需求,然后反过来根据每一子需求,采用自底向上法分步设计每一局部E-R模型,综合各局部E-R模型,逐层向上回到顶端,最终产生全局E-R模型。 1.局部概念模型设计 根据需求分析得出,在登录系统中有一下实体。 用户(教师、学生、管理员) E—R图如下所示: 用户(user)E-R图 头像 姓名 账号 电子邮件 密码性别 用户 个人介绍状态 籍贯

教师E-R图:学生E-R图: 用户user 教师学生系统管 理员 学生 学号 姓名 性别 入学年 入学 年份 学院 专业 教师 姓名 性别 学院 教工 号 教龄 密码 密码

系统管理员E-R图: 2.用户信息表中有以下实体(学院专业) 学院E-R图系统管理员 账号密码 学院 学院ID 学院名称

数学建模方法归类(很全很有用)

在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。 用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势):matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。 在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。 回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。相对应的有线性回归、多元二项式回归、非线性回归。 逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。(主要用SAS来实现,也可以用matlab软件来实现)。 聚类分析:所研究的样本或者变量之间存在程度不同的相似性,要求设法找出一些能够度量它们之间相似程度的统计量作为分类的依据,再利用这些量将样本或者变量进行分类。 系统聚类分析—将n个样本或者n个指标看成n类,一类包括一个样本或者指标,然后将性质最接近的两类合并成为一个新类,依此类推。最终可以按照需要来决定分多少类,每类有多少样本(指标)。 系统聚类方法步骤: 1.计算n个样本两两之间的距离 2.构成n个类,每类只包含一个样品 3.合并距离最近的两类为一个新类 4.计算新类与当前各类的距离(新类与当前类的距离等于当前类与组合类中包含的类的距离最小值), 若类的个数等于1,转5,否则转3 5.画聚类图 6.决定类的个数和类。 判别分析:在已知研究对象分成若干类型,并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。 距离判别法—首先根据已知分类的数据,分别计算各类的重心,计算新个体到每类的距离,确定最短的距离(欧氏距离、马氏距离) Fisher判别法—利用已知类别个体的指标构造判别式(同类差别较小、不同类差别较大),按照判别式的值判断新个体的类别 Bayes判别法—计算新给样品属于各总体的条件概率,比较概率的大小,然后将新样品判归为来自概率最大的总体 模糊数学:研究和处理模糊性现象的数学(概念与其对立面之间没有一条明确的分界线)与模糊数学相关的问题:模糊分类问题—已知若干个相互之间不分明的模糊概念,需要判断某个确定事物用哪一个模糊概念来反映更合理准确;模糊相似选择—按某种性质对一组事物或对象排序是一类常见的问题,但是用来比

相关文档
最新文档