二次函数与二次方程二次不等式的关系
9.二次函数、二次方程及二次不等式的关系教案
泰州二中高中数学二轮复习讲义9. 二次函数、二次方程及二次不等式的关系(教案)一.重难点归纳1 二次函数的基本性质 (1)二次函数的三种表示法y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21(p +q ) 若-ab2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-a b2)=m ,f (q )=M ;若x 0≤-a b 2<q ,则f (p )=M ,f (-a b2)=m ;若-ab 2≥q ,则f (p )=M ,f (q )=m2 二次方程f (x )=ax 2+bx +c =0的实根分布及条件(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0;(2)二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r abac b (3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q ab p ac b (4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立(5)方程f (x )=0两根的一根大于p ,另一根小于q (p <q )⇔⎩⎨⎧>⋅<⋅0)()(q f a p f a3 二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是(-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0;(2)当a >0时,f (α)<f (β)⇔ |α+a b 2|<|β+ab2|,当a <0时,f (α)<f (β)⇔|α+a b 2|>|β+ab 2|; (3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p a b或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p ab a b f q a b p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或 二.课前预习:1 若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( ) A (-∞,2] B [-2,2] C (-2,2] D (-∞,-2)2 设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( ) A 正数 B 负数 C 非负数 D 正数、负数和零都有可能3 已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________4 二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是_________5 已知实数t 满足关系式33log log aya t a a = (a >0且a ≠1)(1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值1 解析 当a -2=0即a =2时,不等式为-4<0,恒成立∴a =2,当a -2≠0时,则a 满足⎩⎨⎧<∆<-002a ,解得-2<a <2,所以a 的范围是-2<a ≤2 答案 C2解析∵f (x )=x 2-x +a 的对称轴为x =21,且f (1)>0,则f (0)>0,而f (m )<0,∴m ∈(0,1), ∴m -1<0,∴f (m -1)>0答案A3 解析 只需f (1)=-2p 2-3p +9>0或f (-1)=-2p 2+p +1>0即-3<p <23或-21<p <1∴p ∈(-3,23) 答案 (-3,23) 4 解析 由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小,∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0答案-2<x <05 解 (1)由log a33log a ya t t=得log a t -3=log t y -3log t a 由t =a x 知x =log a t ,代入上式得x -3=xx y a 3log -,∴log a y =x 2-3x +3,即y =a 332+-x x (x ≠0)(2)令u =x 2-3x +3=(x -23)2+43(x ≠0),则y =a u ①若0<a <1,要使y =a u有最小值8,则u =(x -23)2+43在(0,2]上应有最大值,但u 在(0,2]上不存在最大值 ②若a >1,要使y =a u 有最小值8,则u =(x -23)2+43,x ∈(0,2]应有最小值∴当x =23时,u mi n =43,y mi n =43a由43a =8得a =16∴所求a =16,x 23 三.典型题例例1已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R )(1)求证两函数的图象交于不同的两点A 、B ;(2)求线段AB 在x 轴上的射影A 1B 1的长的取值范围命题意图 本题主要考查考生对函数中函数与方程思想的运用能力知识依托 解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合 错解分析 由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”技巧与方法 利用方程思想巧妙转化(1)证明由⎩⎨⎧-=++=bxy cbx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2] ∵a +b +c =0,a >b >c ,∴a >0,c <0 ∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点 (2)解设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-a b 2,x 1x 2c |A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 22222224444()4()b c b ac a c ac a a a a ----=--==22134[()1]4[()]24c c c a a a =++=++∵a >b >c ,a +b +c =0,a >0,c <0∴a >-a -c >c ,解得ac ∈(-2,-21)∵]1)[(4)(2++=a c a c a c f 的对称轴方程是21-=a cac ∈(-2,-21)时,为减函数∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3)例2已知关于x 的二次方程x 2+2mx +2m +1=0(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围 (2)若方程两根均在区间(0,1)内,求m 的范围 命题意图 本题重点考查方程的根的分布问题知识依托 解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义错解分析用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点技巧与方法 设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制 解 (1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或 (这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过)例3已知对于x 的所有实数值,二次函数f (x )=x 2-4ax +2a +12(a ∈R )的值都是非负的,求关于x 的方程2+a x=|a -1|+2的根的取值范围 解由条件知Δ≤0,即(-4a )2-4(2a +12)≤0,∴-23≤a ≤2(1)当-23≤a <1时,原方程化为x =-a 2+a +6,∵-a 2+a +6=-(a -21)2425∴a =-23时,x mi n =49,a =21时,x max =425∴49≤x 25 (2)当1≤a ≤2时,x =a 2+3a +2=(a +23)2-41∴当a =1时,x mi n =6,当a =2时,x max =12,∴6≤x ≤12综上所述,49≤x ≤12四.学生巩固练习1 如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围2 二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mrm q m p ++++12=0,其中m >0,求证 (1)pf (1+m m)<0; (2)方程f (x )=0在(0,1)内恒有解3 一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元? 参考答案1 解 ∵f (0)=1>0(1)当m <0时,二次函数图象与x 轴有两个交点且分别在y 轴两侧,符合题意(2)当m >0时,则⎪⎩⎪⎨⎧>-≥∆030mm 解得0<m ≤1综上所述,m 的取值范围是{m |m ≤1且m ≠0}2 证明 (1)])1()1([)1(2r m m q m m p p m m pf ++++=+ ])2()1()1()2([]2)1([]1)1([22222+++-+=+-+=++++=m m m m m m p m pm pm pm m r m q m pm pm)2()1(122++-=m m pm ,由于f (x )是二次函数,故p ≠0,又m >0,所以,pf (1+m m)<0 (2)由题意,得f (0)=r ,f (1)=p +q +r ①当p <0时,由(1)知f (1+m m)<0 若r >0,则f (0)>0,又f (1+m m )<0,所以f (x )=0在(0,1+m m)内有解; 若r ≤0,则f (1)=p +q +r =p +(m +1)=(-m r m p -+2)+r =mrm p -+2>0,又f (1+m m )<0,所以f (x )=0在(1+m m ,1)内有解②当p <0时同理可证3 解 (1)设该厂的月获利为y ,依题意得 y =(160-2x )x -(500+30x )=-2x 2+130x -500 由y ≥1300知-2x 2+130x -500≥1300∴x 2-65x +900≤0,∴(x -20)(x -45)≤0,解得20≤x ≤45 ∴当月产量在20~45件之间时,月获利不少于1300元(2)由(1)知y =-2x 2+130x -500=-2(x -265)2+16125 ∵x 为正整数,∴x =32或33时,y 取得最大值为1612元, ∴当月产量为32件或33件时,可获得最大利润1612元同步作业——9. 二次函数、二次方程及二次不等式的关系一、1.D 2.B 3.C 二 、4. 6 5.(-∞,21] 三、6.(-1,0)7.g (t )=⎪⎩⎪⎨⎧-<+-≤≤-->+)(2)2()12(0)1()1(22t t t t t g (t )的最小值为0.提示:讨论对称轴x =-1与区间端点t ,t +1的关系. 8.[49,18]。
二次函数与一元二次方程、不等式
2.3 二次函数与一元二次方程、不等式(一)教材梳理填空(1)一元二次不等式:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax 2+bx +c >0或ax 2+bx +c <0,其中a ,b ,c 均为常数,a ≠0.(2)二次函数的零点:一般地,对于二次函数y =ax 2+bx +c ,我们把使ax 2+bx +c =0的实数x 叫做二次函数y =ax 2+bx +c 的零点.(3)二次函数与一元二次方程、不等式的解的对应关系Δ>0 Δ=0 Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0 (a >0)的根 有两个不相等的实数根x 1,x 2(x 1<x 2) 有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x <x 1, 或x >x 2} ⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠-b 2aRax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2}∅∅(二)基本知能小试 1.判断正误(1)mx 2-5x <0是一元二次不等式.( )(2)若a >0,则一元二次不等式ax 2+1>0无解.( )(3)若一元二次方程ax 2+bx +c =0的两根为x 1,x 2(x 1<x 2),则一元二次不等式ax 2+bx +c <0的解集为{x |x 1<x <x 2}.( )(4)不等式x 2-2x +3>0的解集为R.( ) 2.不等式2x 2-x -1>0的解集是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <1 B .{x |x >1} C .{x |x <1或x >2} D .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1 3.不等式-2x 2+x +3<0的解集是( )A .{x |x <-1}B .⎩⎨⎧⎭⎬⎫x ⎪⎪ x >32C .⎩⎨⎧⎭⎬⎫x ⎪⎪ -1<x <32D .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >32 4.若不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12,则a ,c 的值分别为________,________.题型一 一元二次不等式的解法[学透用活][典例1] 解下列不等式:(1)-2x 2+x -6<0; (2)-x 2+6x -9≥0; (3)x 2-2x -3>0; (4)-4x 2+4x -1>0.[对点练清]1.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}2.不等式(x +5)(3-2x )≥6的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-1或x ≥92B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤92C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-92或x ≥1D.⎩⎨⎧⎭⎬⎫x ⎪⎪-92≤x ≤1 3.解不等式:-2<x 2-3x ≤10.题型二 二次函数与一元二次方程、不等式间的关系[学透用活][典例2] 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.[对点练清]1.[变结论]本例中条件不变,求关于x 的不等式cx 2-bx +a >0的解集.2.[变条件]若将本例的条件“关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}”变为“关于x 的不等式ax 2+bx +c ≥0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤2”.求不等式cx 2+bx +a <0的解集.题型三一元二次不等式的实际应用[学透用活][典例3]某校园内有一块长为800 m,宽为600 m的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.[对点练清]1.某商品在最近30天内的价格y1与时间t(单位:天)的关系式是y1=t+10(0<t≤30,t ∈N);销售量y2与时间t的关系式是y2=-t+35(0<t≤30,t∈N),则使这种商品日销售金额z不小于500元的t的范围为________.2.在一个限速40 km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m,乙车的刹车距离略超过10 m. 又知甲、乙两种车型的刹车距离S m与车速x km/h之间分别有如下关系:S甲=0.1x +0.01x2,S乙=0.05x+0.005x2.问超速行驶谁应负主要责任.[课堂一刻钟巩固训练]一、基础经典题1.下列不等式:①x 2>0;②-x 2-x ≤5;③ax 2>2;④x 3+5x -6>0;⑤mx 2-5y <0;⑥ax 2+bx +c >0.其中是一元二次不等式的有( )A .5个B .4个C .3个D .2个2.不等式-x 2-5x +6≥0的解集为( ) A .{x |x ≥6或x ≤-1} B .{x |-1≤x ≤6} C .{x |-6≤x ≤1}D .{x |x ≤-6或x ≥1}3.二次不等式ax 2+bx +c <0的解集是全体实数的条件是( )A.⎩⎪⎨⎪⎧ a >0,Δ>0B.⎩⎪⎨⎪⎧ a >0,Δ<0C.⎩⎪⎨⎪⎧a <0,Δ>0 D.⎩⎪⎨⎪⎧a <0,Δ<0 4.若a <0,则关于x 的不等式a (x +1)⎝⎛⎭⎫x +1a <0的解集为________. 5.若关于x 的不等式(k -1)x 2+(k -1)x -1<0恒成立,则实数k 的取值范围是________. 二、创新应用题6.解关于x 的不等式x 2-3ax -18a 2>0.[课下双层级演练过关]A 级——学考水平达标练1.设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( )A .{x |2≤x ≤3}B .{x |x ≤2或x ≥3}C .{x |x ≥3}D .{x |0<x ≤2或x ≥3} 2.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1.其中解集为R 的是( )A .①B .②C .③D .④3.若0<t <1,则不等式(x -t )⎝⎛⎭⎫x -1t <0的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1t <x <t B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >1t 或x <t C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1t 或x >t D.⎩⎨⎧⎭⎬⎫x ⎪⎪t <x <1t 4.一元二次方程ax 2+bx +c =0的两根为-2,3,a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3}D .{x |-3<x <2}5.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台 6.要使17-6x -x 2有意义,则x 的解集为________.7.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B ⊆A ,则a 的取值范围为________. 8.若关于x 的不等式ax 2-6x +a 2<0的非空解集为{x |1<x <m },则m =________. 9.解下列不等式:(1)2x 2+7x +3>0;(2)-4x 2+18x -814≥0; (3)-2x 2+3x -2<0; (4)-12x 2+3x -5>0.10.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?B级——高考水平高分练1.设x2-2x+a-8≤0对于任意x∈{x|1≤x≤3}恒成立,则a的取值范围是________.2.对于实数x,当且仅当n≤x<n+1(n∈N*)时,[x]=n,则关于x的不等式4[x]2-36[x]+45<0的解集为________.3.解关于x的不等式x2-(a+a2)x+a3>0.4.某小商品在2018年的价格为8元/件,年销量是a件.现经销商计划在2019年将该商品的价格下调至5.5元/件到7.5元/件之间,经调查,顾客的期望价格是4元/件.经测算,该商品价格下调后新增的年销量与实际价格和顾客期望价格的差成反比,比例系数为k.该商品的成本价为3元/件.(1)写出该商品价格下调后,经销商的年收益y与实际价格x的关系式;(2)设k=2a,当实际价格最低定为多少时,仍然可以保证经销商2019年的收益比2018年至少增长20%?5.某热带风暴中心B 位于海港城市A 东偏南30°的方向,与A 市相距400 km.该热带风暴中心B 以40 km/h 的速度向正北方向移动,影响范围的半径是350 km.问:从此时起,经多少时间后A 市将受热带风暴影响,大约受影响多长时间?习题课(提升关键能力) 一元二次函数、方程和不等式高频考点一|比较大小[例1] (1)已知a, b 满足等式x =a 2+b 2+20, y =4(2b -a ), 则x, y 满足的大小关系是( )A .x ≤yB .x ≥yC .x <yD .x >y (2)对于a >0,b >0,下列不等式中不正确的是( ) A.ab 2<1a +1b B .ab ≤a 2+b 22 C .ab ≤⎝⎛⎭⎫a +b 22D.⎝⎛⎭⎫a +b 22≤a 2+b22(3)若角α,β满足-π2<α<π2,-π2<β<π2,则2α+β的取值范围是( )A .-π<2α+β<0B .-π<2α+β<πC .-3π2<2α+β<π2D .-3π2<2α+β<3π2[集训冲关]1.若a >b ,x >y ,下列不等式正确的是( )A .a +x <b +yB .ax >byC .|a |x ≥|a |yD .(a -b )x <(a -b )y 2.已知a +b <0,且a >0,则( )A .a 2<-ab <b 2B .b 2<-ab <a 2C .a 2<b 2<-abD .-ab <b 2<a 23.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是( ) A .a 2+b 2 B .2ab C .2ab D .a +b4.已知a <b <c ,试比较a 2b +b 2c +c 2a 与ab 2+bc 2+ca 2的大小.高频考点二|基本不等式及应用[例2] (1)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8(2)已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b =________. (3)某商品进货价每件50元,据市场调查,当销售价格(每件x 元)为50<x ≤80时,每天售出的件数为P =105(x -40)2,若要使每天获得的利润最多,销售价格每件应定为多少元?[集训冲关]1.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3 D.3222.设a >0,若对于任意的正数m ,n ,都有m +n =8,则满足1a ≤1m +4n +1的a 的取值范围是________.3.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位 m/s)、平均车长l (单位:m)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为____辆/小时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时. 4.若正实数x ,y 满足2x +y +6=xy ,求2x +y 的最小值.高频考点三|一元二次不等式及其应用[例3] (1)解关于x 的不等式x 2+(1-a )x -a <0.(2)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100⎝⎛⎭⎫5x +1-3x 元. ①要使生产该产品2小时获得的利润不低于 3 000元,求x 的取值范围;②要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.[集训冲关]1.若不等式-x 2+mx -1>0有解,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2D .1<m <32.关于x 的不等式x 2-ax -6a 2>0(a <0)的解集为{x |x <x 1或x >x 2},且x 2-x 1=52, 则a 的值为( )A .- 5B .-32C .- 2D .-523.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?高频考点四|一元二次函数、方程和不等式[例4] 若不等式x 2+ax +3-a >0对于满足-2≤x ≤2的一切实数x 恒成立,求实数a 的取值范围.[集训冲关]1.若关于x 的方程8x 2-(m -1)x +m -7=0的两根均大于1,则m 的取值范围是________.2.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R .一、选择题1.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B2.设集合A ={x |x 2-x -2<0},集合B ={x |1<x <3},则A ∪B =( ) A .{x |-1<x <3} B .{x |-1<x <1} C .{x |1<x <2} D .{x |2<x <3}3.设m >1,P =m +4m -1,Q =5,则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P ≥QD .P ≤Q4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <-14,则a +b 等于( ) A .-18 B .8 C .-13 D .15.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( ) A .a ≤2 B .a ≥2 C .a ≥3D .a ≤36.《几何原本》第二卷中的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多代数的定理都能够通过图形实现证明,并称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB .设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b 2≥ab (a >0,b >0) B .a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0) 7.对任意实数x ,不等式(a -2)x 2+2(a -2)x -4<0恒成立,则a 的取值范围是( ) A .{a |-2<a ≤2} B .{a |-2≤a ≤2} C .{a |a <-2或a >2}D .{a |a ≤-2或a >2}8.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定二、填空题 9.若a <b <0,则1a -b与1a 的大小关系为________. 10.已知x +mx -2(x >2)的最小值为6,则正数m 的值为________.11.关于x 的不等式ax -b >0的解集是{x |x >1},则关于x 的不等式(ax +b )(x -2)>0的解集是________.12.若m 2x -1mx +1<0(m ≠0)对一切x ≥4恒成立,则实数m 的取值范围是________.三、解答题13. 当x >3时,求2x 2x -3的取值范围.14.解关于x 的不等式56x 2+ax -a 2<0.15.已知a >0,b >0,1a +1b =1,求1a -1+9b -1的最小值.16. 国际上钻石的重量计量单位为克拉.已知某种钻石的价值(美元)与其重量(克拉)的平方成正比,且一颗重为3克拉的该钻石的价值为54 000美元.(1)写出钻石的价值y 关于钻石重量x 的关系式;(2)把一颗钻石切割成两颗钻石,若两颗钻石的重量分别为m 克拉和n 克拉, 试证明:当m =n 时,价值损失的百分率最大.(注:价值损失的百分率=原有价值-现有价值原有价值×100%;在切割过程中的重量损耗忽略不计)。
二次函数与方程不等式的关系ppt课件
x2-2x+2=0
△<0 无实数根
y=x2-2x+1 y=x2-2x+2
1个
(1,0) 0个
与x轴交点 个数 交点坐标
2个
(0,0) (-2,0)
无
归 纳 总 结
1、函数y=ax2+bx+c(a≠0)的图象与x轴的交点个数 与方程ax2+bx+c=0(a≠0)解的个数一致。 △>0 △=0 △<0 有两个交点 有一个交点 没有交点
-1 0
3
x
归 纳 总 结
不等式ax2+bx+c>0 的解集就是函数 y=ax2+bx+c的图象在x轴上方的部分 所对应的x的取值范围; 不等式ax2+bx+c<0 的解集就是函数 y=ax2+bx+c的图象在x轴下方的部分 所对应的x的取值范围;
拓 展 延 伸
如图: 二次函数y1=ax2+bx+c 与一次函数y2=kx+b的图象相 交于点A (-1,3) 和 B (5,2),
不等式ax2+bx+c<0 的解集就是函数y=ax2+bx+c的图 象在x轴下方的部分所对应的x的取值范围; 4. 数学方法:类比、转化;数学思想:数形结 合的思想.
作
业
活页练习18.19.20.21.
谢谢合作
2、你能做出它的大致图象吗?
Байду номын сангаас
问 题 探 究 一
议一议
y
你能说出方程x2-2x-3=0 的根吗? 你能猜出函数y=x2-2x-3 的图像与x轴的交点个数 及交点的坐标吗?你是怎 样思考的?
函数、方程、不等式之间的关系
函数、方程和不等式的关系很多学生在学习中把函数、方程和不等式看作三个独立的知识点。
实际上,他们之间的联系非常紧密。
如果能熟练地掌握三者之间的联系,并在做题时灵活运用,将会有事半功倍的收效。
★函数与方程之间的关系。
先看函数解析式:(0)y ax b a =+≠,这是一个一次函数,图像是一条直线。
对于这个函数而言,x 是自变量,对应的是图像上任意点的横坐标;y 是因变量,也就是函数值,对应的是图像上任意点的纵坐标。
如果令0y =,上面的解析式也就变成了0ax b +=,也就是一个一元一次方程了。
我们知道,一般在求一个函数图像与x 轴交点的时候,令0y =(同理求一个函数图像与y 轴交点的时候,令0x =)。
所以上面的意义可以这样表达:将函数解析式中的y 变为0,那么就得到相应的方程。
这个方程的解也就是原先的函数图像与x 轴交点的横坐标。
这就是函数解析式与方程之间的关系,它适用于所有的函数解析式。
举例说明如下:例如函数23y x =-的图像如右所示: 该函数与x 轴的交点坐标为3(,0)2,也就是在函数 解析式23y x =-中,令0y =即可。
令0y =也 就意味着将一元一次函数23y x =-变成了一元 一次方程230x -=,其解和一次函数与x 轴的交 点的横坐标是相同的。
接下来推广到二次函数:例如函数2252y x x =-+的图像如右图所示: 很容易验证,该函数图象与x 轴的交点的横坐标 正是方程22520x x -+=的解。
如果右边的函数图象是通过列表、描点、连线 的方式作出来的,虽然比较精确,但过程十分繁琐。
在实际中,很多时候并不要求我们把函数图象作得 很精准。
有时候只需要作出大致图像即可。
既然上面讲述了函数图象与对应的方程之间 的关系,我们可不可以通过利用方程的根来绘制 对应的函数图象呢?函数2252y x x =-+对应的方程是22520x x -+=,先求出这个方程的两个解。
很容易根据十字相乘法(21)(2)0x x --=得出该方程的两个解分别为12和2。
二次函数与一元二次方程及不等式的关系探析
程 ax2+bx+c=0(a≠0)在实数范围内无解
(或称无实数根)。
二次函数是我们初中数学中的一个
难点,我们一定要掌握好二次函数与一元
二次方程的关系,使我们在面对二次函数
时,能够巧妙地结合方程来解决二次函数 的相关问题。
四、进一步的拓展应用
在二次函数与一元二次方程关系的 基础上,我们其实还可利用二次函数的图 像去解一元二次不等式,我们可以结合二 次函数图像与 x 轴交点的情况来判断一 元二次不等式的解集;下面以 a>0 为例说 明,抛物线 y=ax2+bx+c(a≠0)与 x 轴无交 点时,不等式 ax2+bx+c>0(或 <0)(a>0)的 解集为全体实数或无解;抛物线
参考文献: [1]石慧英,秦继东.从“有形无图”到 “以形助数”— —— 一道中考题的解法与变 式探究[J].中学数学,2020(14):67-69. [2]仓猛.复习课“三个关注”:目标、教 材与“考向”———以“二次函数与一元二次 方程”复习课为例[J].中学数学,2019(22): 41-42. [3]徐章韬.从二次函数到一元二次方 程———教育数学研究之九[J].教育研究与 评论(中学教育教学),2019(08):43-46. [4]沈莉.基于机会的教学立意———以 “二次函数与方程、不等式的关系”教学为 例[J].中学数学,2018(18):10-12. [5]陆炜锋.重新建构学材,提升学习 能力—— —以“二次函数与一元二次方程” 教学为例[J].中学数学,2017(18):15-17.
2021·9
解:(1)①当 m=0 时,原方程可化为
x-2=0,解得 x=2;
②当 m≠0 时,方程为一元二次方程,
一元二次不等式与二次函数、一元二次方程的关系
返回
双基讲解
解一元二次不等式的关键是看不等式对应的二次函数图像
返回
双基讲解
方程ax bx c , (其中a )
0
有两不相等实根 .设为x、x,且x x
计算判 别式
求根
画图
写出不等 式解集
ax bx c 的解集 , x x , ax2 bx c 0的解集 x1 , x2
一元二次方程 二次函数 一元=0
的解 当Δ >0 时, 有两个不相等 的实数根
y =ax +bx+c
的图像
2
ax2+bx+c>0
ax2+bx+c<0
(x1,x2)
y x1 o y x2 x
x1, x2
当Δ =0 时, 有两个相等的 实数根 b
x1=x2=
o x1=x2
返回
示范例题
例4 解 (1) 图像如下图所示:
返回
示范例题
例5 对应的二次函数 y=8x²-2x-3 对应的一元二次方程 8x²-2x-3=0 y
x
返回
示范例题
例6
二次项系数为负
对应的二次函数 y=x²-2x+2
对应的一元二次方程 x²-2x+2=0
返回
示范例题
例7 对应的二次函数 y=x²-4x+4 对应的一元二次方程 x²-4x+4=0
返回
新课导入
一元二次不等式与二次函数、一元二次方程的关系
任意一个一元二次不等式,都可以找到 与它对应的二次函数和一元二次方程. 一般的,一元二次不等式ax²+bx+c>0 (或<0) 对应的二次函数为 y= ax²+bx+c; 对应的一元二次方程为 ax²+bx+c=0 例如:一元二次不等式 x²-2x-3>0 对应的二次函数 y=x²-2x-3 对应的一元二次方程 x²-2x-3=0
二次函数与二元一次方程、不等式的解的对应关系
二次函数与二元一次方程、不等式的解的对应关系二次函数与二元一次方程、不等式的解的对应关系在数学领域中,二次函数与二元一次方程、不等式的解之间存在着密切的对应关系。
本文将从简单到复杂的角度,全面评估这一主题,并据此撰写一篇有价值的文章,以便读者更深入地理解这一关系。
一、二次函数的基本形式我们首先来了解二次函数的基本形式。
二次函数通常具有以下标准形式:f(x) = ax^2 + bx + c。
其中,a、b、c分别代表二次项系数、一次项系数和常数项。
1. 二次函数图像的特点二次函数的图像是一个抛物线,其开口方向由二次项系数a的正负决定。
当a > 0时,图像开口向上;当a < 0时,图像开口向下。
二次函数的顶点坐标为:(-b/2a, f(-b/2a))。
2. 二次函数的零点二次函数的零点即为方程f(x) = 0的解,也就是函数图像与x轴的交点。
要求出二次函数的零点,可以使用求根公式或配方法,进而得到对应的解。
二、二元一次方程、不等式的基本形式接下来,我们将了解二元一次方程和不等式的基本形式,以及它们与二次函数解之间的联系。
1. 二元一次方程的一般形式二元一次方程一般可表示为:ax + by = c。
在解二元一次方程时,通常采用代入、相消、加减消元法等方法,最终得到方程的解。
2. 二元一次不等式的一般形式二元一次不等式的一般形式为:ax + by > c或ax + by < c。
解二元一次不等式时,同样可以通过代入法等方式,最终得到不等式的解集合。
三、二次函数与二元一次方程、不等式解的对应关系了解了二次函数和二元一次方程、不等式的基本形式后,接下来我们来探讨它们之间的对应关系。
1. 二次函数的解与二元一次方程的关系对于二次函数f(x) = ax^2 + bx + c,其解即为方程f(x) = 0的解。
而方程f(x) = 0可以化为ax^2 + bx + c = 0的形式,与一元二次方程的形式一致。
一元二次方程、二次不等式与二次函数的关系
一元二次方程、二次不等式与二次函数的关系
其实,一元二次方程、二次不等式与二次函数是存在有着密切联系的。
他们之
间互相建立起一种相互联系的关系,联系紧密。
首先,要了解一元二次方程、二次不等式与二次函数的定义,才能更好地了解
它们之间的关系。
一元二次方程是指只有一个未知数的二次方程,一般表示为
ax²+bx+c=0 (a≠0)。
二次不等式是指一个不等于0的二次方程和一个零点的方程
组合出的不等式表达式。
而二次函数是指常数项的系数均为0的二次多项式,表示一般形式为y=ax²+bx+c (a≠0),可以以y为自变量、x为因变量,在平面直角坐
标系上表示成曲线。
接下来,从数学的角度来考虑一元二次方程、二次不等式与二次函数三者之间
的联系。
一元二次方程可以构成一个二次不等式系统,而二次不等式反过来也可以构成一个一元二次方程系统,由此可见,它们之间是相互转化关系。
二次函数则可以用来描述一元二次方程与二次不等式,得出它们之间是图形联系的。
就如,
y=ax²+bx+c这样的一次函数,可以用来描绘ax²+bx+c=0这一个元二次方程的解,
前者生成的关系图像就是后者的解的图象。
综上所述,一元二次方程、二次不等式与二次函数之间存在着相互联系的关系。
它们彼此可以相互转化,可以印证彼此,也可以从图形上看出关系并求出结果。
只有了解并运用好这些数学概念,我们才能学好数学,更好地把握思维去解决现实生活中的问题。
二次函数与二次方程二次不等式的关系
二次函数与二次方程、二次不等式的关系一、知识要点知识点1、二次函数与一元二次方程、二次不等式有着十分紧密的联系;当二次函数y=ax2+bx+c(a丰0)的函数值y=0时,就是一元二次方程,当沪0时,就是二次不等式。
知识点2、二次函数的图象与 x轴交点的横坐标就是一元二次方程的根,图像的交点个数与一元二次方程的根的个数是完全相同的,这是数和形有机结合的重要体现。
研究二次函2 . . 2数y=ax + bx + c图象与x轴交点问题从而就转化为研究一元二次方程ax + bx + c=0的根的变式训练:1、函数y=ax2— bx + c的图象过(一1, 0),贝U b c c a a b的值是___________________ 2、已知二次函数 y=x2 + mx + m— 2 •求证:无论 m取何实数,抛物线总与 x轴有两个交点.3 .已知二次函数 y=x2— 2kx + k2 + k— 2 •(1)当实数k为何值时,图象经过原点?(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?5 .已知抛物线 y=mx2 +( 3 — 2m) x + m — 2 ( m^O)与x轴有两个不同的交点.(1 )求m的取值范围;(2)判断点P (1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点 Q及P点关于抛物线的对称轴对称的点P'的坐标,并过P'、Q、P三点,画岀抛物线草图.2例2、(本题满分12分)二次函数y ax bx 6(a 0)的图像交y轴于C点,交x轴于A,B△ =b2— 4ac △ > 0 △ =0△ < 0二次函数y=ax2+bx+c(a > 0)的图像一元二次方程ax2+bx+c=0(a > 0)的根无实数根一元二次不等式ax2+bx+c> 0(a > 0)的解集x < x1或x > x2(% < x2)x为全体实数一元二次不等ax2+bx+c< 0(a > 0)的解集x1<x < x2(x1< x2)无解无解问题,这样图像问题就可以转化成方程问题,应用根的判别式、韦达定理、求根公式等解题。
二次不等式与二次函数的关系
二次不等式与二次函数的关系《二次不等式与二次函数的关系,你真的懂吗?》嘿!同学们,你们知道吗?二次不等式和二次函数就像是一对亲密无间的好伙伴,它们之间的关系可奇妙啦!先来说说二次函数吧。
它就像是一个调皮的小精灵,在坐标轴上跳来跳去。
比如说,y = x² - 2x - 3 这个二次函数,它的图像是一条弯弯的抛物线。
当x 取不同的值时,y 也跟着变化,这多有趣呀!那二次不等式又是什么呢?它就像是给二次函数戴上了一个“紧箍咒”。
比如说,x² - 2x - 3 > 0 ,这就是一个二次不等式。
你们想想,二次函数的图像能帮我们解决二次不等式的问题吗?当然能啦!比如说,我们要求x² - 2x - 3 > 0 的解集,不就可以通过看二次函数y = x² - 2x - 3 的图像在x 轴上方的部分对应的x 的取值范围嘛!这难道不神奇吗?就像我们找宝藏一样,二次函数的图像就是那张藏宝图,而二次不等式就是告诉我们要找什么样的宝藏。
有一次,在课堂上,老师出了一道题:求x² + 4x + 3 < 0 的解集。
我和同桌都绞尽脑汁地思考着。
我看着那个二次函数的表达式,心想:“这可怎么办呀?”同桌则在一旁不停地写写画画。
突然,我灵机一动,画出了二次函数y = x² + 4x + 3 的图像,一下子就找到了答案。
我得意地对同桌说:“你看,这不就解决啦!”同桌惊讶地看着我,说:“哇,你真厉害!” 我们俩都开心地笑了起来。
所以说呀,二次不等式和二次函数的关系那叫一个紧密!如果我们能把它们之间的关系搞清楚,那解决数学问题不就像玩儿一样轻松吗?同学们,你们是不是也觉得二次不等式和二次函数的关系很有趣呢?反正我是这么认为的!只要我们认真去探索,就能发现数学世界里更多的奇妙之处!。
二次函数与一元二次方程、不等式
§2.3 二次函数与一元二次方程、不等式 二次函数与一元二次方程、不等式学习目标 1.从函数观点看一元二次方程.了解函数的零点与方程根的关系.2.从函数观点看一元二次不等式.经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.知识点一 二次函数与一元二次方程、不等式的解的对应关系 判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0(a >0)的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集 {x |x <x 1,或x >x 2}xx ≠-b 2a Rax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2}∅ ∅思考 一元二次不等式与一元二次函数有什么关系?答案 一元二次不等式ax 2+bx +c >0(a >0)的解集就是一元二次函数y =ax 2+bx +c (a >0)的图象在x 轴上方的点的横坐标x 的集合;ax 2+bx +c <0(a >0)的解集就是一元二次函数y =ax 2+bx +c (a >0)的图象在x 轴下方的点的横坐标x 的集合. 知识点二 简单的分式不等式的解法 分式不等式的解法:思考 x -3x +2>0与(x -3)(x +2)>0等价吗?x -3x +2≥0与(x -3)(x +2)≥0等价吗? 答案x -3x +2>0与(x -3)(x +2)>0等价;x -3x +2≥0与(x -3)(x +2)≥0不等价,前者的解集中没有-2,后者的解集中有-2. 知识点三 一元二次不等式恒成立问题 1.转化为一元二次不等式解集为R 的情况,即ax 2+bx +c >0(a ≠0)恒成立⇔a >0,Δ<0;ax2+bx +c <0(a ≠0)恒成立⇔a <0,Δ<0.2.分离参数,将恒成立问题转化为求最值问题.1.不等式2x 2-x -1>0的解集是________. 答案xx <-12或x >1解析 ∵2x 2-x -1=(2x +1)(x -1),∴由2x 2-x -1>0得(2x +1)(x -1)>0, 解得x <-12或x >1, ∴不等式的解集为xx <-12或x >1. 2.若不等式ax 2+bx +c >0的解集为{x |-2<x <3},则方程ax 2+bx +c =0的两根分别为________. 答案 -2,3解析 不等式ax 2+bx +c >0的解集为{x |-2<x <3},所以方程ax 2+bx +c =0的两根分别-2,3. 3.不等式x -2x -1<0的解集为________. 答案 {x |1<x <2}解析 原不等式⇔(x -1)(x -2)<0,∴1<x <2. 4.不等式1x ≤1的解集为________. 答案 {x |x ≥1或x <0}解析 ∵1x ≤1,∴x -1x ≥0,∴x (x -1)≥0,x ≠0, ∴x ≥1或x <0.5.若方程x 2+ax +1=0的解集是∅,则实数a 的取值范围是________. 答案 -2<a <2解析 由题意可得a 2-4<0,所以-2<a <2.6.对∀x ∈R ,不等式x 2+2x +m >0恒成立,则实数m 的取值范围是________. 答案 m >1解析 由题意可得22-4m <0,所以m >1.一、一元二次不等式的解法 例1 解下列不等式: (1)-2x 2+x -6<0; (2)-x 2+6x -9≥0; (3)x 2-2x -3>0.解 (1)原不等式可化为2x 2-x +6>0.因为方程2x 2-x +6=0的判别式Δ=(-1)2-4×2×6<0,所以函数y =2x 2-x +6的图象开口向上,与x 轴无交点(如图所示).观察图象可得,原不等式的解集为R .(2)原不等式可化为x 2-6x +9≤0,即(x -3)2≤0,函数y =(x -3)2的图象如图所示,根据图象可得,原不等式的解集为{x |x =3}. (3)方程x 2-2x -3=0的两根是x 1=-1,x 2=3.函数y =x 2-2x -3的图象是开口向上的抛物线,与x 轴有两个交点(-1,0)和(3,0),如图所示.观察图象可得不等式的解集为{x |x <-1或x >3}.反思感悟 解一元二次不等式的一般步骤(1)将一元二次不等式化为一端为0的形式(习惯上二次项系数大于0). (2)求出相应一元二次方程的根,或判断出方程没有实根. (3)画出相应二次函数示意草图,方程有根的将根标在图中.(4)观察图象中位于x 轴上方或下方的部分,对比不等式中不等号的方向,写出解集. 跟踪训练1 解下列不等式: (1)x 2-5x -6>0; (2)(2-x )(x +3)<0.解 (1)方程x 2-5x -6=0的两根为x 1=-1,x 2=6.结合二次函数y =x 2-5x -6的图象知,原不等式的解集为{x |x <-1或x >6}. (2)原不等式可化为(x -2)(x +3)>0.方程(x -2)(x +3)=0的两根为x 1=2,x 2=-3.结合二次函数y =(x -2)(x +3)的图象知,原不等式的解集为{x |x <-3或x >2}. 二、含参数的一元二次不等式的解法例2 解关于x 的不等式ax 2-2≥2x -ax (x ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1; 当2a <-1,即-2<a <0,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为xx ≥2a 或x ≤-1;当-a <0时,不等式的解集为x2a ≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为x-1≤x ≤2a . 反思感悟 解含参数的一元二次不等式的步骤特别提醒:对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算.跟踪训练2 解关于x 的不等式x 2-(3a -1)x +(2a 2-2)>0. 解 原不等式可化为[x -(a +1)][x -2(a -1)]>0,讨论a +1与2(a -1)的大小.(1)当a +1>2(a -1),即a <3时,不等式的解为x >a +1或x <2(a -1). (2)当a +1=2(a -1),即a =3时,不等式的解为x ≠4.(3)当a +1<2(a -1),即a >3时,不等式的解为x >2(a -1)或x <a +1. 综上,当a <3时,不等式的解集为{x |x >a +1或x <2(a -1)},当a =3时,不等式的解集为{x |x ≠4},当a >3时,不等式的解集为{x |x >2(a -1)或x <a +1}. 三、二次函数与一元二次方程、不等式间的关系及应用例3 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.解 由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系(韦达定理)可知b a =-5,ca =6. 由a <0知c <0,bc =-56, 故不等式cx 2+bx +a <0,即x 2+b c x +ac >0,即x 2-56x +16>0, 解得x <13或x >12,所以不等式cx 2+bx +a <0的解集为xx <13或x >12.延伸探究1.若本例中条件不变,求关于x 的不等式cx 2-bx +a >0的解集. 解 由根与系数的关系知ba =-5,c a =6且a <0.∴c <0,bc =-56,故不等式cx 2-bx +a >0, 即x 2-b c x +ac <0,即x 2+56x +16<0. 解得-12<x <-13,故原不等式的解集为x-12<x <-13.2.若将本例中的条件“关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}”变为“关于x 的不等式ax 2+bx +c ≥0的解集是x-13≤x ≤2”.求不等式cx 2+bx +a <0的解集.解 方法一 由ax 2+bx +c ≥0的解集为x-13≤x ≤2知a <0.又-13×2=ca <0,则c >0.又-13,2为方程ax 2+bx +c =0的两个根, ∴-b a =53,∴b a =-53.又ca =-23,∴b =-53a ,c =-23a ,∴不等式cx 2+bx +a <0变为 -23a x 2+-53a x +a <0,即2ax 2+5ax -3a >0. 又∵a <0,∴2x 2+5x -3<0,故所求不等式的解集为x-3<x <12.方法二 由已知得a <0 且 -13+2=-b a ,-13×2=ca 知c >0,设方程cx 2+bx +a =0的两根分别为x 1,x 2, 则x 1+x 2=-b c ,x 1·x 2=ac , 其中a c =1-13×2=-32, -bc =-ba c a = -13+2-13×2=-52, ∴x 1=1-13=-3,x 2=12. ∴不等式cx 2+bx +a <0(c >0)的解集为x-3<x <12.反思感悟 已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循(1)根据解集来判断二次项系数的符号.(2)根据根与系数的关系把b ,c 用a 表示出来并代入所要解的不等式. (3)约去 a ,将不等式化为具体的一元二次不等式求解.跟踪训练3 已知关于x 的不等式x 2+ax +b <0的解集为{x |1<x <2},求关于x 的不等式bx 2+ax +1>0的解集.解 ∵x 2+ax +b <0的解集为{x |1<x <2},∴方程x 2+ax +b =0的两根为1,2.由根与系数的关系得-a =1+2,b =1×2,得a =-3,b =2, 代入所求不等式,得2x 2-3x +1>0. 解得x <12或x >1. ∴bx 2+ax +1>0的解集为xx <12或x >1. 四、简单的分式不等式的解法 例4 解下列不等式: (1)x +12x -1<0; (2)1-x3x +5≥0; (3)x -1x +2>1. 解 (1)原不等式可化为(x +1)(2x -1)<0,∴-1<x <12, 故原不等式的解集为x-1<x <12. (2)原不等式可化为x -13x +5≤0, ∴(x -1)(3x +5)≤0,3x +5≠0,∴-53≤x ≤1,x ≠-53,即-53<x ≤1. 故原不等式的解集为x-53<x ≤1. (3)原不等式可化为x -1x +2-1>0, ∴x -1-(x +2)x +2>0,-3x +2>0,则x <-2.故原不等式的解集为{x |x <-2}.反思感悟 分式不等式的解法(1)对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意等价变形,保证分母不为零.(2)对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转 化为不等号右边为零,然后再用上述方法求解. 跟踪训练4 解下列不等式: (1)x +1x -3≥0; (2)5x +1x +1<3. 解 (1)不等式x +1x -3≥0可转化成不等式组(x +1)(x -3)≥0,x ≠3.解这个不等式组,可得x ≤-1或x >3.即知原不等式的解集为{x |x ≤-1或x >3}. (2)不等式5x +1x +1<3可改写为5x +1x +1-3<0, 即2(x -1)x +1<0. 可将这个不等式转化成2(x -1)(x +1)<0, 解得-1<x <1.所以,原不等式的解集为{x |-1<x <1}. 五、不等式的恒成立问题例5 对∀x ∈R ,不等式mx 2-mx -1<0,求m 的取值范围. 解 若m =0,显然-1<0恒成立;若m ≠0,则m <0,Δ=m 2+4m <0⇒解得-4<m <0. 综上,m 的取值范围为{m |-4<m ≤0}. 延伸探究1.在本例中,是否存在m ∈R ,使得∀x ∈R ,不等式mx 2-mx -1>0,若存在,求m 的取值范围;若不存在,说明理由. 解 显然m =0时不等式不成立;由题意可得m >0,Δ=m 2+4m <0,解得m ∈∅,所以不存在m ∈R ,使得∀x ∈R ,不等式mx 2-mx -1>0.2.在本例中,把条件“∀x ∈R ”改为“x ∈{x |2≤x ≤3}”,其余不变,求m 的取值范围. 解 由不等式mx 2-mx -1<0得m (x 2-x )<1,因为x ∈{x |2≤x ≤3},所以x 2-x >0, 所以m (x 2-x )<1可化为m <1x 2-x,因为x 2-x =x -122-14≤6,所以1x 2-x≥16,所以m <16. 即m 的取值范围是mm <16.反思感悟 一元二次不等式恒成立问题的解法(1)转化为对应的二次函数图象与x 轴的交点问题,考虑两个方面:x 2的系数和对应方程的判别式的符号.(2)转化为二次函数的最值问题:分离参数后,求相应二次函数的最值,使参数大于(小于)这个最值.跟踪训练5 若关于x 的不等式(k -1)x 2+(k -1)x -1<0恒成立,则实数k 的取值范围是________. 答案 {k |-3<k ≤1}解析 当k =1时,-1<0恒成立;当k ≠1时,由题意得k -1<0,(k -1)2+4(k -1)<0,解得-3<k <1,因此实数k 的取值范围为{k |-3<k ≤1}.1.不等式3x 2-2x +1>0的解集为( )A.x-1<x <13 B.x13<x <1C .∅ D .R2.不等式3+5x -2x 2≤0的解集为( )A.xx >3或x <-12 C.xx ≥3或x ≤-12 B.x-12≤x ≤3 D .R3.已知集合U ={x |x 2>1},集合A ={x |x 2-4x +3<0},∁U A 等于( ) A .{x |1<x <3} B .{x |x <1或x ≥3} C .{x |x <-1或x ≥3}D .{x |x <-1或x >3}4.若0<m <1,则不等式(x -m )x -1m <0的解集为( )A. x 1m <x <m C. x x >m 或x <1mB. x x >1m 或x <m D.x m <x <1m 5.不等式1+x 1-x≥0的解集为( ) A .{x |-1<x ≤1} B .{x |-1≤x <1}C .{x |-1≤x ≤1}D .{x 1<x <1} 6.若集合A ={x |-1≤2x +1≤3},B = x x -2x ≤0,则A ∩B 等于( )A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x <2}D .{x |0≤x ≤1}7.已知方程ax 2+bx +2=0的两根为-12和2,则不等式ax 2+bx -1>0的解集为________.8.不等式x +1x ≥5的解集是________.9.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.【答案与解析】1、答案 D 解析 因为Δ=(-2)2-4×3×1=4-12=-8<0,所以不等式3x 2-2x +1>0的解集为R .2、答案 C解析 3+5x -2x 2≤0⇒2x 2-5x -3≥0⇒(x -3)(2x +1)≥0⇒x ≥3或x ≤-12.3、答案 C解析 ∵U ={x |x 2>1}={x |x >1或x <-1},A ={x |x 2-4x +3<0}={x |1<x <3},∴∁U A ={x |x <-1或x ≥3}.4、答案 D解析 ∵0<m <1,∴1m >1>m ,故原不等式的解集为x m <x <1m . 5、答案 B解析 原不等式⇔(x +1)(x -1)≤0,x -1≠0,∴-1≤x <1.6、答案 B解析 ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2}, ∴A ∩B ={x |0<x ≤1}.7、答案x 12<x <1 解析 ∵方程ax 2+bx +2=0的两根为-12和2,由根与系数的关系可得 -12+2=-b a ,-12×2=2a ,∴a =-2,b =3, ax 2+bx -1>0可变为-2x 2+3x -1>0,即2x 2-3x +1<0,解得12<x <1.8、答案x 0<x ≤14 解析 原不等式⇔x +1x -5≥0⇔4x -1x ≤0⇔ x (4x -1)≤0,x ≠0,解得0<x ≤14. 9、答案 a >4或a <-4解析 ∵x 2+ax +4<0的解集不是空集,即不等式x 2+ax +4<0有解,∴Δ=a 2-4×1×4>0,解得a >4或a <-4.1.知识清单:(1) 二次函数与一元二次方程、不等式的关系及应用.(2) 简单的分式不等式的解法.(3) 不等式的恒成立问题.2.方法归纳:数形结合、分类讨论、转化、恒等变形.3.常见误区:(1) 解含参数的二次不等式时找不到分类讨论的标准.(2) 解分式不等式要等价变形.。
二次函数与二次不等式的关系1-6
二次函数与二次不等式的关系考纲要求:理解二次函数、二次方程与二次不等式的关系,并能利用它们的关系解决相关问题知识梳理:1、二次函数的解析式一般式: y=ax 2+bx+c(a ≠0);顶点式: y=a(x -m)2+n(其中(m, n)为抛物线的顶点坐标);两根式: y=a(x -x 1)(x -x 2)(其中x 1, x 2为抛物线与 x 轴两交点 的横坐标);2、二次函数的图象有关知识: 图象形状; 对称轴; 顶点坐标; 与 x 轴交点坐标; 截 x 轴线段长.诊断练习: 1、解不等式:(1) x 2-7x+12>0 (2)x 2-2x+1<0 (3) -x 2-2x+3≥02、求函数 86)(2+-=x x x f 的定义域。
3、已知不等式ax 2+bx+6>0的解集是{x|-2<x<3},求a.b 的值4、已知不等式x 2-2x+k 2-1>0解集是R,求实数k 的取值范围.易错点透析:1.已知二次函数 f(x) 满足 f(2)=-1, f(-1)=-1, 且 f(x) 的最大值是 8, 试确定此二次函数的解析式.2、函数()86)(2++-=k kx kx x f (K >0)的定义域为R , 求K 的取值范围3、m 是什么实数时,关于x 的方程mx 2-(1-m )x+m=0没有实数根?巩固练习:1、x 2-3x-4≥0的解集是 (x-1)(2-x) ≥0的解集是 x 2<9的解集是2、求函数()23223log 32)(x x x x x f -++-+=的定义域3、*已知A={x │-1≤x ≤1} B={x │x 2+(a+1)x+a ≤0}若A ∩B=B ,求a 的取值范围小结:作业:1、 已知集合M={x|3x-x 2>0}, N={x|x 2-4x+3>0},求 M ∩N MUN2、已知不等式x 2-2x+k 2-1>0解集是R,求实数k 的取值范围.3、求函数y=x 2+ax -3 , x ∈[0,2]的最小值。
3.2 函数与方程、不等式之间的关系
-1-
课前篇
自主预习
一
二
三
四
知识点一、函数的零点
1.思考
(1)二次方程ax2+bx+c=0(a≠0)有实根的条件是什么?
提示:当Δ≥0,即b2-4ac≥0时,二次方程ax2+bx+c=0(a≠0)有实数根.
(2)一次函数y=kx+m(k≠0)的图像与x轴的交点坐标是什么?这个
……
继续实施上述步骤,直到区间[an,bn],函数的零点总位于区间[an,bn]
上,当区间的长度bn-an不大于给定的精确度时,这个区间[an,bn]中的
任何一个数都可以作为函数y=f(x)的近似零点,计算终止.
课前篇
自主预习
一
二
三
四
2.思考
用二分法能求函数f(x)=(x-3)2的零点的近似值吗?
1.思考
对于函数f(x),若满足f(a)·f(b)<0,则f(x)在区间(a,b)内一定有零点
吗?若f(x)在区间(a,b)内有零点,则f(a)·f(b)<0一定成立吗?
提示:对于函数f(x),若满足f(a)·f(b)<0,则f(x)在区间(a,b)内不一定
有零点,如图(1)所示;若函数f(x)在区间(a,b)内有零点,则不一定有
没有零点,则函数y=f(x)的图像与x轴没有交点.
(2)二次函数的零点最多只有两个吗?所有的二次函数都有零点
吗?
提示:二次函数的零点最多只有两个,因为二次函数对应的一元
二次方程最多只有两个根.并不是所有的二次函数都有零点,这是
因为不是所有的一元二次方程都有实数根,如函数y=x2+2x+2就没
(用)二次函数与一元二次方程、不等式的关系课件-新版.ppt
探究三:你的图象与x轴的交点坐标是什么?
根据 y x2 2x 3 图象回答下列问题.
• 当 x 取何值时,y<0?
y
• 当 x 取何值时,y>0?
• 能否用含有x的不等式来 描述两个问题?
§21.3 二次函数与一元 二次方程、不等式的关系
温故知新
?
(1)、一次函数y=-3x+6的图象与x轴的交 点为(2,0);与 y 轴的交点为 (0,6) 。 (2)、一元一次方程-3x+6=0的根为__X__=_2___
y
你能说说 (1)与 (2)之间 的联系吗?
6
o2 x
方法与规律: 一次函数y=kx+b的图象与
-4
-5
九、如何求当x为何值时,y>0,y=0,y<0
y
x1
x2 x
0
y
O
x1
x2 x
当x=x1或x=x2时,y=0 当x<x1或x>x2时,y<0 当x1<x<x2时,y>0
x轴的交点的横坐标就是一元一次方程
kx+b=0的根
探究
探究1、求二次函数图象y=x2-3x+2与x轴的交 点A、B的坐标。
y 解:∵A、B在轴上,
∴它们的纵坐标为0, ∴令y=0,则x2-3x+2=0
x1 OA
x2 B
解得:x1=1,x2=2;
∴A(1,0) , B(2,0)
你发现方程 x2-3x+2=0 的解x1、x2与A、B的 坐标有什么联系?
第三章 3.2 第一课时 函数的零点,二次函数的零点及其与对应方程、不等式解集之间的关系
教材拓展补遗 [微判断] 1.函数的零点就是函数的图像与x轴的交点.( × )
提示 函数的零点是函数的图像与x轴交点的横坐标. 2.一次函数y=kx+b(k≠0)只有一个零点.( √ ) 3.一次不等式的解集不可能为∅,也不可能为R.( √ ) 4.对于二次函数f(x)=ax2+bx+c(a≠0),当Δ=0时,此函数有两个零点,对应的
2.不等式9x2+6x+1≤0的解集是________.
解析 由 9x2+6x+1=(3x+1)2≤0,∴只有 3x+1=0 即 x=-13时,不等式才 成立,即其解集为-13. 答案 -13
3.设二次不等式 ax2+bx+1>0 的解集为x-1<x<13,则 ab 的值为________. 解析 由题意知 a<0,且-1,13为方程 ax2+bx+1=0 的两根, 根据根与系数的关系,得- -11+ ×1313= =- 1a,ba, ∴ab= =- -32, ,∴ab=6.
3.2 函数与方程、不等式之间的关系
第一课时 函数的零点,二次函数的零点及其与对应方程、不等式解集之间的关系
课标要求
素养要求
1.通过求函数的零点,培养数学运算素 1.理解函数零点的概念,会求简单函数
养. 的零点.
2.通过二次函数的图像、零点、方程、 2.理解二次函数的零点与对应方程、不
不等式解集之间关系的对应,培养联系、 等式解集之间的关系,能借助二次函数
②当 a=1 时,2a=2,所以原不等式的解集为{x|x≠2};
③当 a>1 时,2a<2,所以原不等式的解集为xx>2或x<2a. (3)当 a<0 时,原不等式可化为(-ax+2)(x-2)<0,对应方程的两个根为 x1=2a, x2=2,则2a<2,所以原不等式的解集为x2a<x<2. 综上,当 a<0 时,原不等式的解集为x2a<x<2; 当 a=0 时,原不等式的解集为{x|x<2};
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与二次方程、二次不等式的关系
一、知识要点
知识点1、二次函数与一元二次方程、二次不等式有着十分紧密的联系;当二次函数
y=ax2+bx+c(a≠0)的函数值y=0时,就是一元二次方程,当y≠0时,就是二次不等式。
知识点2、二次函数的图象与x轴交点的横坐标就是一元二次方程的根,图像的交点个数与一元二次方程的根的个数是完全相同的,这是数和形有机结合的重要体现。
研究二次函数y=ax2+bx+c图象与x轴交点问题从而就转化为研究一元二次方程ax2+bx+c=0的根的
问题,这样图像问题就可以转化成方程问题,应用根的判别式、韦达定理、求根公式等解题。
知识点3、二次函数与一元二次方程、二次不等式三者之间的内在联系如下表所示:二、典型例题
例1、已知二次函数y=x2-(m-3)x-m的图象是抛物线,如图
(1)试求m为何值时,抛物线与x轴的两个交点间的距离是3?
(2)当m为何值时,方程x2-(m-3)x-m=0的两个根均为负数?
(3)设抛物线的顶点为M,与x轴的交点P、Q,
求当PQ最短时△MPQ的面积.变式训练:1、函数y=ax2-bx+c的图象过(-1,0),则b
a
c
a
c
b
c
b
a
+
+
+
+
+的值是________ 2、已知二次函数y=x2+mx+m-2.求证:无论m取何实数,抛物线总与x轴有两个交点.3.已知二次函数y=x2-2kx+k2+k-2.
(1)当实数k为何值时,图象经过原点?
(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?
5.已知抛物线y=mx2+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;
(2)判断点P(1,1)是否在抛物线上;
(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.
例2、(本题满分12分)二次函数26(0)
y ax bx a
=++≠的图像交y轴于C点,交x轴于A,B 两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程24120
x x
--=的两个根.
(1)求出点A、点B的坐标及该二次函数表达式.
(2)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合),过点Q作QD∥AC交于BC点D,设Q点坐标(m,0),当CDQ
∆面积S最大时,求m的值. (3)如图3,线段MN是直线y=x上的动线段(点M在点N左侧),且2
MN=,若M点的横坐标为n,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出n的值;若不能,请说明理由.
变式训练:(2012?资阳)如图是二次函数y=ax2+bx+c的部分图象,
由图象可知不等式ax2+bx+c<0的解集是()
A.1<x<5B.x>5
C.x<﹣1且x>5D.x<﹣1或x>5
例3、已知关于x的一元二次方程22
20
x ax b
++=,0
,0>
>b
a.
(1)若方程有实数根,试确定a,b之间的大小关系;
(2)若a∶b=2∶3,且12
22
x x
-=,求a,b的值;
△=b2﹣4ac △>0 △=0 △<0
二次函数
y=ax2+bx+c(a>0)的图像
一元二次方程
ax2+bx+c=0(a>0)的根
无实数根
一元二次不等式
ax2+bx+c>0(a>0)的解集x<
1
x或x>
2
x
(
1
x<
2
x)
x为全体实数
一元二次不等
ax2+bx+c<0(a>0)的解集
1
x<x<
2
x
(
1
x<
2
x)
无解无解
(3)在(2)的条件下,二次函数22
2y x ax b =++的图象与x 轴的交点为A 、C (点A 在点
C 的左侧),与y 轴的交点为B ,顶点为
D .若点P (x ,y )是四边形ABCD 边上的点,试求3x -y 的最大值.
变式训练:(2012甘肃兰州10分)设二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴的两个交点为A (x 1,0),B (x 2,0).利用根与系数关系定理可以得到A 、B 两个交点间的距离为:AB =|x 1-x 2|=
2b 4ac
=
a
-。
参考以上定理和结论,解答下列问题: 设二次函数y =ax 2+bx +c (a >0)的图象与x 轴的两个交点A (x 1,0),B (x 2,0),抛物线的顶点为C ,
显然△ABC 为等腰三角形.
(1)当△ABC 为直角三角形时,求b 2-4ac 的值; (2)当△ABC 为等边三角形时,求b 2-4ac 的值.
例4、(2012广东肇庆10分)已知二次函数2
y mx nx p =++图象的顶点
横坐标是2,与x 轴交于A (x 1,0)、B (x 2,0),x 1﹤0﹤x 2,与y 轴交于点C ,O 为坐标原点,tan tan CA BO 1O C ∠-∠=. (1)求证:n 4m 0+=; (2)求m 、n 的值;
(3)当p ﹥0且二次函数图象与直线y x 3=+仅有一个交点时,求二次函数的最大值.
变式训练:(2012湖北荆门10分)已知:y 关于x 的函数 y =(k ﹣1)x 2
﹣2kx +k +2的图象与x 轴有交点. (1)求k 的取值范围;
(2)若x 1,x 2是函数图象与x 轴两个交点的横坐标,且满足 (k ﹣1)x 12+2kx 2+k +2=4x 1x 2.①求k 的值;②当k ≤x ≤k +2时, 请结合函数图象确定y 的最大值和最大值.
【家庭作业】
1.(2012天津市10分)已知抛物线y =ax 2+bx +c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上.
(Ⅰ)当a =1,b =4,c =10时,①求顶点P 的坐标;②求
A
B C
y y y --的值;
(Ⅱ)当y 0≥0恒成立时,求
A
B C
y y y -的最小值.
2.(2012湖北黄石10分)已知抛物线C 1的函数解析式为2
y ax bx 3a(b 0)=+-<,若 抛物线C 1经过点(0,3)-,方程2
ax bx 3a 0+-=的两根为1x ,2x ,且
12x x 4-=。
(1)求抛物线C 1的顶点坐标.
(2)已知实数x 0>,请证明:1x x +
≥2,并说明x 为何值时才会有1
x 2x
+=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C 2,设1A(m,y ),
2B(n,y )是C 2上的两个不同点,且满足:00AOB 9∠=,m 0>,n 0<.请你用含有m 的表
达式表示出△AOB 的面积S ,并求出S 的最小值及S 取最小值时一次函数OA 的函数解析式。
(参考公式:在平面直角坐标系中,若11P(x ,y ),22Q(x ,y ),则P ,Q 两点间的距离
222121(x x )(y y )-+-)。