工程力学力系的简化解析

合集下载

工程力学03力系等效简化

工程力学03力系等效简化

B

空间平行力系的中心
y
z
FR F1 F2 rC r1 r2 zC C F3 Fn r3
定义: 空间平行力系,当它有合力时, 合力的作用点C 就是该力系的中心。 平行力系的中心坐标公式
O x yC
rn
y z
xC
1)矢量形式
由合力矩定理: MO (FR ) MO (Fi )
rC FR r1 F1 r2 F2 rn Fn
i 1 i 1
•主矩 M O M i ri Fi
i 1 i 1
力系的主矢和主矩
主矢 力系中各力的矢量和称为力系的主矢。 F FR 主矢与简化中心选择无关。只有大小和 方向,没有作用点概念. 思考:力系的主矢与合力的区别? 主矩 力系中各力对简化中心之矩的矢量和 称为力系对简化中心的主矩。 M O M O ( F ) 力系对简化中心的主矩和简化中心的选择有关。 力系的主矢和主矩是决定力系对刚体作用 效应(移动和转动)的两个基本特征量。
MO (F) M MO (F1 ) MO (F2 ) 10j 10k
FR F2i F1 j 100i 100j
FR Mo 0
力螺旋


例:在边长为 a 的立方体的A、B顶点上作用有大
小均为 F 的力F1和F2,试讨论此力系的最后合成结果 a
F1
A
F2
Fn'
Mn
O
FR

F2
M2
F1'
F1
M1 F ' 2

O
MO
{F1 , F2 ,, Fn } {F1 ' , F2 ' ,, Fn ' , M1 , M 2 ,, M n } {FR , M O }

工程力学:第2章 力系的简化

工程力学:第2章  力系的简化

F1sin45 F2sin45 0 FAsin30 F1cos45 cos30 F2 cos45 cos30 0 FAcos30 F1cos45 sin30 F2cos45 sin30 P 0
B FB1
相同的均质杆围成正方形,求绳EF的拉力。
要求:
用最少的方 程求出绳EF受 的力
FAy
FAx
A
E
P
FDy
FDx
D
G
P
B
F
P
C
FDy FDx
D
G
P
FDy FDx
D
FCy FCx
C
FBx FT
G
P
FBy
B
F
P
C
例3-3
q
FAx A
M B
2a
P
FAy
4a
FB
ll
30
F
M
3l P
q
例3-4
F
体等效于只有一个力偶的作用,因为力偶可以在刚体平
面内任意移动,故这时,主矩与简化中心O无关。
③ FR≠0,MO =0,即简化为一个作用于简化中心的合力。这时,
简化结果就是合力(这个力系的合力), FR FR 。(此时
与简化中心有关,换个简化中心,主矩不为零)
④ FR 0, MO 0 ,为最一般的情况。此种情况还可以继续 简化为一个合力 FR 。
FAy
B FB1x
C
M
B
D
Cr

E
A
300 F E
FA
FT
C
F A1
FA
求:销钉A所受的力
M
B D
FD D C

工程力学基础第3章 力系的静力等效和简化

工程力学基础第3章 力系的静力等效和简化

二、力系简化的最终结果 根据力系主矢和主矩的性质,力系可最终简化为下列四种情形 1 2 3 4 平衡力系 即与零力系等效。其条件为主矢F′R=0,主矩M 该力偶称为力系的合力偶。力系存在合力 该力称为力系的合力。
O=0 单一等效力偶 单一等效力 力螺旋 偶的条件为主矢F′R≠0,主矩MO≠0。 在最一般的情况下,力系的主矢和主矩不垂直
三、平面力系的简化结果
(1)沿直线路面行驶的汽车,若不考虑由于路面不平引起的
左右摇摆和侧滑,则由汽车所受的重力、空气阻力及地面对车 轮的约束力构成的空间力系将对称于汽车的纵向对称面。将该 力系向汽车的纵向对称面简化,就可得到一个平面一般力系, 如图3-11 (2)工厂车间里的桥式起重机,梁的自重、起重机小车的自 重和起吊物的重量均作用在梁的纵向对称面内。梁两端四个车 轮的约束力也对称于该平面,故该力系可简化为梁纵向对称面 内的一个平面力系,如图3-12所示。
图3-3
力的平移定理
可以把作用于刚体上点A的力F平行移动到任一
点O,同时附加一个力偶,其力偶矩矢M等于力F对点O的力矩
矢,即M=MO(F),则平移后得到的新力系与原力系等效, 如图3-4 力的平移定理可以直接用等效力系定理来证明。反之,作用于 同一刚体的同一平面内的一个力和一个力偶(即力偶矩矢和力 矢垂直时),可以用一个力等效代替。
(一般)力系,这是力系的最一般的形式。当力系中各力的作 用线位于同一平面内时,称为平面(一般)力系,这是工程实 际中常见的重要情形。有些空间力系通过等效转换的方法也可 以变为平面力系。如果力系中各力的作用线交于一点,则称为 汇交力系。如果力系全部由力偶组成,则称为力偶系。汇交力 系和力偶系也有空间和平面两种情形,汇交力系和力偶系是两
图3-4

工程力学第2章(汇交力系)

工程力学第2章(汇交力系)

2.力在平面上的投影
FM F cos
⑴ 力在平面上的投影是矢量。 ⑵ α:力与投影平面的夹角。
3. 力在直角坐标轴上的投影 · 一次投影法 Fx F cos
Fy F cos
Fz F cos
·二次投影法
Fx Fxy cos F cos cos Fy Fxy sin F cos sin
合力FR 的大小
FR ( Fx )2 ( Fy )2 ( Fz )2
合力FR 的方向
R
F cos( F ,i )
x
cos( FR,j )
R
F Fy
F
z
F cos( F ,k ) F
二、汇交力系平衡的解析条件
汇交力系平衡的充分且必要条件是力系的合力等于零。
角为60o ,若接触面光滑,试分别求出圆柱给墙面和夹板的压 力。
解:
FA Gtan30o 500 tan30o 288.7N
G 500 FB 577.4N o o cos 30 cos 30
几何法求解汇交力系简化与平衡问题总结:
⑴ 选择研究对象,分析受力情况,画出全部的 已知力和未知力,利用二力平衡、三力平衡汇交等定 律确定某些力作用方向(必须明确力的方向,否则容 易出错)。
Fx 0 : Fy 0 : F
z
FA FC cos 30o sin 0
FB FC cos 30o cos 0 FC sin30o P 0
0:
由几何关系可得 cos 0.8 sin 0.6 解得: FA 10.39kN
FB 13.85kN FC 20kN
F2 = 4kN,F3 = 5kN,求三个力的合力。 解:

工程力学C-第4章 平面任意力系

工程力学C-第4章 平面任意力系

l 2
q( x) xdx 2l h 3 q( x)dx
0 l 0
l
例 题7:
均匀分布载荷 q =4kN/m ,自由端B作用有集 中力F = 5kN,与铅垂线夹角α=25°,梁长 l = 3m。求固定端的反力。 解: 梁AB ——研究对象
x
M A (Fi ) 0 : M Q l F cos l 0 (Q ql 4 3 12kN) A
2
1 2 M A Fl cos ql 31.59kN m 转向如图 2
F
F
xi
0:
0:
FAx F sin 0
FAx F sin 2.113kN
FAy Q F cos 0
实际方向与图中相反
yi
FAy Q F cos 16.53kN 方向如图
n
平衡方程
平面任意力系平衡的解析条件:所有各力在两个任选的坐标轴 上的投影的代数和分别等于零,以及各力对于任意一点矩的代 数和也等于零。
例 1:
固定端约束
既不能移动,又不能转动的约束—— 固定端约束 固定约束的特点
利用平面力系的简化结果,将端部的分布
力向端部的一点A点简化,得FA、MA。
FA MA
A
B
b
因此,P2必须满足:
Pe P l P (e b) 1 P2 ab a
FNA
FNB
例 题 6 细杆AB 搁置在两互相垂直的光滑斜面上,如图所 示。已知:杆重为P,重心C 在杆AB的中心,两 斜面的几何关系如图。求:杆静止时与水平面的 夹角θ和支点 A、B 的反力。 解: 细杆AB —— 研究对象 设杆AB长 l ,取图示坐标系。

工程力学 第2章 力系的等效与简化

工程力学 第2章 力系的等效与简化

第2章 力系的等效与简化 作用在实际物体上的力系各式各样,但是,都可用归纳为两大类:一类是力系中的所有力的作用线都位于同一平面内,这类力系称为平面力系;另一类是力系中的所有力的作用线位于不同的平面内,称为空间力系。

这两类力系对物体所产生的运动效应是不同的。

同一类力系,虽然其中所包含的力不会相同,却可能对同一物体产生相同的作用效应。

在就是前一章中提到的力系等效的概念。

本章将在物理学的基础上,对力系的基本特征量加以扩展,引入力系主矢与主矩的概念;以此为基础,导出力系等效定理;进而应用力向一点平移定理以及力偶的概念对力系进行简化。

力系简化理论与方法将作为分析所有静力学和动力学问题的基础。

 §2-1 力系等效定理 2-1-1 力系的主矢和主矩 2-1-2 力系等效定理 §2-2 力偶与力偶系 2-2-1 力偶与力偶系 2-2-2 力偶的性质 2-2-3 力偶系的合成 §2-3 力系的简化 2-3-1 力向一点平移定理 2-3-2 空间一般力系的简化 2-3-3 力系简化在固定端约束力分析中的应用 §2-4 结论和讨论 2-4-1 关于力矢、主矢、力矩矢、力偶矩矢以及 主矩矢的矢量性质 2-4-2 关于合力之矩定理及其应用 2-4-3 关于力系简化的最后结果 2-4-4 关于实际约束的简化模型 2-4-5 关于力偶性质推论的应用限制 习 题 本章正文 返回总目录第2章 力系的等效与简化 §2-1 力系等效定理 物理学中,关于质点系运动特征量已有明确论述,这就是:质点系的线动量和对某一点的角动量。

物理学中还指明线动量对时间的变化率等于作用在质点系上的合外力;角动量对时间的变化率等于作用在质点系上外力对同一点的合力矩。

这里的合外力,实际上只有大小和方向,并未涉及作用点或作用线。

因而,需要将其中的合外力与外力的合力矩扩展为力系的主矢和主矩。

2-1-1 力系的主矢和主矩 主矢:一般力系(F 1,F 2,…,F n )中所有力的矢量和(图2—1),称为力系的主矢量,简称为主矢(principal vector ),即∑=ni i1R FF =(2-1)图2-1力系的主矢其中F R 为力系主矢;F i 为力系中的各个力。

《工程力学》力系的简化

《工程力学》力系的简化
24/48
2.3 平面力系的简化----平面力系的简化结果
➢主矢、主矩与简化中心的关系: ✓主矢与简化中心的选择无关; ✓主矩与简化中心的选择有关。
➢注意: ✓主矢只有大小和方向两个要素,并不涉及作用点,可 在任意点画出; ✓合力有三要素,大小、方向和作用点。
M Oy
n i 1
M O (Fi ) y
M Oz
n
M O (Fi )
i1
z 5/48
2.1 力系等效与简化的概念----力系的主矢和主矩
力系主矢的特点: ✓对于给定的力系,主矢唯一; ✓主矢只有大小和方向,未涉及作用点。
力系主矩的特点: ✓力系主矩与矩心的位置有关; ✓对于给定的力系,主矩不唯一,同一力系 对不同的点,主矩一般不相同。
10/48
2.2 力系简化的基础——力向一点平移
-F
r F
F F
➢根据加减平衡力系原理,加上平衡力系后,力对刚 体的作用效应不会发生改变; ➢施加平衡力系后,由3个力组成的新力系对刚体的 作用与原来的一个力等效。
11/48
2.2 力系简化的基础——力向一点平移
-F
F
M=Fd
F
F
✓增加平衡力系后,作用在A点的力与作用在B的力组成一
14/48
2.2 力系简化的基础——力向一点平移
z
M -F
F F
Mx
F
F
My
F
15/48
2.3 平面力系的简化
➢平面汇交力系与平面力偶系的合成结果 ➢平面一般力系向一点简化 ➢平面力系的简化结果
16/48
2.3 平面力系的简化
----平面汇交力系与平面力偶系的合成结果
➢汇交力系:力系中所有力的作用线都会交于一点; ➢平面汇交力系:力系中所有力的作用线处于同一平面并且 汇交于一点。 ➢平面汇交力系的合力等于力系中所有力的矢量和。

工程力学--平面一般力系解读

工程力学--平面一般力系解读
Fi Fi
作用在简化中心。是各力的矢量和,所以与简化中心位置无关。
主矩 MO m1 m2 m3
mi
mO (F1) mO (F2 ) mO (Fi )
是各力对简化中心的力矩之和,所以与简化中心位置有关。
例题 1 已知平面任意力系如图,F1 100 2N , F2 100N , F3 50N
由于主矢和主矩都不为零,所以最后合成结果是一个合力FR。如图所
示。 合力FR到O点的距离
d
MO FR
0.51
m
例题 3 水平梁AB受三角形分布的载荷作用,如图所示。载荷的最大集
度为q, 梁长l。试求合力作用线的位置。
F
q A
解:在梁上距A端为x的微段dx上,作 q 用力的大小为q’dx,其中q’ 为该处的载 B x 荷集度 ,由相似三角形关系可知
列平衡方程得:
X XA 0 Y YA NB P 0
mA (Fi ) P 2a NB 3a 0
解得: YXAAP30
N
B
2P 3
例题 5 如图所示,支架的横梁AB与斜杆DC彼此以铰链C连接,并各以铰链
A,D连接于铅直墙上。已知AC=CB,杆DC与水平线成45o角;载荷F=10 kN,
(2)当Q=180kN,满载W=200kN时,由平面平行力系的平衡方程可得:
Fi Q P W NA NB 0 mA (F ) Q(6 2) P 2 W (12 2) NB 4 0
解得:
N N
A B
210 870
kN kN
•§3-6 静定与静不定问题的概念
一、静定与静不定问题的概念
作用于B处。设梁和杆的重量忽略不计,求铰链A的约束力和杆DC所受的力。
AA

工程力学02-力系的简化

工程力学02-力系的简化
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
力系的等效
力系的基本特征
力的平移 力系的简化
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
O Mo x
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen

求此三力的合力 解: 建立直角坐标系

y x F1=732N
30° F3=2000N
例: 吊钩受有三个力,其数值和方向如图所示
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen

求此三力的合力

y x F1=732N
30° F3=2000N
例: 吊钩受有三个力,其数值和方向如图所示 Fx = -1000N Fy = - 1732N 求合力和方向 F = Fx2+Fy2 = (-1000)2+(-1732)2 = 2000N = 2kN Fy tana= F = -1732 = 1.732 -1000 x
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen

第2章—力系的简化—工程力学(静力学和材料力学)课后习题答案

第2章—力系的简化—工程力学(静力学和材料力学)课后习题答案

工程力学(静力学与材料力学)习题详细解答(第2章)习题2-2图第2章 力系的简化2-1 由作用线处于同一平面内的两个力F 和2F 所组成平行力系如图所示。

二力作用线之间的距离为d 。

试问:这一力系向哪一点简化,所得结果只有合力,而没有合力偶;确定这一合力的大小和方向;说明这一合力矢量属于哪一类矢量。

解:由习题2-1解图,假设力系向C 点简化所得结果只有合力,而没有合力偶,于是,有∑=0)(F C M ,02)(=⋅++−x F x d F ,dx =∴,F F F F =−=∴2R ,方向如图示。

合力矢量属于滑动矢量。

2-2 已知一平面力系对A (3,0),B (0,4)和C (-4.5,2)三点的主矩分别为:M A 、M B 和M C 。

若已知:M A =20 kN·m 、M B =0和M C =-10kN·m ,求:这一力系最后简化所得合力的大小、方向和作用线。

解:由已知M B = 0知合力F R 过B 点;由M A = 20kN ·m ,M C = -10kN ·m 知F R 位于A 、C 间,且CD AG 2=(习题2-2解图)在图中设OF = d ,则θcot 4=dCD AG d 2)sin 3(==+θ (1) θθsin )25.4(sin d CE CD −== (2)即θθsin )25.4(2sin )3(dd −=+ d d −=+93 3=d习题2-1图习题2-1解图R∴ F 点的坐标为(-3, 0)合力方向如图所示,作用线过B 、F 点; 34tan =θ 8.4546sin 6=×==θAG 8.4R R ×=×=F AG F M A kN 6258.420R ==F 即 )kN 310,25(R=F 作用线方程:434+=x y 讨论:本题由于已知数值的特殊性,实际G 点与E 点重合。

2-3三个小拖船拖着一条大船,如图所示。

工程力学第四章平面一般力系

工程力学第四章平面一般力系
详细描述
平面一般力系简化的目的是将复杂的力系简化为更简单的形式,以便分析刚体的平衡状 态。通过力的平移定理,我们可以将平面一般力系简化为一个合力和一个力矩,或者一 组力和力矩的代数和。这个合力或力和力矩的代数和代表了原力系对刚体的作用效果。
简化后的力系更易于理解和分析,有助于解决工程实际问题。
Part
平衡条件的推导
根据力的平移定理,将平面力系中的所有力平移到同一点, 然后根据合力矩为零和合力为零的条件,推导出平面力系的 平衡条件。
Part
04
平面力系的平衡方程
平衡方程的推导
01
02
03
力的合成与分解
根据力的平行四边形法则, 将力进行合成或分解为多 个分力。
力的投影
将力投影到坐标轴上,得 到力在x轴和y轴上的分量。
STEP 01
分析受力情况
解决静力学问题
利用平衡方程,求解平面 内物体的受力情况,解决 静力学问题。
STEP 03
验证结构稳定性
利用平衡方程,验证结构 的稳定性,确保结构在各 种工况下的安全可靠。
通过平衡方程,分析物体 在平面内的受力情况,判 断物体的运动状态。
Part
03
平面力系的平衡条件
平衡条件的概念
平衡条件是一个物理概念,描述的是物 体在力系作用下保持静止的状态,而平 衡方程是一个数学表达式,用于描述这
一状态。
平衡条件是定性描述,而平衡方程则是 定量描述。平衡方程通过数学符号和运 算,将平衡条件的定性描述转化为可求
解的定量关系。
平衡条件是解决平衡问题的前提,而平 衡方程则是解决问题的工具。通过建立 平衡方程,可以求解未知量,得出物体
平衡条件与平衡方程的联系

工程力学-力系的简化

工程力学-力系的简化

A xC
q(x)
xB
FR q(x)dx
Bx
xA
合力作用线:
xB
q(x)xdx
x xA
C
xB
对面分布载荷,积分元改为dA
q(x)dx
xA
32
工程上常见的分布载荷:
qF
xC
l
F
xC l
q1
F
xC l
(1)均布载荷q(x)=q=常数
F=ql , xC=l/2 (2)三角形载荷
F=ql /2 , xC=2l/3
FRx FRy FRz
(力的作用线)方程: x xB y yB z zB
B(xB , yB , zB )
为合力的作用点 15
小结 力系简化的步骤:
(1)任选矩心O,求出力系 的主矢和主矩。
FR Fi MO MO (Fi )
若主矢和主矩全为零
平衡力系(零力系)
若主矢和主矩不全为零,则进一步计算(2):
FRO
原一般力系简化为一个作用于O点的合力 FR
——最简力系
9
4.
FR 0, MO
MO 0,
FR
FR MO 0
即 FR MO
MO
FR
O
O
原力系简化为过O点的合力
FR
及合力偶,且 FR MO
B (xB,yB,zB) 合力作用线
——不是最简力系
根于据B点力的的合平力移逆FB定 理FR,,二B者点可位进置一为步简OB化为F一R F个R2M 作O 用
简化后的合力作用点B的位置为
OB
F1 M
F12
即将即F1力O平B行于F1其,O作B用线M移, 动OBO距B 离 成MF1为F

工程力学

工程力学

力系简化的基础是力向一点平移定理。
工程力学
第2章 力系的简化
§2–2 力向一点平移定理
力向一点平移定理 作用于刚体上的力可从原来的作用点 平行移动任一点而不改变对刚体的作用效应,但须附加一 个力偶,附加力偶的矩等于原力对新作用点的矩。
F B h
F
F = B h
F
F
A
A
=
M=Fh B A
第2章 力系的简化
求如图所示平面共点力系的合力。其中:F1 = 200 N, y F2 = 300 N,F3 = 100 N,F4 = 250 N。 F2
解: 根据合力投影定理,得合力在轴
x,y上的投影分别为:
FRx F1 cos 30 F2 cos 60 F3 cos 45 F4 cos 45 129 .3 N
FR=FR,但其作用线不过简化中心O。
FR
MO O
FR
= O
d
FR
FR
A
= O
d
FR
A
M 0 m0 ( FR ) d FR ' FR '
把各力矢首尾相接,连接第一个力的始端与最后一个力的终 端的矢量就是合力FR,力系中各力称为合力FR的分力。 F2 F1 F3 F2 F3 F
O
4
F1
FR
F4 • 得到的多边形,称为力多边形,合力就是力多边形的封闭边。
• 用力多边形求解合力的方法称为力的多边形法则。
工程力学 c F3 d F4 c F1 a
加减平衡力系原理
力偶
[证明]
力F
M o M o ( F ) Fh
力系F,F',F''

工程力学平面力系

工程力学平面力系

例3-9
求杆BD、CD和CE的内力


40
HOHAI UNIVERSITY
例3-10
求1杆内力。 Ⅰ

41
HOHAI UNIVERSITY
F
A

I
B
例3-11 F Ⅲ Ⅱ ② Ⅰ
E C
求指定4根杆的内力。 可以求出杆2内力

J
D
I-I Ⅱ Ⅰ

K

F
II-II 可以求出杆3、4内力
III-III 可以求出杆1的内力
∑Fix =0 ∑ Fiy =0
35
HOHAI UNIVERSITY
空间汇交力系:
∑Fix =0
∑ Fiy =0
∑ Fiz =0
36
HOHAI UNIVERSITY
例3-8
用节点法求各杆内力
零杆——内力为零的杆件
零杆判断:


1.如有三根杆件在某一节点相交,其中两根在同一直线上,且该节点不 受外力作用,则第三根杆(不必与另两根杆垂直)必为零杆; 2.如只有两根不共线的杆件相交于一节点,节点上无外力,则该两杆必 37 均为零杆。
25
HOHAI UNIVERSITY
按材料分:
木桁架
钢桁架
钢筋混凝土桁架
26
HOHAI UNIVERSITY
按空间形式分: 平面桁架:所 有杆件的轴线 在同一平面内。
空间桁架
27
HOHAI UNIVERSITY
按内力计算分: 静定桁架
超静定桁架
28
HOHAI UNIVERSITY
木桁架的榫接节点
21
HOHAI UNIVERSITY

工程力学:平面力系的简化与平衡

工程力学:平面力系的简化与平衡
静摩擦力与一般约束反力不同,它并不是随力F的增加而无限 度的增加。当力F的大小达到一定数值时物体处于将要滑动, 但尚未开始滑动的临界状态。这时,力F 再增大一点,物体
将开始滑动。当物体处于平衡的临界状态时,静摩擦力达到 最大值,即为最大静滑动摩擦力,简称为最大静摩擦力,以
Fmax表示。此后,如果F 再继续增大。但静摩擦力不能再随之
一、平面任意力系的简化
设平面任意力系如图(a)所示
图(a)
将图(b)所示平面汇交力系和平面力偶系合成,得:
主矢: FR' Fn 主矩: M O M O Fn
如图(c)所示
– 主矢FR’和主矩Mo
FR’≠0 Mo=0
FR’ =0 Mo ≠0
FR’ ≠ 0 Mo ≠0
二、平面任意力系的平衡
2、解析法 解析法是以力在坐标轴上的投影为基础,一个力在坐标 轴上的投影合力公式为:
F Fx2 Fy2
tan Fy
Fx
多个力组成的力系在坐标轴上的投影合力公式为:
FRx F1x F2x Fnx Fx
FRy F1y F2y Fny Fy
2、截面法:当求桁架构件上某个杆件内力时,可以根据要求 选取一个截面,把桁架截开,被截杆件截口处作用将用内力 代替,再考虑任意部分的平衡,这样求出所要求的内力
节点法
已知:如图 P=10kN,求各杆内力?
解:①研究整体,求支座反力
X 0, X B 0
M A(F ) 0, 4YB 2P 0
2、P56 2-32 另外2-37 (a)图自愿做
连同上两节课的作业: P19 : 1-19题 (a)、(i); 1-20题 (e)、(h); 1-21题 (d)

工程力学(李卓球) 第3章 力系的简化和平衡

工程力学(李卓球) 第3章 力系的简化和平衡

∑X =0 ∑Y = 0 ∑M = 0
O
3.2
力系的平衡条件和平衡方程 ∑X =0
∑Y = 0 ∑F = 0
z
y
F1 F2
4 5 3
F3
∑M
x
=0
y
O
x
∑M ∑M
平面汇交力系
=0
=0
z
∑ ∑
X = 0
Y = 0
Y = 0
M
O
平面平行力系
∑ ∑
( Fi ) = 0
3.2
力系的平衡条件和平衡方程
四、平面任意力系平衡方程的其他形式 (1)二力矩式 二力矩式
3.2
力系的平衡条件和平衡方程
平面平行力系的平衡方程
∑ ∑ ∑
Fx = 0
∑ M ∑ M
A B
(F i ) = 0 (Fi ) = 0
Fy = 0
M
O
(Fi ) = 0

Fx = 0
A
B
∑Y ∑M
= 0
O
∑ M
(F i ) = 0
(Fi ) = 0

M
(Fi ) = 0
AB连线与力不平行 连线与力不平行 只有两个独立方程,只能求解两个独立的未知数。 只有两个独立方程,只能求解两个独立的未知数。
h h
γy (1 × dy )
dy
= γy
1 2 γh 2
由合力矩定理, 由合力矩定理,有
1 Qd = ∫ yqdy = ∫ γy dy = γh 3 0 0 3
h h 2
d=
2 h 3
3.1
力系向一点简化
y A
2m
在长方形平板的O 例题 3-2 在长方形平板的 、A、 B、C 点上分别作用着有四个力: 点上分别作用着有四个力: F1=1kN,F2=2kN,F3=F4=3kN , , 如图), ),试求以上四个力构成 (如图),试求以上四个力构成 的力系对点O 的简化结果, 的力系对点 的简化结果,以及 该力系的最后的合成结果。 该力系的最后的合成结果。 取坐标系Oxy。 解:取坐标系 。 1、求向 点简化结果: 点简化结果: 、求向O点简化结果 求主矢R′ ①求主矢 ′:

工程力学02

工程力学02

作用于 点O 的 F R’
力偶
MO
主 矢
RO=F1′+ F2′+…+Fn′ =F1 +F2 +…+Fn=ΣF= FR′ FR′称为该力系的主矢,它等于原力 称为该力系的主矢, 该力系的主矢
系各力的矢量和, 系各力的矢量和,与简化中心的位 置无关。 置无关。
主 矩
各附加力偶的力偶矩分别等于原力系中各力对 简化中心O 之矩, 简化中心 之矩,即 m1=mo(F1),m2=mo(F2) ,…, mn =mo( Fn) 则: , , MO=m1+m2+…+mn=mo(F1)+mo(F2)+…mo (Fn ) =ΣmO(F) ) 原力系中各力对简化中心之矩的代数和称为原 力系对简化中心的主矩 主矩。 力系对简化中心的主矩。 可见在选取不同的简化中心时, 可见在选取不同的简化中心时,每个附加力偶 的力偶臂一般都要发生变化,所以主矩一般都与简 的力偶臂一般都要发生变化,所以主矩一般都与简 化中心的位置有关。 化中心的位置有关。
第2章 力系的等效和简化 章
平面力系 空间力系 等效力系
l平平力力力 平平平平 空空平平
平平平平平平 平平平平平平 平平平平平平 平平平平平 空空平平平平 空空平平平平 空空平平平平 空空平平平
2.1 力系等效和简化的概念
2.1.1 力系的主矢与主矩 主矢的概念: 由任意多个力所组成的力系 F1 , F 2 , ..., F n 中所有力的矢量和,称为力系的主矢量,简称 为主矢,用 F R 表示,即:
力偶的作用效果取决于三个因素:构成力 偶的力、力偶臂的大小、力偶的转向。 故在平面问题中用一带箭头的弧线来表示如 图所求,其中箭头表示力偶的转向,m表示力 偶矩的大小。

《工程力学》第二章 基本力系

《工程力学》第二章  基本力系

• 以上三个决定力使物体绕某点转动效应的 因素,在数学上可用一特殊矢量来表示。 这个矢量的模等于力的大小F和力臂h的 乘积;该矢量的方位(即转动轴线在空间 的方位),其指向由右手螺旋法则确定(图 2-19)。这个矢量称为力对点的矩矢,用 符号mO(F)表示。由图可知,它是一个通 过矩心O的定位矢量,是力对物体产生转 动效应的度量。
偶对力偶作用面上任一点O的矩,应为Байду номын сангаас行力F, F′对点O的矩的代数和,即
• 由此可知,两个力矩相加的结果与两力矩的矩 心位置无关,即力偶中两力对力偶作用面上任 一点之矩的代数和为一常量,它等于力偶中任 一力F的大小F和力偶臂d的乘积。此乘积称为 力偶矩,记作m(F,F′),简记为m。于是
• 式中正负号反映力偶的转向,逆时针转向 取正,顺时针转向取负。力偶矩的量纲与 力矩相同,其单位也相同。
力R,则合力对物体作用时产生的效应与 各分力对物体同时作用时所发生的效应完 全相同。于是,合力R对点的矩矢可写为
•即
• 这就是合力矩定理,其物理意义是合力对 任一点之矩矢,等于各分力对同一点之矩 矢的矢量和。
• 若力系为平面力系,各力对平面上任一点 的矩为代数量,故合力矩定理在平面问题 中表述为
• 它表明:平面力系的合力对平面上任一点 的矩,等于各分力对同一点的矩的代数和。
• 二、汇交力系的合成
• 作用于物体上诸空间力作用线汇交于一点的力系称为空间汇交力 系。若诸空间力的作用线仅分布于同一平面且作用线汇交于一点, 这类力系称为平面汇交力系。研究汇交力系合成的方法有几何法 和解析法。
• 1.几何法
• 设作用于刚体上的空间汇交力系为F1、F2、…、Fn,且各力作 用线均汇交于一点O(图2-7(a))。O点为汇交点。按力的可传性 原理,施加于刚体上的汇交力系中各力作用点均可沿各自作用线 移至汇交点O。凡力系中诸力具有共同作用点的力系称为共点力 系(图2-7(b))。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力偶的性质
性质一:由于力偶只产生转动效应,而不产生移动效 应,因此力偶不能与一个力等效(即力偶无合力), 也不能与一个力平衡。
性质二 : 力偶为自由矢量,对刚体的运动效应只与力 偶矩矢量的大小、方向有关。
根据力偶的这一性质, 可以用力偶作用面内的一 个圆弧箭头表示力偶,圆 弧箭头的方向表示力偶转 向。
矢量方向由右手定则确定; 矢量作用在O点,垂直于r 和F
所在的平面。
举例
力对轴之矩
力对轴之矩实例
F Fz Fy
Fx F
定义:力使物体绕某一轴转动效应的量度,称为 力对轴之矩。
力对轴之矩的计算
方法一 : 将力向垂直于该轴
的平面投影 ,力的投影 与投影至轴的垂直距离 的乘积.
Mz (F) = Fxyd =2S(OAB)
关于力偶性质的推论
F

只要保持力偶矩矢量不变, 力偶可在作用面内任意移动,其 对刚体的作用效果不变
F

F

F

只要保 持力偶矩矢 量大小和方 向不变,力 偶可在与其 作用面平行 的平面内移 动。
保持力
偶矩矢量不
变,分别改
F/2
F´/ 2 变力和力偶
臂大小,其
作用效果不

M=Fdk
力偶系及其合成
Nanjing University of Technology
第二章 力系的简化
某些力系,从形式上(比如组成力系的力的个 数、大小和方向)不完全相同,但其所产生的运 动效应却可能是相同的。这时,可以称这些力系 为等效力系
为了判断力系是否等效,必须首先确定表示 力系基本特征的最简单、最基本的量—力系基本 特征量。这需要通过力系的简化方能实现。
特殊情形
Mo
F
r
F
结论:
当轴垂直于r 和F 所在的平 面时,力对点之 矩与力对轴之 矩在数值上相 等。
Mo=M A-A
r F
举例
合力矩定理
汇交力系的合力之矩定理
汇交力系
O d1
n
FR=
i=1
FinMO(FR)==1 M O(Fi)d d2
F1
FR F2
如果平面力系可以合成为一个合力FR,则可以证 明:
i jk Mo ( F ) = r×F = x y z
Fx Fy Fz
= (Fzy-Fyz) i +(Fxz-Fzx) j +(Fyx-Fxy) k
力对点之矩与矩心选择有关, 为定位矢量
Fz
F
z
r x
Fx Fy
y
MO r
力对点之矩几点结论
力对点 之矩是一种
F
矢量;
矢量的模
M O ( F ) =F d
即等于力与矩心到力作用线垂直距离(力臂) 的乘积。其与平面内的力矩定义式一致。
力矩矢量的作用线与力和 矩心所组成的平面之法线一致, 表明物体将绕着这一平面的法 线转动。
MO
力矩矢量的方向由 右手定则确定:右手握 拳,手指指向表示力矩 转动方向,拇指指向为 力矩矢量的方向。
F r
力对点之矩的矢量运算
以上为确定的平面内力对点的力矩,用力矩标量 及其正负号即可度量。
在研究力对物体的空间 转动时,力对点之矩这个概 念除了包括力矩的大小和转 向外,还应包括力矩的作用 面。必须用力矩矢量描述力 的转动效应。
MO F r F
为矢径r与力F之间的夹角
力矩大小等于力矩矢量的模
MO F = Frsin Fh
解 : 首先将已知力偶矩 (大小和方向)表示成矢量 表达式
M1=M1 r1 M2=M2 r2
其中: r1= rBA×rBC r2= rCA×rCD
rBA , rBC , rCA , rCD 都可以表示成 i ,j ,k 的形式
MO = MO(F) + MO(F´) = rA×F + rB× F´ = rA×F – rB× F =( rA – rB ) ×F = rBA ×F
可见,力偶矢量与O点的位置无关,即力偶无矩 心,为自由矢量
力偶的方向可由 右手螺旋法则确定
力偶的特点
特点一 : 力偶无合力,即主矢FR=0。 特点二 : 力偶对刚体的运动效应只与力偶矩矢量有关。
方法二: 将力向三个坐
标轴方向分解,分 别求三个分力对轴 之矩,然后将三个 分力对轴之矩的代 数值相加。
力对轴之矩代数量的正负号
力对轴之矩与力对点之矩的关系
M O ( F ) =F d
Mz (F) = Fxyd
Fxy= F cos
Mz (F) = M O ( F ) cos
结论:力对点之矩的矢量在某一轴上的投影, 等于这一力对该轴之矩
力对点之矩
作用在扳手上的力 F使螺母绕O点的转动 效应不仅与力的大小成 正比,而且与点O到力 作用线的垂直距离h成 正成比。
规定力F与力臂h的乘积作为力F使螺母绕点O 转动效应的度量,称为力F对O点之矩,简称力矩
mO F F h ABO
通常规定:逆为正, 而顺为负。
力矩的单位N·m或 kN·m。
y
力偶系:由两个或两个以 上力偶组成的特殊力系
力偶系的合成结果仍然是一
M
个力偶,称为合力偶
n
MR=i=1M i= M 1+ M 2+…+ M n
MR= MRxi +MRyj + MRzk
MRx= M ix MRy= M iy MRz= M iz
Mx
My
Mx
例题
已知 : M1 和 M2 (M1=M2=M0) 及 其作用面。求 合力偶 。
解 : 将力F分解为互相垂 直的两个分力Fl和F2,二 者的数值分别为
F1=Fcos45 F2=Fsin45
应用合力之矩定理
mO (F) = mO (F cos)+mO(F sin )
可得: mO F F2 l F1 d F lcos45 dsin45
500N 0.2m cos45 0.1msin45
35.35Nm
力偶及其性质
力偶实例
F1 F2
力偶的定义
力偶: 大小相等,方向相
反,不共线的两个力
所组成的力系。
F1 F2
力偶作用面 : 二力所在平面。
力偶臂: 二力作用线之
间的垂直距离。
力偶中所包含的两个力矢量的合力一定为0
F
rA rBA rB
F’
力偶对O点之矩等 于这个力系中的两个力 对该点之矩之和
MO FR MO F1 MO F2 MO Fn
或者简写成
n
MO FR MO Fi i 1
这表明:平面力系的合力对平面上任一点之矩 等于力系中所有的力对同一点之矩的代数和。这一 结论称为合力之矩定理
例题
已 知 :作用在托 架的A点力为F以
及尺寸 l1, l2 , .
求: 力F对O点之矩 MO(F)
相关文档
最新文档