spss实验报告本

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二步数据的组织
从实验材料中直接导入数据。
第三步用协方差分析的前提条件
与多因素方差分析操作一样,选择菜单“分析—一般线性模型—单变量”该前提条件是各组方差一致和协变量“初始高度”与控制变量“分组”没有交互作用。因此将“生长量”移入“协变量”框作为协变量。
第四步执行方差分析
变量的选择同第三步,只是在“模型”对话框之“设定”的模型中不再选择“group*entrance.”
第一步分析
由于考虑的是控制变量对另一个观测变量的影响,而且是5个品种,所以不宜采用独立样本T检验,应该采用单因素方差分析。
第二步数据的组织
从实验材料中直接导入数据
第三步方差相等的齐性检验
由于方差分析的前提是各水平下的总体服从方差相等的正态分布,而且各组的方差具有齐性,其中正态分布的要求并不是非常严格,但是对于方差相等的要求还是比较严格的,因此必须对方差相等的前提进行检验。
第二步数据组织
分别定义变量“销售”和“月份”输入数据并保存。
第三步进行偏相关分析
选择菜单“分析—相关—双变量”打开如图的对话框,指定分析变量和控制变量,分析变量“销售”和“月份”的偏相关关系,并将“价格”“广告费用”“日照时间”设置为控制变量。在住对话框中使用系统默认的双尾检验,显示实际的显着性概率。
第四步在对话框中将“花瓣长”和“花萼长”移入“变量”框中,得到关于花瓣和花萼的计算结果。再将“花枝长”和“花萼长”移入“变量”框中,得到关于花枝和花萼的计算结果。
第五步主要结果及分析
运行的主要结果如表所示。
相关系数.>0,说明呈正相关,相wk.baidu.com系数的显着性为<,因此应该拒绝原假设。即说明花萼长受花枝长的显着性影响。
单击“对比(T)”按钮,弹出“单变量:对比”对话框,对两种因子水平进行对比分析,用“简单”方法,并以“最后一个”水平的观察变量均值为标准。
第九步主要结果及分析
该图表示各个控制变量的分组情况。
由于指定建立饱和模型,因此总的离差平方和分为了3个部分:多个控制变量的独立作用、多个控制变量的交互作用及随机变量的影响。关于多个控制变量的独立作用部分、不同的包装和摆放位置的离差贡献,均方差为.关于多个控制变量的交互作用分析类似,也对销售量有显着性的影响。误差部分也是随机变量的影响部分。
从实验材料中直接导入数据。
第三步方差相等的齐性检验
由于方差分析的前提是各水平下的总体服从方差相等的正态分布,而且各组的方差具有齐性,其中正态分布的要求并不是非常严格,但是对于方差相等的要求还是比较严格的,因此必须对方差相等的前提进行检验。选择菜单“分析”—均值比较—单因素ANOVA。
第四步多重比较分析
第四步多重比较分析
通过上面的步骤,只能判断不同的施肥等田间操作效果是否有显着性差异,如果要想进一步了解究竟那个品种与其他的有显着性均值差别等细节问题,就需要单击上图中的两两比较按钮。
第五步运行结果及分析
多重比较结果表:从该表可以看出分别对几个不同的品种进行的两两比较。最后我们可以得出结论第4品种是最好的。其他的次之。
第一步分析
研究不同类型的包装在不同货架区的销售情况,这是一个多因素方差分析问题。
第二步数据组织
从实验材料中直接导入数据。
第三步变量设置
选择菜单“分析”---”一般线性模型”,打开“单变量”对话框,进行设置。
第四步设置方差齐性检验
单击“选项(o)”按钮,弹出“单变量:选项”对话框
第五步设置控制变量的多重比较分析
实验内容写作
第六章
一实验目的
1、理解方差分析的基本概念
2、学会常用的方差分析方法
二实验内容
实验原理:方差分析的基本原理是认为不同处理组的均值间的差别基本来源有两个:随机误差,如测量误差造成的差异或个体间的差异,称为组内差异
根据老师的讲解和课本的习题完成思考与练习的5、6、7、8题。
第5题:为了寻求适应某地区的高产油菜品种,今选5个品种进行试验,每一种在4块条件完全相同的试验田上试种,其他施肥等田间管理措施完全一样。表所示为每一品种下每一块田的亩产量,根据这些数据分析不同品种油菜的平均产量在显着水平下有无显着性差异。
第四步主要结果及分析
从中可以看出“价格”“广告费用”“日照时间”为控制变量,销售量与月份密切相关,偏相关系数为.
(3)实验心得与体会
对于学经济学的我们来说,必须时刻面临大量的市场调查、统计数据,必须借助分析工具才能得出科学的结论,所以掌握数据分析方法和数据分析工具已经成为我们必须要学会的一门实用技术。方差分析可以由较少的试验获得大量的信息,所以广泛运用于工业、商业、生物、医学等众多领域。相关分析对于实验数据的处理、经验公式的建立、管理标准的确定、自然现象和经济现象的统计预报、自动控制中数学模型的确定等是一种极为有效且广泛运用的数理统计工具。所以学习好这门实用的分析工具有助于我们以后的工作和学习。
第二步数据的组织
数据分成两列,第一列是百米名次,第二列是跳高名次,输入数据并保存。
第三步两元变量的相关性分析
选择菜单“分析——相关——双变量”,打开如图所示的对话框,将“百米名次”和“跳高名次”两变量移入“变量”框中;相关系数选择Spearman和Kendall系数;在显着性试验中选择双侧检验。
第四步主要结果及分析
通过以上步骤只能判断两个变量的不同水平是否对观察现象产生了显着性影响,如果想进一步了解究竟是哪个组和其他有显着性均值差异,就需要进行对变量的多重比较分析。单击“两两比较”按钮,对其进行设置。
第六步选择建立多因素方差分析的模型种类
单击“模型”按钮,然后对其进行设置。
第八步对控制变量个水平上观察变量的差异进行对比检验
第7章相关分析
实验目的:掌握相关分析的原理和简单运用
实验内容:两变量相关分析、偏相关分析、距离分析、
第3题kksimith在烟草杂交繁殖的花上收集到如表的数据,要求对以上数据3组数据两两之间进行相关分析,以的显着性水平检验相关系数的显着性。
第一步分析
由于考虑的是三组数据两两之间的相关性问题,故应用二元变量的相关性进行分析,同时长度是定距变量,考虑用Pearson相关系数来衡量。
相关系数为>0.,双尾检验的向攀概率为<应该拒绝两变量不想关的原假设,说明两变量具有显着地相关性。
第6题某公司的太阳镜销售情况如图所示,请分析销售量与平均价格、广告费用和日照时间之间的关系,并说明此题用相关分析是否具有实际意义。
第一步分析
这3个因素彼此均有影响,分析时应该注意销售量与3个因素分别求偏相关,如在求销售量与气候因素的相关控制其他因素的影响,然后比较相关系数,按3个因素对销售量影响程度的大小排序,需要进行偏相关分析。
第8题研究杨树一年生长量与使用氮肥和钾肥的关系,为了研究这种关系,共进行了18个样地的栽培试验。测定杨树苗一年生长量、初始高度、全部试验条件(包括氮肥量和钾肥量)及实验结果(杨树苗的生长量)数据。如表所示,请在显着性水平下检验氮肥量、钾肥量及树苗初始高度中那些对杨树的生长有显着性影响。
第一步分析
初始高度肯定会对最后生长量有一定的影响,这里主要分析使用氮肥和钾肥对生长量的影响,应将初始高度的影响剔除,考虑用协方差分析。
第四步 主要结果及分析
相关系数.>0,说明呈正相关,相关系数的显着性为>,因此应该拒绝原假设。
第5题某高校抽样10名短跑运动员,测出100米短跑的名次和跳高的名次如表所示,问这两个名次是否在的显着性水平下具有相关性。
第一步分析
由于10名运动员的百米名次和调高名次是定序数据,故考虑用Spearman等级相关进行分析。
通过上面的步骤,只能判断4种轮胎的效果有无显着性差异。如果想进一步了解究竟哪种轮胎与其他组有无显着性的均值差别等细节问题,就需要在多个样本均值间进行两两比较。
第五步运行结果及分析
多重比较结果表:从该表可以看出分别对几个不同的轮胎进行的两两比较。最后我们可以得出结论第4品种是最好的。其他的次之。
第7题:某超市将同一种商品做3种不同的包装(A)并摆放在3个不同的货架区进行销售试验,随机抽取3天的销售量作为样本,具体资料见表.要求检验:在显着性水平下商品包装、摆放位置及其搭配对销售情况是否有显着性影响。
第五步主要结果及分析
从表中的数据可以看出,group所对应的sig=<,说明施肥对成长量有一定的影响,同理可得初始高度对成长量无显着性的影响。
(3)实验心得与体会
对于学经济学的我们来说,必须时刻面临大量的市场调查、统计数据,必须借助分析工具才能得出科学的结论,所以掌握数据分析方法和数据分析工具已经成为我们必须要学会的一门实用技术。方差分析可以由较少的试验获得大量的信息,所以广泛运用于工业、商业、生物、医学等众多领域。所以学习好这门实用的分析工具有助于我们以后的工作和学习。
第二步数据的组织
数据分成三列,一列是花瓣长,变量名是“花瓣”;第二列是花枝长,变量名是“花枝”;最后一列是花萼长,变量名是“花萼”,输入数据并保存。
第三步两变量的相关性分析
选择菜单“分析——相关——双变量”,打开如图所示的对话框,将“花瓣长”和“花萼长”两变量移入“变量”框中;相关系数选择Pearson;在“显着性检验”中选择“双侧检验”;单击“选项”按钮,弹出如图所示的对话框,选中“统计量”下的两项,计算结果中将输出均值和标准差、叉积偏差和协方差。
第6题:某公司希望检测四种类型类型轮胎A,B,C,D的寿命,如表所示。其中每种轮胎应用在随选择的6种汽车上,在显着性水平下判断不同类型轮胎的寿命间是否存在显着性差异。
第一步分析
由于考虑的是一个控制变量对另一个控制变量的影响,而且是4种轮胎,所以不宜采用独立样本T检验,应该采用单因素方差分析。
第二步数据的组织
第4题试确定1962--1988年安徽省国民收入与城乡居民储蓄存款两个变量间的线性相关。数据如表所示。
第一步分析
由于考虑的是安徽省国民收入与城乡居民储蓄存款余额的相关性问题,故应用二元变量的相关性进行分析,同时金钱是定距变量,考虑用Pearson相关系数来衡量。
第二步数据的组织
数据分成两列,一列是国民收入,变量名为“国民收入”,另一列是城乡居民储蓄存款余额,变量名为“存款余额”输入数据并保存。
第三步两变量的相关性分析
选择菜单“分析——相关——双变量”,打开如图所示的对话框,将“国民收入”和“存款余额”两个变量移入“变量”框中;“相关系数”选择Pearson;在“显着性检验”中选择“双侧检验”;单击“选项”按钮,弹出如图所示的对话框,选中“统计量”下的两项,计算结果中将输出均值和标准值、叉积偏差和协方差。
相关文档
最新文档