17题 高中数学第17数列与解三角形知识点大全(很齐全哟-!)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考大题第17题必考知识一、数列基本公式:
1、一般数列的通项a
n 与前n项和S
n
的关系:a
n
=
2、等差数列的通项公式:a
n =a
1
+(n-1)d a
n
=a
k
+(n-k)d (其中a
1
为首项、a
k
为已
知的第k项) 当d≠0时,a
n 是关于n的一次式;当d=0时,a
n
是一个常数。
3、等差数列的前n项和公式:S
n = S
n
=
S
n =
当d≠0时,S
n 是关于n的二次式且常数项为0;当d=0时(a
1
≠0),S
n
=na
1
是
关于n的正比例式。
4、等比数列的通项公式: a
n = a
1
q n-1a
n
= a
k
q n-k
(其中a
1为首项、a
k
为已知的第k项,a
n
≠0)
5、等比数列的前n项和公式:当q=1时,S
n =n a
1
(是关于n的正比例式);
当q≠1时,S
n = S
n
=
三、高中数学中有关等差、等比数列的结论
1、等差数列{a
n }的任意连续m项的和构成的数列S
m
、S
2m
-S
m
、S
3m
-S
2m
、S
4m
- S
3m
、……
仍为等差数列。
2、等差数列{a
n
}中,若m+n=p+q,则
3、等比数列{a
n
}中,若m+n=p+q,则
4、等比数列{a
n }的任意连续m项的和构成的数列S
m
、S
2m
-S
m
、S
3m
-S
2m
、S
4m
- S
3m
、……
仍为等比数列。
5、两个等差数列{a
n }与{b
n
}的和差的数列{a
n+
b
n
}、{a
n
-b
n
}仍为等差数列。
6、两个等比数列{a
n }与{b
n
}的积、商、倒数组成的数列
{a
n b
n
}、、仍为等比数列。
7、等差数列{a
n
}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a
n
}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
11、{a
n
}为等差数列,则 (c>0)是等比数列。
12、{b n }(b n >0)是等比数列,则{log c b n } (c>0且c 1) 是等差数列。 13. 在等差数列
中:
(1)若项数为 ,则
(2)若数为 则, ,
14. 在等比数列
中:
(1) 若项数为 ,则
(2)若数为 则,
二、解三角形基本公式:
1、三角形三角关系:A+B+C=180°;C=180°-(A+B);
2、三角形三边关系:a+b>c; a-b 3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin ,tan cot 222222 A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外 接圆的半径,则有 2sin sin sin a b c R C ===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 6、两类正弦定理解三角形的问题: ①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)) 7、余弦定理:在C ∆AB 中,有2 2 2 2cos a b c bc =+-A ,2 2 2 2cos b a c ac =+-B , 2222cos c a b ab C =+-.