高二数学文科上册期末考试题

合集下载

高二文科数学上册期末测试题

高二文科数学上册期末测试题

高二文科数学上册期末测试题数学选修1-1(文科)(满分:150分,时间:120分钟)说明:试卷分第1卷和第2卷,请将答案填写在答卷纸上,考试结束后只交答案卷。

第1卷 共100分一、选择题(每小题5分,共50分;在给出的四个选项中,只有一项符合题目要求)1、已知命题 ,,则(**** ):p x ∀∈R sin 1x ≤A ., B .,:p x ⌝∃∈R sin 1x ≥:p x ⌝∃∈R sin 1x >C ., D .,:p x ⌝∀∈R sin 1x ≥:p x ⌝∀∈R sin 1x >2、如果质点A 运动的轨迹方程为 s = 2 t 3 ( 单位:s :m ;t :s ),则A 在t = 3 秒时的瞬时速度为( **** )A .6 m / sB .18 m / sC .54 m / sD .81 m / s3、抛物线 的准线方程是(***)2x y =A .4 x + 1 = 0 B .4 y + 1 = 0 C .2 x + 1 = 0 D .2 y + 1 = 04、设曲线 在点(1,a )处的切线与直线 2 x – y – 6 = 0 平行,则 a 2y ax ==(***)A .1B .C .D .-1 1212-5、若 k 可以取任意实数,则方程 x 2 + k y 2 = 1 所表示的曲线不可能是(***)A .直线B .圆C .椭圆或双曲线D .抛物线6、若双曲线 的离心率为2,则 等于( *** )()22213x y a o a -=>aA . D. 1 327、设,若,则 x 0 = ( ***)()ln f x x x =/2f =A. e 2 B. e C. D. ln 2 ln 228、已知椭圆 的长轴在 y 轴上,且焦距为4,则 m 等于(***)221102x y m m +=--A .4 B .5 C .7 D .89、有以下四种说法:① a 2 > 4 是 a > 2 的充分条件; ②(x + 1)(x + 2)=0 是 x =-2 的充要条件;③ a 2 = b 2 是 | a | = | b | 的充要条件;④ a < b 是 a c 2 < b c 2 的必要不充分条件。

高二上学期期末质量检测文科数学试卷

高二上学期期末质量检测文科数学试卷

一、选择题(本大题共12小题,共60.0分)1.已知为等差数列,,,则A. 4B. 5C. 6D. 7【答案】B【解析】【分析】利用等差数列通项公式列出方程组,求出首项和公差,由此能求出结果.【详解】为等差数列,,,,解得,,.故选:B.【点睛】本题考查等差数列的第9项的求法,考查等差数列的通项公式,考查运算求解能力,是基础题.2.命题“,总有”的否定是A. ,总有B. ,总有C. D.【答案】D【解析】【分析】根据全称命题的否定是特称命题即可得到结论.【详解】命题为全称命题,则命题“,总有”的否定是:,,故选:D.【点睛】本题主要考查含有量词的命题的否定,比较基础.符合换量词,否结论,不变条件这一结论.3.已知集合,则()A. B. C. D.【答案】A【解析】【分析】由分式不等式解法得到集合或,进而得到,解出集合B,【详解】由得或,所以或,,,故选:A.【点睛】本题考查了交,并,补集的混合运算,属基础题.4. 小王从甲地到乙地的时速分别为a和b(a<b),其全程的平均时速为v,则()A. a<v<B. v=C. <v<D. v=【答案】A【解析】试题分析:设甲乙两地相距,则平均速度,又∵,∴,∵,∴,∴.考点:基本不等式.【此处有视频,请去附件查看】5.“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不是充分条件也不是必要条件【答案】A【解析】【分析】根据底数大于0小于1的指数函数在R上为减函数,先判断“”“”的真假,与“”“”的真假,然后根据充要条件的定义得到结论.【详解】当“”时,“”成立,故“”是“”的充分条件;当“”时,“”成立,但“”不一定成立,故“”是“”的不必要条件故“”是“”充分不必要条件故选:A.【点睛】本题考查的知识点是充要条件的定义及指数函数的单调性,其中根据指数函数的单调性,判断“”“”的真假,与“”“”的真假,是解答本题的关键.判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.6.已知实数x、y满足,则的最大值为A. 7B. 13C. 15D. 17【答案】A【解析】【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【详解】作出实数x、y满足对应的平面区域阴影部分由,得,平移直线,由图象可知当直线经过点A时,直线的截距最大,此时z最大.由,解得.此时z的最大值为,故选:A.【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值。

高二上学期期末考试文科数学试题

高二上学期期末考试文科数学试题
C. D.
第Ⅱ卷非选择题(共90分)
二、填空题:本大题共4个小题,每小题5分,共20分.
13.函数 图象在点 处的切线方程为______.
14.已知抛物线 的焦点为 ,点 在 上,且 ,则 ______.
15.已知数列 ,点 在函数 的图象上,则数列 的前10项和是______.
16.若点P为双曲线 上任意一点,则P满足性质:点P到右焦点的距离与它到直线 的距离之比为离心率e,若C的右支上存在点Q,使得Q到左焦点的距离等于它到直线 的距离的6倍,则双曲线的离心率的取值范围是______.
【6题答案】
【答案】C
【7题答案】
【答案】B
【8题答案】
【答案】D
【9题答案】
【答案】A
【10题答案】
【答案】B
【答案】
【答案】C
【12题答案】
【答案】A
第Ⅱ卷非选择题(共90分)
二、填空题:本大题共4个小题,每小题5分,共20分.
【13题答案】
【答案】
【14题答案】
【答案】
【15题答案】
【答案】
A. 40mB. 63m
C. mD. m
8.已知各项都为正数的等比数列 ,其公比为q,前n项和为 ,满足 ,且 是 与 的等差中项,则下列选项正确的是().
A B.
C. D.
9.设 的内角 的对边分别为 的面积 ,则 ()
A. B. C. D.
10.已知命题 , ;命题 , ,那么下列命题为假命题的是().
郑州市2021—2022学年上期期末考试
高二数学(文)试题卷
第Ⅰ卷(选择题,共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

高二数学文科上学期期末综合试题

高二数学文科上学期期末综合试题

数学(文科)参考答案13. 2300,x x R x ≤∈∃ 14.2=x 15 16. 25 解析:1、02≥+x x 10)1(-≤⇒≥+⇒x x x 或0≥x ,故选D 2、依题意可得4,3==b a ,从而得5=c ,则离心率35==a c e ,故选C 3、由函数x x f a log )(=在其定义域内是减函数,得10<<a ,故选A4、依题意,1314==q a a ,1=q ,则数列是各项都为3的常数列,n S n 3=,故选B5、因为b a ,为实数,所以当0=a 时,A 、B 、C 选项均可排除,故选D6、123)(2-='x x f ,则20123)(2±=⇒=-='a a a f ,经检验2-是极大值点,故选D7、依题意可知,ABC ∆是等腰三角形,且a CB CA ==,120=∠C °,从而由余弦定理可得a BC 3=,故选D8、因为0>>b a ,故12222=+by a x 是焦点在x 轴的椭圆,将02=+b y a x 化为x a b y -=2,显然是焦点在x 负半轴的抛物线,故选A9、2≥n 时,[]141)1(2)2(221-=-+--+=-=-n n n n n S S a n n n ,又311==S a ,故选C 10、作出可行域,易得2t x y =+在点)1,1(--A 处取得最小值3-,故选B11、由函数图象可知0<x 时,原函数单调递增,对应导函数值恒正,0>x 时,原函数先增后减再增,对应导函数值先正后负再正的进行变化,故选C12、因为112=+y x ,所以()y x x y y x y x y x ++=⎪⎪⎭⎫ ⎝⎛++=+441222 8424=⋅+≥y xx y ,当且仅当42==y x 时,等号成立,因为m m y x 222+>+恒成立,所以822<+m m ,解得24<<-m ,故选D13、非命题就是命题的否定,故填R x ∈∃0,230x x ≤ 14、由题意可知4=p 且焦点在x 负半轴,故准线为2=x 15、先求出角o B 60=,再直接由正弦定理可得2=BC16、由81535a a =可得04921=+d a 0)25()24(11=+++⇒d a d a 02625=+⇒a a ,又01>a ,所以0,02625<>a a ,故25=n 时,n S 最大。

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二上学期期末考试数学试题(文)第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 已知,,a b c 满足a b c <<,且0ac <,则下列选项中一定成立的是( )A.ab ac <B.()0c a b ->C.22ab cb <D.()220a cac ->2.若不等式202mx mx ++>恒成立,则实数m 的取值范围是( ) A.2m > B.2m < C. 0m <或2m >D.02m <<3.2014是等差数列4,7,10,13,…的第几项( ). A .669B .670C .671D .6724.△ABC 中,a=80,b=100,A=450则三角形解的情况是( ) A .一解B .两解C .一解或两解D .无解5.一元二次不等式ax 2+bx +2>0的解集为(-12,13),则a +b 的值是( ). A .10B .-10C .14D .-146.等差数列{an}中s 5=7,s 10=11,则s 30=( ) A 13 B 18 C 24 D 317.△ABC 中a=6,A=600 c=6 则C=( ) A 450, B 1350C 1350,450D 6008.点(1,1)在直线ax+by-1=0上,a,b 都是正实数,则ba 11+的最小值是( )A 2B 2+22C 2-22D 4 9.若a ∈R ,则“a =1”是“|a|=1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件10.下列有关命题的说法正确的是 ( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”; B .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”; C .在ABC ∆中,“B A >”是“B A 22cos cos <”的充要条件; D .“2x ≠或1y ≠”是“3x y +≠”的非充分非必要条件.11中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A . +=1B . +=1C .+=1 D .+=112.抛物线x 2=4y 的焦点坐标为( )A .(1,0)B .(﹣1,0)C .(0,1)D .(0,﹣1)第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分) 13. 不等式31≤+xx 的解集是_____________ 14. 已知直线21=+y x 与曲线3y x ax b =++相切于点(1,3),则实数b 的值为_____. 15.在等比数列{a n }中,a 3a 7=4,则log 2(a 2a 4a 6a 8)=________.16.ABC ∆中,a 2-b 2 =c 2+bc 则A= .三、解答题17.已知函数()(2)()f x x x m =-+-(其中m>-2). ()22x g x =-. (I )若命题“2log ()1g x ≥”是假命题,求x 的取值范围;(II )设命题p :∀x ∈R ,f(x)<0或g(x)<0;命题q :∃x ∈(-1,0),f(x)g(x)<0. 若p q ∧是真命题,求m 的取值范围.18函数f(x)=3lnx-x 2-bx.在点(1,f (1))处的切线的斜率是0 (1)求b ,(2)求函数的单调减区间19.锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2cos 2sin .2C B A -=(Ⅰ)求sin sin A B 的值;(Ⅱ)若3,2a b ==,求ABC ∆的面积.20. (本小题满分12分)数列{n a }的前n 项和为n S ,2131(N )22n n S a n n n *+=--+∈ (Ⅰ)设n n b a n =+,证明:数列{n b }是等比数列; (Ⅱ)求数列{}n nb 的前n 项和n T ;21已知椭圆C :=1(a >b >0)的短半轴长为1,离心率为(1)求椭圆C 的方程(2)直线l 与椭圆C 有唯一公共点M ,设直线l 的斜率为k ,M 在椭圆C 上移动时,作OH ⊥l 于H (O 为坐标原点),当|OH|=|OM|时,求k 的值. 22.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求,a b 的值;(Ⅱ)当[03]x ∈,时,函数()y f x = 的图像恒在直线2y c =的下方,求c 的取值范围.答案一选择题、D D C B . D D C B A .D A C二、填空题. {|0x x <或1}2x ≥ .3 4. 120017、.解:(I )若命题“2log ()1g x ≥”是假命题,则()2log 1g x <即()2log 221,0222x x -<<-<,解得1<x <2;(II )因为p q ∧是真命题,则p,q 都为真命题,当x >1时,()22x g x =->0,因为P 是真命题,则f(x)<0,所以f(1)= ﹣(1+2)(1﹣m) <0,即m <1;当﹣1<x <0时,()22x g x =-<0,因为q 是真命题,则∃x ∈(-1,0),使f(x) >0,所以f(﹣1)= ﹣(﹣1+2)( ﹣1﹣m) >0,即m >﹣1,综上所述,﹣1<m <1. 18,(1)b=1 (2)(1,∞)19. 解:(Ⅰ)由条件得cos(B -A)=1-cosC=1+cos(B+A), 所以cosBcosA+sinBsinA=1+cosBcosA -sinBsinA,即sinAsinB=12;(Ⅱ)sin 3sin 2A aB b ==,又1sin sin 2A B =,解得:sin 23A B ==,因为是锐角三角形,1cos ,cos 23A B ∴==,()sin sin sin cos cos sin C A B A B A B =+=+=11sin 322262S ab C ∆+==⨯⨯⨯=. 略20.【答案】解:(Ⅰ)∵ 213122n n a S n n +=--+,…………………………①∴ 当1=n 时,121-=a ,则112a =-, …………………1分当2n ≥时,21113(1)(1)122n n a S n n --+=----+,……………………②则由①-②得121n n a a n --=--,即12()1n n a n a n -+=+-,…………………3分∴ 11(2)2n n b b n -=≥,又 11112b a =+=, ∴ 数列{}n b 是首项为12,公比为12的等比数列,…………………4分 ∴ 1()2n n b =. ……………………5分(Ⅱ)由(Ⅰ)得2n nn nb =. ∴ n n n nn T 221..........242322211432+-+++++=-,……………③ 1232221..........24232212--+-+++++=n n n nn T ,……………④……………8分 由④-③得n n n nT 221......2121112-++++=- 1122212212nn n n n ⎛⎫- ⎪+⎝⎭=-=--.……………………12分21、【解答】解:(1)椭圆C:=1(a >b >0)焦点在x 轴上,由题意可知b=1,由椭圆的离心率e==,a 2=b 2+c 2,则a=2∴椭圆的方程为;﹣﹣﹣﹣﹣﹣﹣(2)设直线l :y=kx+m ,M (x 0,y 0).﹣﹣﹣﹣﹣﹣﹣,整理得:(1+4k 2)x 2+8kmx+4m 2﹣4=0,﹣﹣﹣﹣﹣﹣﹣令△=0,得m 2=4k 2+1,﹣﹣﹣﹣﹣﹣﹣由韦达定理得:2x0=﹣,x02=,﹣﹣﹣﹣﹣﹣﹣∴丨OM丨2=x02+y02=x02+(kx+m)2=①﹣﹣﹣﹣﹣﹣﹣又|OH|2==,②﹣﹣﹣﹣﹣﹣﹣由|OH|=|OM|,①②联立整理得:16k4﹣8k2+1=0﹣﹣﹣﹣﹣﹣﹣∴k2=,解得:k=±,k的值±.﹣﹣﹣﹣﹣﹣﹣22.(Ⅰ)a=-3,b=4(Ⅱ)(-∞,-1)∪(9,+∞)(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即6630241230a ba b++=⎧⎨++=⎩解得a=-3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<-1或c>9,第一学期期末调研考试高中数学(必修⑤、选修1-1)试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若p q ∧是假命题,则A .p 是真命题,q 是假命题B .,p q 均为假命题C .,p q 至少有一个是假命题D .,p q 至少有一个是真命题 2.一个等比数列的第3项和第4项分别是12和18,则该数列的第1项等于 A .27 B .163 C .812D .8 3.已知ABC ∆中,角A 、B 的对边为a 、b ,1a =,b = 120=B ,则A 等于 A .30或150 B .60或120 C .30 D .60 4.曲线xy e =在点(1,)e 处的切线方程为(注:e 是自然对数的底)A . (1)x y e e x -=-B . 1y x e =+-C .2y ex e =-D .y ex =5.不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,表示的平面区域的面积是A .41 B .49 C .29 D .236.已知{}n a 为等差数列,1010=a ,前10项和7010=S ,则公差=d A .32- B .31- C . 31 D . 327.函数()f x 的导函数...()'f x 的图象如图所示,则 A .1x =是()f x 的最小值点xB .0x =是()f x 的极小值点C .2x =是()f x 的极小值点D .函数()f x 在()1,2上单调递增8. 双曲线22221(0,0)x y a bb a -=>>的一条渐近线方程是y =,则双曲线的离心率是A .B .2C . 3D .9.函数3()1f x ax x =++有极值的充分但不必要条件是 A . 1a <-B . 1a <C . 0a <D . 0a >10.已知点F 是抛物线x y =2的焦点,A 、B 是抛物线上的两点,且3||||=+BF AF ,则线段AB 的中点到y 轴的距离为 A .43 B .1 C .45 D .4711.已知直线2+=kx y 与椭圆1922=+my x 总有公共点,则m 的取值范围是 A .4≥m B .90<<m C .94<≤mD .4≥m 且9≠m12.已知定义域为R 的函数)(x f 的导函数是)(x f ',且4)(2)(>-'x f x f ,若1)0(-=f ,则不等式x e x f 22)(>+的解集为A .),0(+∞B .),1(+∞-C .)0,(-∞D .)1,(--∞二、填空题:本大题共4小题,每小题5分,满分20分.13.命题“若24x =,则2x =”的逆否命题为__________.14.ABC ∆中,若AB =1AC =,且23C π∠=,则BC =__________.15.若1x >,__________. 16.设椭圆()2222:10x y C a b a b+=>>的左右焦点为12F F ,,过2F 作x 轴的垂线与C 交于A B ,两点,若1ABF ∆是等边三角形,则椭圆C 的离心率等于________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知ABC ∆的三个内角A ,B ,C 的对边长分别为a ,b ,c ,60B =︒. (Ⅰ)若2b ac =,请判断三角形ABC 的形状;(Ⅱ)若54cos =A ,3c =+,求ABC ∆的边b 的大小.18.(本小题满分12分)等比数列{}n a 的各项均为正数,且11a =,4332=+a a (*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)已知(21)n n b n a =-⋅,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知椭圆的中心在坐标原点O ,长轴长为离心率e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(Ⅰ)求椭圆的方程; (Ⅱ)当直线l 的倾斜角为4π时,求POQ ∆的面积.20.(本小题满分12分)某农场计划种植甲、乙两个品种的水果,总面积不超过300亩,总成本不超过9万元.甲、乙两种水果的成本分别是每亩600元和每亩200元.假设种植这两个品种的水果,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种水果的种植面积,可使农场的总收益最大?最大收益是多少万元?21.(本小题满分12分)设函数329()62f x x x x a =-+-. 在 (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若方程()0f x =有且仅有三个实根,求实数a 的取值范围.22.(本小题满分12分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -. (Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行 的直线和过F 与AB 垂直的直线交于点N ,求N 的横坐标 的取值范围.x第一学期期末调研考试高中数学(必修⑤、选修1-1)参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.若2x ≠,则24x ≠; 14.1 ; 15.15 ; 16. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. 解:(Ⅰ)由2222cos b a c ac B ac =+-⋅=,1cos cos 602B =︒=,……………………2分得0)(2=-c a ,即:c a =.………………………………………………………5分 又60B =︒,∴ 三角形ABC 是等边三角形. ……………………………………………………5分(Ⅱ)由4cos 5A =,得3sin 5A =,…………………………………………………………6分 又60B =︒,∴ sin sin()sin cos cos sin C A B A B A B =+=⋅+⋅314525=⨯+7分 由正弦定理得(3sin sin c Bb C+⋅===10分18.解:(Ⅰ)设等比数列{}n a 的公比为q ,∴43)(2132=+=+q q a a a ……………………………………………………1分 由432=+q q 解得:21=q 或23-(舍去).…………………………………3分∴所求通项公式11121--⎪⎭⎫ ⎝⎛==n n n q a a .………………………………………5分(Ⅱ)123n n T b b b b =++++即()0112123252212n n T n -=⋅+⋅+⋅+⋅⋅⋅+-⋅------------①…………………………………6分①⨯2得 2()132123252212nn T n =⋅+⋅+⋅+⋅⋅⋅+-⋅ -----②……………………7分①-②:()1121222222212n n n T n --=+⋅+⋅+⋅⋅⋅+⋅--…………………………………8分9分()3223n n =--,……………………………………………………………………………11分 ()3232n n T n ∴=-+.………………………………………………………………………12分19. 解:(Ⅰ)由题得:22222c a a b c a ===+..................................................................2分 解得1a b ==, (4)分椭圆的方程为2212x y +=. (5)分(Ⅱ)(1,0)F ,直线l 的方程是tan (1)14y x y x π=-⇒=- (6)分由2222232101x y y y x y ⎧+=⇒+-=⎨=+⎩(*)…………………………………………………………………………7分设1122(,),(,)P xy Q x y ,(*)2243(1)160∆=-⨯⨯-=>………………………………………………………8分124||3y y ∴-===……………………………………………………10分121142||||12233OPQ S OF y y ∆∴=-=⨯⨯= POQ ∆的面积是23……………………………………………………….…………………………………………12分20. 解:设甲、乙两种水果的种植面积分别为x ,y 亩,农场的总收益为z 万元,则 ………1分300,0.060.029,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩………① …………4分 目标函数为0.30.2z x y =+, ……………5分不等式组①等价于300,3450,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩可行域如图所示,……………………………7分 目标函数0.30.2z x y =+可化为z x y 523+-= 由此可知当目标函数对应的直线经过点M 时,目标函数z 取最大值.…………………9分 解方程组300,3450,x y x y +=⎧⎨+=⎩ 得75,225,x y =⎧⎨=⎩M 的坐标为(75,225).……………………………………………………………………10分所以max 0.3750.222567.5z =⨯+⨯=.…………………………………………………11分 答:分别种植甲乙两种水果75亩和225亩,可使农场的总收益最大,最大收益为67.5万元. ………………………………………………………………………………12分21. 解:(Ⅰ)/2()3963(1)(2)f x x x x x =-+=--,………………………………………2分令/()0f x >,得2x >或1x <;/()0f x <,得12x <<, …………………………4分∴()f x 增区间()1,∞-和()+∞,2;减区间是()2,1.………………………………………6分(Ⅱ)由(I )知 当1x =时,()f x 取极大值5(1)2f a =-,………………………………7分 当2x =时,()f x 取极小值 (2)2f a =-,………………………………………………8分因为方程()0f x =仅有三个实根.所以⎩⎨⎧<>0)2(0)1(f f …………………………………………10分解得:252<<a , 实数a 的取值范围是5(2,)2.………………………………………………………………12分22.解:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线1x =-的距离.……………………2分由抛物线的定义得12p=,即p =2. …………………………………………………………………………………4分(Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠± (5)分由题知AF 不垂直于y 轴,可设直线:1(0)AF x sy s =+≠,()0s ≠,由241y x x sy ⎧=⎨=+⎩消去x 得2440y sy --=,………………………………6分 故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭.…………………………………………………………………………………7分又直线AB 的斜率为221tt -,故直线FN 的斜率为212t t --,从而的直线FN :()2112t y x t -=--,直线BN :2y t=-, (9)分由21(1)22t y x t y t ⎧-=--⎪⎪⎨⎪=-⎪⎩解得N 的横坐标是2411N x t =+-,其中220,1t t >≠…………………………………10分1N x ∴>或3N x <-.综上,点N 的横坐标的取值范围是()(),31,-∞-+∞.…………………………………………………12分注:如上各题若有其它解法,请评卷老师酌情给分.x绝密★启用前第一学期期末考试高二年级(文科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

高二上学期文科数学期末试卷,附答案

高二上学期文科数学期末试卷,附答案

高二上学期数学期末试卷(新课标)文 科 数 学本试卷分基础检测与能力检测两部分,共4页.满分为150分,考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷和答题卡上,并用2B 铅笔在答题卡上填涂学号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卷交回.第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,xx e x ∀∈>R ”的否定是( ) A .x eR x x <∈∃0,0B .,xx e x ∀∈<R C .,xx e x ∀∈≤RD .x eR x x ≤∈∃0,0.2.设实数x 和y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .26B .24C .16D .14新$课$标$第$一$网3.抛物线22y x =的准线方程为( ) w w w .x k b 1.c o mA .14y =-B .18y =-C .1y =D .12y =4.“α为锐角”是“0sin >α”的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件5.设双曲线)0(19222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为( ) A .4 B .3 C .2 D .16. 在空间直角坐标系中,已知点P (x ,y ,z ),给出下列四条叙述: ①点P 关于x 轴的对称点的坐标是(x ,-y ,z ) ②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z ) ③点P 关于y 轴的对称点的坐标是(x ,-y ,z )④点P 关于原点的对称点的坐标是(-x ,-y ,-z ) 其中正确的个数是( )A .3B .2C .1D .07.给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.[来源:学&科&网Z&X&X&K]其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④8.若双曲线193622=-y x 的弦被点(4,2)平分,则此弦所在的直线方程是( ) A .02=-y x B .042=-+y x C .014132=-+y x D .082=-+y x9.设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为( )A .12B .23C .34 D .4510.椭圆221259x y +=的左焦点为1F , 点P 在椭圆上, 若线段1PF 的中点M 在y 轴上, 则1PF =( ) A .415B .95C .6D .7二、填空题:本大题共3小题,每小题5分,共15分.11.若圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线0x y +=相切,则圆O 的方程是.12.某三棱锥的三视图如图所示,该三棱锥的体积是。

高二期末考试数学试题及答案(文科)

高二期末考试数学试题及答案(文科)

第一学期期末考试高二数学试题一选择题1.椭圆13610022=+y x 的焦距等于( ). A .20B .16C .12D .82.某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( ).A .抽签法B .随机数表法C .系统抽样法D .分层抽样法3.已知函数()2xf x =,则'()f x =( ).A .2xB .2ln 2x⋅ C .2ln 2x+ D .2ln 2x4.已知点F 是抛物线24y x =的焦点,点P 在该抛物线上,且点P 的横坐标是2, 则||PF =( ).A .2B .3C .4D .5 5.已知事件A 与事件B 发生的概率分别为()P A 、()P B ,有下列命题:①若A 为必然事件,则()1P A =. ②若A 与B 互斥,则()()1P A P B +=. ③若A 与B 互斥,则()()()P A B P A P B ⋃=+.其中真命题有( )个.A .0 B .1 C .2 D .36.“0a >”是“方程2y ax =表示的曲线为抛物线”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要 7.命题“2,210x R x ∀∈+>”的否定是( ).A .2,210x R x ∀∈+≤ B .200,210x R x ∃∈+>C .200,210x R x ∃∈+≤D .200,210x R x ∃∈+< 8.函数32y x x x =--的单调递增区间为( ) .A .[)1,1+3⎛⎤-∞-∞ ⎥⎝⎦和, B .113⎡⎤-⎢⎥⎣⎦C .[)1,1+3⎛⎤-∞-⋃∞ ⎥⎝⎦, D .113⎡⎤-⎢⎥⎣⎦,9.执行右边的程序框图,如果输入5a =, 那么输出=n ().A .2B .3 C .4D .510.已知椭圆22219x y b +=(03)b <<,左右焦点分别为1F ,2F ,过1F 的直线交椭圆于,A B 两点,若22||||AF BF +的最大值为8,则b 的值是( ). A . B C D二、填空题:(本大题共4题,每小题5分,共20分.请将答案填写在答卷相应位置上.)11的渐近线方程为 .12.样本2-,1-,0,1,2的方差为 .13.某城市近10年居民的年收入x 与支出y 之间的关系大致符合0.90.2y x =+(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元. 14.函数32()31f x x x =+-在1x =-处的切线方程是 . 三、解答题:(本大题6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分12分)某社团组织20名志愿者利用周末和节假日参加社会公益活动,志愿者中,年龄在20至40岁的有12人,年龄大于40岁的有8人.(1)在志愿者中用分层抽样方法随机抽取5名,年龄大于40岁的应该抽取几名? (2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年龄大于40岁的概率.16.(本小题满分12分)已知22x -≤≤,22y -≤≤,点P 的坐标为(,)x y .(1)求当,x y R ∈时,点P 满足22(2)(2)4x y -+-≤的概率; (2)求当,x y Z ∈时,点P 满足22(2)(2)4x y -+-≤的概率. 17.(本小题满分14分)设命题p :实数x 满足22430x ax a -+<,其中0a >;命题q :实数x 满足2560x x -+≤;(1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p 是q 成立的必要不充分条件,求实数a 的取值范围.18.(本小题满分14分)已知椭圆2222:1x y C a b +=(0)a b >>的离心率为,直线:2l y x =+与圆222x y b +=相切.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 的交点为,A B ,求弦长||AB .19.(本小题满分14分)已知3()f x ax bx c =++图象过点1(0,)3-,且在1x =处的切线方程是31y x =--.(1)求)(x f y =的解析式;(2)求)(x f y =在区间[]3,3-上的最大值和最小值. 20.(本小题满分14分)已知动直线l 与椭圆C :22132x y +=交于P ()11,x y 、Q ()22,x y 两个不同的点,且△OPQ 的面积OPQ S ∆O 为坐标原点.(1)证明2212x x +和2212y y +均为定值;(2)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(3)椭圆C 上是否存在点,,D E G ,使得2ODE ODG OEG S S S ∆∆∆===? 若存在,判断△DEG 的形状;若不存在,请说明理由.高二数学试题答案一、选择题(本大题共10小题,每小题5分,共50分)三、解答题:(本大题共6题,满分80.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分12分)解:(1)若在志愿者中随机抽取5名,则抽取比例为51204=………………………2分 ∴年龄大于40岁的应该抽取1824⨯=人. ……………………………4分 (2)上述抽取的5名志愿者中,年龄在20至40岁的有3人,记为1,2,3年龄大于40岁的有2人,记为4,5,……………………………………………6分 从中任取2名,所有可能的基本事件为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)(3,4),(3,5),(4,5),共10种,…8分其中恰有1人年龄大于40岁的事件有(1,4),(1,5),(2,4),(2,5)(3,4),(3,5),共6种,………………………………10分∴恰有1人年龄大于40岁的概率63105P ==.…………………………………12分 16.(本小题满分12分)解:(1)点P 所在的区域为正方形ABCD 的内部(含边界),……………(1分)满足22(2)(2)4x y -+-≤的点的区域为以(2,2)为圆心,2为半径的圆面(含边界). ……………………(3分)∴所求的概率211244416P ππ⨯==⨯. …………………………(5分) (2)满足,x y ∈Z ,且22x -≤≤,22y -≤≤的整点有25个 …………(8分)满足,x y ∈Z ,且22(2)(2)4x y -+-≤的整点有6个,……………(11分)∴所求的概率2625P =. ………………………………(12分) 17.(本小题满分14分)解(1)由22430x ax a -+<得(3)()0x a x a -⋅-<..................................1分又0a >,所以3a x a <<, (2)分当1a =时,13x <<,即p 为真命题时,实数x 的取值范围是13x <<……4分由2560xx -+≤得23x ≤≤.所以q 为真时实数x 的取值范围是23x ≤≤.…………………………………6分若p q ∧为真,则23x ≤<,所以实数x 的取值范围是[)2,3.……………8分(2) 设{}|3A x a x a =<<,{}|23B x x =≤≤q 是p 的充分不必要条件,则B A ⊂所以021233a a a <<⎧⇒<<⎨>⎩,所以实数a 的取值范围是()1,2.………14分18.(本小题满分12分)解:(1)又由直线:2l y x =+与圆222x y b +=相切得b ==, (2)分由3e =3a == (2)2222123(2)60322x y x x y x ⎧+=⎪⇒++-=⎨⎪=+⎩251260x x ⇒++=…………8分 21245624∆=-⋅⋅=,设交点,A B 坐标分别为()()1122,,,x y x y ………9分则1212126,,55x x x x +=-⋅=从而||5AB ==所以弦长||AB =14分 19.(本小题满分14分)解:(1)11(0)33f c =-⇒=-, (2)'()3f x ax b =+,∴()2'(1)31f a b=+,∴33a b +=-…………3分又∵切点为(1,4)-,∴1(1)43f a b =+-=-………………………5分联立可得1,43ab ==- (2)311()433f x x x =--2'()4f x x ⇒=-,令2'()0402f x x x =⇒-=⇒=±,令2'()0402f x x x >⇒->⇒<-或2x >,令2'()04022f x x x <⇒-<⇒-<<,………………………………10分………12分由上表知,在区间[]3,3-上,当2x =-时,m a x (2)5y f =-=当2x =时,m i n 17(2)3y f ==-………………14分20.(本小题满分14解:(1)当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称,所以2121,.x x y y ==-因为11(,)P x y 在椭圆上,因此2211132x y += ①又因为OPQS ∆=所以11||||x y ⋅= ②由①、②得11||| 1.x y ==此时222212123,2,x x y y +=+=…………… 2分 当直线l 的斜率存在时,设直线l 的方程为,y kx m =+由题意知0m ≠,将其代入22132x y +=,得222(23)63(2)0k x kmx m +++-=, 其中22223612(23)(2)0,km k m ∆=-+->即2232k m +>…(*)又212122263(2),,2323km m x x x x k k -+=-=++所以||PQ ==因为点O 到直线l 的距离为d =所以1||2OPQS PQ d ∆=⋅==又OPQS ∆=整理得22322,k m +=且符合(*)式, 此时222221212122263(2)()2()23,2323km m x x x x x x k k-+=+-=--⨯=++ 222222121212222(3)(3)4() 2.333y y x x x x +=-+-=-+= 综上所述,222212123;2,x x y y +=+=结论成立。

【试卷】高二数学上学期期末试卷(文科)及答案

【试卷】高二数学上学期期末试卷(文科)及答案

高二数学试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +•…+7a =_________(A )14 (B) 21 (C) 28 (D) 352、有分别满足下列条件的两个三角形:①∠B =30°,a =14,b =7;②∠B =60°,a =10,b =9,那么下面判断正确的是 ( ) A.①只有一解,②也只有一解 B.①、②都有两解C.①有两解,②有一解D.①只有一解,②有两解 3、命题p :“有些三角形是等腰三角形”,则┐p 是( ) A .有些三角形不是等腰三角形 B .所有三角形是等腰三角形 C .所有三角形不是等腰三角形D .所有三角形是等腰三角形4、函数3y x x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞5、设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ) A.24y x =± B.28y x =± C. 24y x = D. 28y x =6、32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319B .316C .313 D .310 7、如果b a >>0且0>+b a ,那么以下不等式正确的个数是 ( )①b a 11< ②b a 11> ③33ab b a <④23ab a < ⑤32b b a <A .2B .3C .4D .58、在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或9、下列曲线中离心率为的是 ( )A.B. C. D.10、函数y =x 3+x3在(0,+∞)上的最小值为 ( )A.4B.5C.3D.1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

高二上学期期末考试数学(文科)试卷(共3套,含参考答案)

高二上学期期末考试数学(文科)试卷(共3套,含参考答案)

第一学期期末联考试题高二数学(文科)本试卷共6页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的学校、考号、姓名填写在答题卡相应的位置,将条型码粘在相应的条形码区。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.椭圆22143x y +=的离心率是A B .12 C D .142.已知命题:p x y <若,则22x y <;命题:q x y >若,则x y -<-;在命题:①p q ∧;②p q ∨;③()p q ⌝∧;④()p q ∨⌝中,真命题是A .①③B . ①④C .②③D . ②④3. 设平面α、β,直线a 、b ,a α⊂,b α⊂,则“//a β,//b β”是“//αβ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.若函数()()0,1xf x a a a =>≠且是定义域为R 的减函数,则函数()()log 1a f x x =-的图象大致是5. 为了了解本市居民的生活成本,甲、乙、丙3名同学利用假期分别对3个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为123,,s s s ,则它们的大小关系为A .321s s s <<B .231s s s <<C .312s s s <<D .213s s s <<6. 已知向量()=cos ,1x a ,()cos ,1x -b =设函数()f x =⋅a b ,则A .()f x 为偶函数且最小正周期为πB .()f x 为奇函数且最小正周期为πC .()f x 为偶函数且最小正周期为2π D .()f x 为奇函数且最小正周期为2π 7. 已知数列{}n a 满足13132n n a a ++=+,且11a=,则5a = A. 52-B. 125C. 61D. 238- 8. 如图所示的茎叶图记录了甲、乙 两组各5名学生在一次英语听力测 试中的成绩.已知甲组数据的中位 数为15,乙组数据的平均数为16.8, 则,x y 的值分别为A .25,B .5,5C .5,8D .88,9.如图所示,圆锥的底面半径为1,母线长为2,在圆锥上方嵌入一个半径为r 的球,使圆锥的母线与球面相切,切点为圆锥母线的端点,则该球的表面积为 A .23πB .3πC .4πD .163π第8题图 第9题图元丙第5题图10. 若正整数N 除以正整数m 后的余数为r ,则记为()mod N r m =,例如()102mod4= .下列程序框图的算法源于我国古代算术《中国剩余定理》,则执行该程序框图输出的i 等于 A .2 B .4C .8D .11 11.已知正三棱柱111ABC A B C -中,12AB BB ==,则异面直线1AB 与1BC所成角的余弦值为AB .12C .14-D .1412.已知函数()1,02ln ,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,若函 数()()g x f x k =-有两个零点, 则实数k 的取值范围为A .()0+∞,B .[)1+∞,C .()01,D .()1+∞,第Ⅱ卷 (非选择题 共90分二、填空题: 本大题共4小题,每小题5分,共20分。

高二第一学期文科数学期末练习题

高二第一学期文科数学期末练习题

高二数学《选修1-1、1-2》模块学习检测试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知A 为抛物线C :)0(22>=p px y 上一点,点A 到C 的焦点的距离是12,到y 轴的距离为9,则p= ( )A.2B.3C.6D.92.函数13)(23+-=x x x f 是减函数的区间为 ( )A .(0,2)B .),2(+∞C .)2,(-∞D .)0,(-∞ 3.函数342)(x x x f -=的图象在点(1,)1(f )处的切线方程为 ( ) A.12--=x y B.12+-=x y C.32-=x y D.y=2x+14.顶点在原点,且过点(-4,4)的抛物线的标准方程是 ( )A.24y x =-B.24x y =C.24y x =-或24x y =D. 24y x =或24x y =-5.每道数学选择题都有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,如果每题都选择第一个选择支,则结果是 ( ) A .恰有3道题选对 B .选对的题数与3无一定大小关系 C .至多选对3道题 D .至少选对3道题6.若k R ∈,则“1k >”是方程“22111x y k k -=-+”表示双曲线的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.执行如图的程序框图,则输出的S 值为( )A .33B .215C .343D .10258.过抛物线x y 42=焦点F 做直线l ,交抛物线于),(11y x A ,),(22y x B 两点,若线段AB 中点横坐标为3,则=||AB ( ) A .6 B.8 C.10 D.129.已知双曲线22221x y a b-=的一个焦点与抛物线24y x =的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为 ( ) A.22154x y -= B.22154y x -= C.225514y x -=D.224515y x -= 10.设函数()f x 在定义域内可导,()y f x =的图象如左图所示,则导函数()y f x '=可能为( )11. 设抛物线2:4C y x =的焦点为F ,倾斜角为钝角的直线l 过点F 且与曲线C 交于,A B 两点,若163AB =,则l 的斜率为( ) A .33±B .33-C .3D .3-12.已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P , 使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( )A .1[,1)2 B .23[ C .2[ D .3二、填空题:(本大题共4小题,每小题5分,共20分.)13.若双曲线2x 4-22y b =1(b>0)的渐近线方程式为y=1x 2±,则b等于 ; 14.若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =_________.15.已知指数函数()f x 在(0,1)处的切线为y =x +1,若()f x ax x ≥+恒成立,则a 的取值范围为_______________.16.椭圆13422=+y x 的左焦点是F ,直线m x =与椭圆相交 于点B A ,,当FAB ∆的周长最大时,FAB ∆的面积是 .三、解答题:(本大题共6小题,共计70分。

{高中试卷}高二文科数学上册期末考试题[仅供参考]

{高中试卷}高二文科数学上册期末考试题[仅供参考]

20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:高二文科数学上册期末考试题一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将答案填在答题卷表格上。

1、若a 、b 是任意实数,且b a >,则()A .22b a >B .1<a bC .0)lg(>-b aD .b a )21()21(<2、设n m l ,,均为直线,其中n m ,在平面”“”“,n l m l l a ⊥⊥⊥且是则内α的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3、对于两个命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>, 下列判断正确的是()。

A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ②都真4、与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是() A.1222=-y x B.1422=-y x C.1222=-y x D.13322=-y x 5、已知12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆与A ,B 两点,则2ABF ∆是正三角形,则椭圆的离心率是()A 22B 12C 33D 136、过抛物线28y x =的焦点作倾斜角为045直线l ,直线l 与抛物线相交与A ,B 两点, 则弦AB的长是()A 8B 16C 32D 647、在同一坐标系中,方程)0(0122222>>=+=+b a by ax x b x a 与的曲线大致是()A .B .C .D .8、已知椭圆12222=+b y ax (b a >>0)的两个焦点F 1,F 2,点P 在椭圆上,则12PF F ∆的面积最大值一定是()A 2a B ab C 22a a b - D 22b a b -9、已知函数()ln f x x x=⋅,下列判断正确的是( )A .在定义域上为增函数; B. 在定义域上为减函数;C. 在定义域上有最小值,没有最大值;D. 在定义域上有最大值,没有最小值;10、设二次函数()2f x ax bx c=++的导数为()f x ',()00f '>,若x R ∀∈,恒有()0f x ≥,则()()20f f -'的最小值是()A .0 B. 2- C. 2 D. 4二.填空题:本大题共4小题,每空格5分,共25分。

高二数学文科期末考试题

高二数学文科期末考试题

∴ b 的最大值是 4 6
……………………………………… 12 分
7 / 14
高二年级数学上学期期末考试试卷 ( 文科 )
命题人 鞍山一中 李燕溪 校对人 李燕溪
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一个选项是符 合题目要求的.
1.椭圆 x2 2
y2 1 的离心率是
()
2
A.
2
B. 2
1
C.
2
D. 2
2. 2, 5,2 2, 11 则 4 2 是该数列中的
A 第 9 项 B 第 10 项 C
第 11 项 D
第 12 项
3.在 ABC 中 , A 30 , B 45 , BC 2. 则 AC 边长为
() ()
A. 2
26
B.
3
C. 2 2
6
D.
.
14 、数列 an 的通项公式 an 的和 , 则 Sn = _________.
1
n(n
1),则
Sn为数列
{ }的前 an
n项
15. 在 ABC 中,三个角 A 、B 、C 成等差数列, AB 1, BC 4 ,则 BC 边上的中线 AD 的长为
.
16. 已知 2 3 2,( x 0, y 0) , 则 xy 的最小值是 _________. xy
B. 所有奇数都不能被 5 整除 D. 存在一个奇数,不能被 5 整除
9. 双曲线 x2 y2 1 mn 0 离心率为 2,有一个焦点与抛物线 y2 4 x 的焦点重合, mn
则 mn的值为
3 A.
16
3 B.
8
16 C.

高二数学上学期期末试卷文科含解析

高二数学上学期期末试卷文科含解析

高二数学上学期期末试卷文科含解析数学试卷文科一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为A.2B.3C.5D.74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.¬p∨¬qB.p∨¬qC.¬p∧¬qD.p∨q5.若双曲线的离心率为,则其渐近线的斜率为A.±2B.C.D.6.曲线在点M ,0处的切线的斜率为A. B. C. D.7.若椭圆 a>b>0的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为A. ,0B. ,0C.0,D.0,8.设z1,z2是复数,则下列命题中的假命题是A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则9.已知命题“若函数fx=ex﹣mx在0,+∞上是增函数,则m≤1”,则下列结论正确的是A.否命题“若函数fx=ex﹣mx在0,+∞上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数fx=ex﹣mx在0,+∞上是增函数”是假命题C.逆否命题“若m>1,则函数fx=ex﹣mx在0,+∞上是减函数”是真命题D.逆否命题“若m>1,则函数fx=ex﹣mx在0,+∞上不是增函数”是真命题10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件11.设a>0,fx=ax2+bx+c,曲线y=fx在点Px0,fx0处切线的倾斜角的取值范围为,则P到曲线y=fx对称轴距离的取值范围为A. B. C. D.12.已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1A.3B.4C.5D.6二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于.14.fx=x3﹣3x2+2在区间上的最大值是.15.函数fx=lnx﹣f′1x2+5x﹣4,则f1= .16.过抛物线x2=2pyp>0的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点A在y轴左侧,则 = .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数i为虚数单位.Ⅰ求复数z;Ⅱ求的模.18.已知集合A={x|ax﹣1ax+2≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M 在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .Ⅰ求椭圆的离心率;Ⅱ设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.20.设函数,其中a为实数.1已知函数fx在x=1处取得极值,求a的值;2已知不等式f′x>x2﹣x﹣a+1对任意a∈0,+∞都成立,求实数x的取值范围.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.1求C1的方程;2设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.22.已知函数fx=lnx﹣ax﹣12﹣x﹣1其中常数a∈R.Ⅰ讨论函数fx的单调区间;Ⅱ当x∈0,1时,fx<0,求实数a的取值范围.高二上期末数学试卷文科参考答案与试题解析一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn>0,即可得到结论.【解答】解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;或者是m,n都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn>0;由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.故选B.2.命题“所有能被2整除的数都是偶数”的否定是A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【考点】命题的否定.【分析】根据已知我们可得命题“所有能被2整除的数都是偶数”的否定应该是一个特称命题,根据全称命题的否定方法,我们易得到结论.【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为A.2B.3C.5D.7【考点】椭圆的简单性质.【分析】由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为7,求出P到另一焦点的距离即可.【解答】解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为7,由定义得点P到另一焦点的距离为2a﹣3=10﹣7=3.故选B4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.¬p∨¬qB.p∨¬qC.¬p∧¬qD.p∨q【考点】四种命题间的逆否关系.【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为¬pV¬q.故选A.5.若双曲线的离心率为,则其渐近线的斜率为A.±2B.C.D.【考点】双曲线的简单性质.【分析】由双曲线的离心率为,可得,解得即可.【解答】解:∵双曲线的离心率为,∴ ,解得 .∴其渐近线的斜率为 .故选:B.6.曲线在点M ,0处的切线的斜率为A. B. C. D.【考点】利用导数研究曲线上某点切线方程.【分析】先求出导函数,然后根据导数的几何意义求出函数fx在x= 处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x= = |x= =故选B.7.若椭圆 a>b>0的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为A. ,0B. ,0C.0,D.0,【考点】双曲线的简单性质;椭圆的简单性质;抛物线的简单性质.【分析】根据椭圆 a>b>0的焦点与双曲线的焦点恰好是一个正方形的四个顶点,得到a,b的关系式;再将抛物线ay=bx2的方程化为标准方程后,根据抛物线的性质,即可得到其焦点坐标.【解答】解:∵椭圆 a>b>0的焦点与双曲线的焦点恰好是一个正方形的四个顶点∴2a2﹣2b2=a2+b2,即a2=3b2, = .抛物线ay=bx2的方程可化为:x2= y,即x2= y,其焦点坐标为:0, .故选D.8.设z1,z2是复数,则下列命题中的假命题是A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则【考点】复数代数形式的乘除运算;命题的真假判断与应用.【分析】利用特例判断A的正误;复数的基本运算判断B的正误;复数的运算法则判断C的正误;利用复数的模的运算法则判断D的正误.【解答】解:若|z1|=|z2|,例如|1|=|i|,显然不正确,A错误.B,C,D满足复数的运算法则,故选:A.9.已知命题“若函数fx=ex﹣mx在0,+∞上是增函数,则m≤1”,则下列结论正确的是A.否命题“若函数fx=ex﹣mx在0,+∞上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数fx=ex﹣mx在0,+∞上是增函数”是假命题C.逆否命题“若m>1,则函数fx=ex﹣mx在0,+∞上是减函数”是真命题D.逆否命题“若m>1,则函数fx=ex﹣mx在0,+∞上不是增函数”是真命题【考点】四种命题间的逆否关系.【分析】先利用导数知识,确定原命题为真命题,从而逆否命题为真命题,即可得到结论.【解答】解:∵fx=ex﹣mx,∴f′x=ex﹣m∵函数fx=ex﹣mx在0,+∞上是增函数∴ex﹣m≥0在0,+∞上恒成立∴m≤ex在0,+∞上恒成立∴m≤1∴命题“若函数fx=ex﹣mx在0,+∞上是增函数,则m≤1”,是真命题,∴逆否命题“若m>1,则函数fx=ex﹣mx在0,+∞上不是增函数”是真命题∵m≤1时,f′x=ex﹣m≥0在0,+∞上不恒成立,即函数fx=ex﹣mx在0,+∞上不一定是增函数,∴逆命题“若m≤1,则函数fx=ex﹣mx在0,+∞上是增函数”是真命题,即B不正确故选D.10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.【解答】解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B11.设a>0,fx=ax2+bx+c,曲线y=fx在点Px0,fx0处切线的倾斜角的取值范围为,则P到曲线y=fx对称轴距离的取值范围为A. B. C. D.【考点】直线的图象特征与倾斜角、斜率的关系.【分析】先由导数的几何意义,得到x0的范围,再求出其到对称轴的范围.【解答】解:∵过Px0,fx0的切线的倾斜角的取值范围是,∴f′x0=2ax0+b∈,∴P到曲线y=fx对称轴x=﹣的距离d=x0﹣﹣ =x0+∴x0∈[ ,].∴d=x0+ ∈.故选:B.12.已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1A.3B.4C.5D.6【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】由函数fx=x3+ax2+bx+c有两个极值点x1,x2,可得f′x=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b>0.而方程3fx2+2afx+b=0的△1=△>0,可知此方程有两解且fx=x1或x2.再分别讨论利用平移变换即可解出方程fx=x1或fx=x2解得个数.【解答】解:∵函数fx=x3+ax2+bx+c有两个极值点x1,x2,∴f′x=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得 = .∵x1< p="">∴ , .而方程3fx2+2afx+b=0的△1=△>0,∴此方程有两解且fx=x1或x2.不妨取00.①把y=fx向下平移x1个单位即可得到y=fx﹣x1的图象,∵fx1=x1,可知方程fx=x1有两解.②把y=fx向下平移x2个单位即可得到y=fx﹣x2的图象,∵fx1=x1,∴fx1﹣x2<0,可知方程fx=x2只有一解.综上①②可知:方程fx=x1或fx=x2.只有3个实数解.即关于x的方程3fx2+2afx+b=0的只有3不同实根.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于 1 .【考点】复数代数形式的乘除运算.【分析】直接利用复数的代数形式的混合运算化简求解即可.【解答】解:复数,那么z• = = =1.故答案为:1.14.fx=x3﹣3x2+2在区间上的最大值是 2 .【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′x=3x2﹣6x=3xx﹣2令f′x=0得x=0或x=2舍当﹣10;当0<0< p="">所以当x=0时,函数取得极大值即最大值所以fx的最大值为2故答案为215.函数fx=lnx﹣f′1x2+5x﹣4,则f1= ﹣1 .【考点】导数的运算.【分析】先求出f′1的值,代入解析式计算即可.【解答】解:∵fx=lnx﹣f′1x2+5x﹣4,∴f′x= ﹣2f′1x+5,∴f′1=6﹣2f′1,解得f′1=2.∴fx=lnx﹣2x2+5x﹣4,∴f1=﹣1.故答案为:﹣1.16.过抛物线x2=2pyp>0的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点A在y轴左侧,则 = .【考点】抛物线的简单性质.【分析】点斜式设出直线l的方程,代入抛物线方程,求出A,B两点的纵坐标,利用抛物线的定义得出 = ,即可得出结论.【解答】解:设直线l的方程为:x=y﹣,Ax1,y1,Bx2,y2,由x=y﹣,代入x2=2py,可得y2﹣3py+ p2=0,∴y1= p,y2= p,从而, = = .故答案为: .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数i为虚数单位.Ⅰ求复数z;Ⅱ求的模.【考点】复数求模;复数的基本概念.【分析】Ⅰ设z=a+bi,分别代入z+2i和,化简后由虚部为0求得b,a的值,则复数z可求;Ⅱ把z代入,利用复数代数形式的乘除运算化简,代入模的公式得答案.【解答】解:Ⅰ设z=a+bi,∴z+2i=a+b+2i,由a+b+2i为实数,可得b=﹣2,又∵ 为实数,∴a=4,则z=4﹣2i;Ⅱ ,∴ 的模为 .18.已知集合A={x|ax﹣1ax+2≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,转化为集合的关系进行求解.【解答】解:1a>0时,,若x∈B是x∈A的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅2a=0时,A=R,符合题意;┅┅┅┅┅┅┅3a<0时,,若x∈B是x∈A的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M 在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .Ⅰ求椭圆的离心率;Ⅱ设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.【考点】椭圆的简单性质.【分析】1通过题意,利用 =2 ,可得点M坐标,利用直线OM的斜率为,计算即得结论;2通过中点坐标公式解得点N坐标,利用× =﹣1,即得结论.【解答】Ⅰ解:设Mx,y,已知Aa,0,B0,b,由|BM|=2|MA|,所以 =2 ,即x﹣0,y﹣b=2a﹣x,0﹣y,解得x= a,y= b,即可得,┅┅┅┅┅┅┅所以,所以椭圆离心率;┅┅┅┅┅┅┅Ⅱ证明:因为C0,﹣b,所以N ,MN斜率为,┅┅┅┅┅┅┅又AB斜率为,所以× =﹣1,所以MN⊥AB.┅┅┅┅┅┅┅20.设函数,其中a为实数.1已知函数fx在x=1处取得极值,求a的值;2已知不等式f′x>x2﹣x﹣a+1对任意a∈0,+∞都成立,求实数x的取值范围.【考点】利用导数研究函数的极值.【分析】1求出f′x,因为函数在x=1时取极值,得到f′1=0,代入求出a值即可;2把fx的解析式代入到不等式中,化简得到,因为a>0,不等式恒成立即要,求出x的解集即可.【解答】解:1f′x=ax2﹣3x+a+1由于函数fx在x=1时取得极值,所以f′1=0即a﹣3+a+1=0,∴a=12由题设知:ax2﹣3x+a+1>x2﹣x﹣a+1对任意a∈0,+∞都成立即ax2+2﹣x2﹣2x>0对任意a∈0,+∞都成立于是对任意a∈0,+∞都成立,即∴﹣2≤x≤0于是x的取值范围是{x|﹣2≤x≤0}.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.1求C1的方程;2设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.【考点】椭圆的简单性质.【分析】1运用椭圆的离心率和最小距离a﹣c,解方程可得a= ,c=1,再由a,b,c 的关系,可得b,进而得到椭圆方程;2设出直线y=kx+m,联立椭圆和抛物线方程,运用判别式为0,解方程可得k,m,进而得到所求直线的方程.【解答】解:1由题意可得e= = ,由椭圆的性质可得,a﹣c= ﹣1,解方程可得a= ,c=1,则b= =1,即有椭圆的方程为 +y2=1;2直线l的斜率显然存在,可设直线l:y=kx+m,由,可得1+2k2x2+4kmx+2m2﹣2=0,由直线和椭圆相切,可得△=16k2m2﹣41+2k22m2﹣2=0,即为m2=1+2k2,①由,可得k2x2+2km﹣4x+m2=0,由直线和抛物线相切,可得△=2km﹣42﹣4k2m2=0,即为km=1,②由①②可得或,即有直线l的方程为y= x+ 或y=﹣ x﹣ .22.已知函数fx=lnx﹣ax﹣12﹣x﹣1其中常数a∈R.Ⅰ讨论函数fx的单调区间;Ⅱ当x∈0,1时,fx<0,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】Ⅰ求出函数的导数,通过讨论a的范围求出函数的单调区间即可;Ⅱ根据Ⅰ通过讨论a的范围,确定出满足条件的a的范围即可.【解答】解:Ⅰfx=lnx﹣ax﹣12﹣x﹣1,x>0,f′x=﹣,①a<﹣时,0<﹣ <1,令f′x<0,解得:x>1或00,解得:﹣ < p="">∴fx在递减,在递增;②﹣ <0,解得:x>﹣或00,解得:1∴fx在递减,在递增;③ ,f′x=﹣≤0,fx在0,1,1+∞递减;④a≥0时,2ax+1>0,令f′x>0,解得:0<0,解得:x>1,∴fx在0,1递增,在1,+∞递减;Ⅱ函数恒过1,0,由Ⅰ得:a≥﹣时,符合题意,a<﹣时,fx在0,﹣递减,在递增,不合题意,故a≥﹣ .感谢您的阅读,祝您生活愉快。

高二数学(文科)第一学期期末考试试卷.doc

高二数学(文科)第一学期期末考试试卷.doc

高二数学(文科)第一学期期末考试试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共150分.第Ⅰ卷(选择题共60分)一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目 要求的.)1.命题“若b a >,则c b c a +>+”的逆否命题为( ) A .若b a <,则c b c a +<+. B .若b a ≤,则c b c a +≤+. C .若c b c a +<+,则b a <. D .若c b c a +≤+,则b a ≤. 2.抛物线2y x =的焦点坐标是( )A .()1,0B .1,04⎛⎫ ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭ D .10,4⎛⎫ ⎪⎝⎭3.命题p :存在实数m ,使方程210x mx ++=有实数根,则“非p ”形式的命题是( )A .存在实数m ,使得方程210x mx ++=无实根. B .不存在实数m ,使得方程210x mx ++=有实根. C .对任意的实数m ,使得方程210x mx ++=有实根. D .至多有一个实数m ,使得方程210x mx ++=有实根.4. 顶点在原点,坐标轴为对称轴的抛物线过点()2,3-,则它的方程是( )A .292x y =-或243y x = B .292y x =-或243x y = C .243x y = D .292y x =-5.函数2221x y x =+的导数是( )A .()()23224141x x x y x +-'=+ B .()()22224141x x x y x +-'=+C .()()23222141x x x y x+-'=+ D .()()2224141x x xy x+-'=+6.若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( )A .4B .194C .94D .147.,,A B C 是三个集合,那么“B A =”是“A C B C =I I ”成立的( ) A .充分非必要条件. B .必要非充分条件. C .充要条件. D .既非充分也非必要条件.8.已知:点()2,3-与抛物线22(0)y px p =>的焦点的距离是5,则p 的值是( )A .2B .4C .8D .16 9.函数32y x x =-+的单调递减区间是( ) A .-∞(,)36-B .36(,)∞+ C .-∞(,36()36Y -,)∞+ D .36(-,)3610.抛物线x y 82=上的点),(00y x 到抛物线焦点的距离为3,则|y 0|=( ) A .2 B .22 C .2 D .411.以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( ) A.222=-y x B .222=-x yC .422=-y x 或422=-x y D .222=-y x 或222=-x y12.已知函数()y f x =的导函数的图象如图甲所示, 则()y f x =的图象可能是( )AB C D第Ⅱ卷(非选择题共90分)二、填空题(每小题6分,共30分.)13.用符号“∀”与“∃”表示含有量词的命题:(1)实数的平方大于等于0. ______________________.(2)存在一对实数,使2x +3y +3>0成立.______________________. 14.离心率35=e ,一条准线为3=x 的椭圆的标准方程是______________________. 15.曲线32x x y -=在点(1,1)处的切线方程为___ _______.16.若直线l 过抛物线()20y ax a =>的焦点,并且与x 轴垂直,若l 被抛物线截得的线段长为4,则a =___ _______.17. 过双曲线822=-y x 的右焦点2F 有一条弦PQ ,7PQ =,1F 是左焦点,那么1F PQ ∆的周长为___ _______.三、解答题(共60分)18.已知命题P :“若,0≥ac 则二次方程02=++c bx ax 没有实根”. (1)写出命题P 的否命题;(4分)(2)判断命题P 的否命题的真假, 并证明你的结论.(6分)19.已知双曲线的一条渐近线方程是20x y -=,若双曲线经过点M ,求双曲线的标准方程.(12分)20.已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),求a 和b 的值.(14分) 21.求59623-+-=x x x y 的单调区间和极值.(10分)22.一段双行道隧道的横截面边界由椭圆的上半部分和矩形的三边组成,如图所示.一辆卡车 运载一个长方形的集装箱,此箱平放在车上与车同宽,车与箱的高度共计4.2米,箱宽3 米,若要求通过隧道时,车体不得超过中线. 试问这辆卡车是否能通过此隧道,请说明理由(14分)高二数学(文科)第一学期期末考试试卷参考答案一、选择题(每小题5分,共60分)二、填空题(每小题6分,共30分)13.(1)2,0x R x ∀∈≥ (2),,2330x y R x y ∃∈++> 14.2212059x y += 15. 20x y +-= 16. 4 17.2814+三、解答题(共60分.)18.已知命题P :“若,0≥ac 则二次方程02=++c bx ax 没有实根”.(1)写出命题P 的否命题;(4分)(2)判断命题P 的否命题的真假, 并证明你的结论.(6分)18.解:(1)命题P的否命题为:“若,0<ac 则二次方程02=++c bx ax 有实根”. (2)命题P 的否命题是真命题.证明:20040ac ac b ac <⇒->⇒∆=->⇒二次方程02=++c bx ax 有实根.∴该命题是真命题.19.已知双曲线的一条渐近线方程是20x y -=,若双曲线经过点M ,求双曲线的标准方程.(12分)解:由已知可知双曲线的两条渐近线为20x y ±=因此可设所求双曲线为()2240x y λλ-=≠ (6分)将M 代入()2240x y λλ-=≠,解得16λ= (4分)∴双曲线方程为22416x y -=∴标准方程为:221164x y -= (2分)20.已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),求a 和b 的值.(14分) 解:∵直线1y kx =+与曲线3y x ax b =++切于点(1,3)∴点(1,3)在直线1y kx =+与曲线3y x ax b =++上 (2分) ∴312k k =+⇒=31a b =++ (4分)又由()323y x ax bxa ''=++=+ (4分)由导数的几何意义可知:1|321x k y a a ='==+=⇒=- (2分) 将1a =-代入31a b =++,解得3b = (2分)21.求59623-+-=x x x y 的单调区间和极值.(10分)解:()3226953129y x x x xx ''=-+-=-+ (2分)令0y '=,即231290x x -+=,解得31x x ==或 (2分) 当0y '>时,即231290x x -+>,解得13x x <>或,函数59623-+-=x x x y 单调递增; (2分)当0y '<时,即231290x x -+<,解得13x <<,函数59623-+-=x x x y 单调递减; (2分)综上所述,函数59623-+-=x x x y 的单调递增区间是()(),13,-∞+∞或,单调递减区间是()1,3;当1x =时取得极大值1-,当3x =时取得极小值5-。

(完整word版)高二第一学期数学期末考试题及答案(人教版文科)

(完整word版)高二第一学期数学期末考试题及答案(人教版文科)

2017—2018学年度第一学期高二数学期末考试题文科(提高班)选择题(每题5分, 共60分)1.在相距2km的A、B两点处测量目标C, 若∠CAB=75°, ∠CBA=60°, 则A、C两点之间的B. 3 km距离是()A. 2 kmA.2kmC. kmD. 3 km2. 已知椭圆()的左B.4C.3D.2焦点为,则()A.93. 在等差数列中,,则B. 15C. 20D. 25的前5项和=()A.74. 某房地产公司要在一块圆形的土地上,设计一B. 100m2C. 200m2D. 250m2个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A. 50m2A.50m25. 如图所示, 表示满足不等式的点所在的平面区域为()B .C .D .A .6. 焦点为(0, ±6)且与双曲线有相同渐近线的双曲线方程是()B .A .C .D .7. 函数的导数为()B .A .C .D .8. 若<<0, 则下列结论正确的是()B .A. bA .bC. -2D .9. 已知命题: 命题.则下列判断正确的是()B. q是真命题A. p是假命题A.p是假命题C. 是真命题D. 是真命题10. 某观察站B. 600米C. 700米D. 800米与两灯塔、的距离分别为300米和500米, 测得灯塔在观察站北偏东30 , 灯塔在观察站正西方向, 则两灯塔、间的距离为()A. 500米A.500米11. 方程表示的曲线为()A. 抛物线A.抛物线B. 椭圆 C. 双曲线D.圆12. 已知数列的前项和为, 则的值是()A. -76A.-76B. 76C. 46D. 13二、填空题(每题5分, 共20分)13.若, , 是实数, 则的最大值是_________14.过抛物线的焦点作直线交抛物线于、两点, 如果, 那么=___________.15.若双曲线的顶点为椭圆长轴的端点, 且双曲线的离心率与该椭圆的离心率的积为1, 则双曲线的方程是____________.16.直线是曲线y=l.x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡二、填空题(共4小题, 每题5分)13. 2 14、 815. 16.三、解答题(共6小题, 17题10分, 其他每小题12分)17.已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18.已知不等式组的解集是, 且存在, 使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19.某公司生产一种电子仪器的固定成本为20000元, 每生产一台仪器需增加投入100元, 已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时, 公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20.根据下列条件, 求双曲线的标准方程.(1)经过点, 且一条渐近线为;(2) 与两个焦点连线互相垂直, 与两个顶点连线的夹角为.21.已知函数在区间上有最小值1和最大值4, 设.(1)求的值;(2)若不等式在区间上有解, 求实数k的取值范围.22.已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数, 使得, 恒成立?若存在, 求常数的值或取值范围;若不存在, 请说明理由.文科(提高班)选择题(每题5分, 共60分)1.考点: 1. 2 应用举例试题解析:由题意, ∠ACB=180°-75°-60°=45°, 由正弦定理得=, 所以AC=·sin60°=(km).答案:C2.考点: 2. 1 椭圆试题解析:, 因为, 所以, 故选C.答案:C3.考点: 2. 5 等比数列的前n项和试题解析: .答案:B4.考点: 3. 3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为, 则宽为,所以矩形面积为 , 故选C答案: C5.考点:3..二元一次不等式(组)与简单的线性规划问题试题解析: 不等式等价于或作出可行域可知选B答案: B6.考点: 2. 2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12.∴双曲线方程为.答案:B7.考点: 3. 2 导数的计算试题解析:, 故选B.答案:B8.考点: 3. 1 不等关系与不等式试题解析:根据题意可知, 对两边取倒数的得, 综上可知, 以此判断:A.正确;因为:, 所以:, B错误;, 两个正数相加不可能小于, 所以C错误;, D错误, 综上正确的应该是A.答案:A9.考点: 1. 3 简单的逻辑联结词试题解析:当时, (当且仅当, 即时取等号), 故为真命题;令, 得, 故为假命题, 为真命题;所以是真命题.答案:C10.考点: 1. 2 应用举例试题解析:画图可知在三角形ACB中, , , 由余弦定理可知, 解得AB=700.答案:C11.考点: 2. 1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离, 点不在直线上, 符合抛物线的定义;答案:A12.考点: 2. 3 等差数列的前n项和试题解析:由已知可知:, 所以, , , 因此, 答案选A.答案:A二. 填空题(每题5分, 共20分)13.考点: 3. 4 基本不等式试题解析:, , 即,则, 化简得, 即, 即的最大值是2.答案:214.考点: 2. 3 抛物线试题解析:根据抛物线方程知, 直线过焦点, 则弦, 又因为, 所以.答案:815.考点: 2. 2 双曲线试题解析:椭圆长轴的端点为, 所以双曲线顶点为, 椭圆离心率为,所以双曲线离心率为, 因此双曲线方程为答案:16.考点: 3. 2 导数的计算试题解析:设曲线上的一个切点为(m, n), , ∴,∴.答案:三、解答题(共6小题, 17题10分, 其他每小题12分)17.考点: 2. 3 等差数列的前n项和试题解析: (Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2, 公比为4的等比数列(Ⅲ)由答案: (Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1, 2, 3, 4}18.考点: 3. 2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令, 由题意得时, .当即, (舍去)当即, .综上可知, 的取值范围是.答案: (Ⅰ);(Ⅱ)的取值范围是19.考点: 3. 4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时, 有最大值为当时,是减函数,∴当时, 的最大值为答:每月生产台仪器时, 利润最大, 最大利润为元.答案:(1);(2)每月生产台仪器时, 利润最大, 最大利润为元20.考点: 双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为, 两顶点为由与两个焦点连线垂直得, 所以由与两个顶点连线的夹角为得, 所以, 则所以方程为21.考点: 3. 2 一元二次不等式及其解法试题解析: (1), 因为, 所以在区间上是增函数,故, 解得.(2)由已知可得, 所以, 可化为,化为, 令, 则, 因, 故,记, 因为, 故,所以的取值范围是22.考点: 3. 3 导数在研究函数中的应用试题解析:(1), 所求切线的斜率所求切线方程为即(2)由, 作函数,其中由上表可知, , ;,由, 当时, , 的取值范围为, 当时, , 的取值范围为∵, 恒成立, ∴答案:(1)(2)存在, , 恒成立100.在中, 角所对的边分别为, 且满足, .(.)求的面积;(II)若, 求的值.46.考点: 正弦定理余弦定理试题解析:(Ⅰ)又, , 而, 所以, 所以的面积为:(Ⅱ)由(Ⅰ)知, 而, 所以所以答案: (1)2(2)。

高二上学期期末考试数学(文)试题Word版含答案

高二上学期期末考试数学(文)试题Word版含答案

届高二上学期期末考试试卷文科数学考试时间:120 分钟满分:150 分注意事项: 1.本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分。

考试结束后,请将答题卡 上交。

2.答卷前,考生务必将自己的学校、姓名、班级、准考证号、考场号、座位号填写在答 题卡上。

3.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷、草稿纸上无效。

4.非选择题的作答:用黑色签字笔在答题卡上对应的答题区域内作答。

答在试卷、草稿 纸上无效。

5.考生务必保持答题卡的整洁。

第I卷一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 设全集U 1,2,3,4,5, M 1,2,4, N 2,4,5,则(CU M) (CU N ) 等于( )A. 4B. 1,3C. 2,5D. 32. 设,“ x 1”是“ x 1”的( )A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3. 已知直线 经过点 P2,5 ,且斜率为 3 ,则直线 l 的方程为( )4A. 3x 4y 14 0B. 3x 4y 14 0C. 4x 3y 14 0D. 4x 3y 14 04. 如果执行右面的程序框图,那么输出的 S ( )A.90B.110第1页 共11页C.250D.2095. 将一条 5 米长的绳子随机地切断为两段,则两段绳子都不短于 1 米的概率为( )A. 1 5B. 2 5C. 3 5D. 4 53x y 2≤06.已知变量x,y满足线性约束条件 xy2≥0x y 1≥0,则目标函数 z 1 x y 的最小值为 2()A. 5 4B. 2C. 2D. 13 47. 下列四个命题中正确的是( )①若一个平面经过另一平面的垂线,那么这两个平面相互垂直;②若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;③垂直于同一条直线的两个平面相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.A.①③B.①④C.①②④D.①③④8. 某四棱锥的三视图如图所示,则该四棱锥的体积为( )A. 4 3B. 2 3C. 8 3D. 29. 若,,则的值为( )A.B.C.D.10. 若圆 C 的半径为 1,圆心在第一象限,且与直线 4x 3y 0 和 x 轴都相切,则该圆的标准方程是( )A. (x 2)2 ( y 1)2 1B. (x 2)2 ( y 1)2 1C. (x 2)2 ( y 1)2 1D. (x 3)2 ( y 1)2 1第2页 共11页11. 《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样一道题:把 120 个面包分成 5 份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的 7 倍,则最少的那份有( )个面包.A.1B.2C.3D.412.设函数f x lg 1 2x11 x4,则使得f3x 2 f x 4 成立的 x 的取值范围是( )A. 1 3,1B. 1,3 2 C. ,3 2 D. ,1 3 , 2 第 II 卷(非选择题,共 90 分)注意事项:用 0.5 毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.二、填空题(本大题共 4 小题,每小题 5 分,共 20 分。

陕西省市高二上学期期末文科数学试题(解析版)

陕西省市高二上学期期末文科数学试题(解析版)

期末教学质量检测高二数学(文科)试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 命题“”的否定是() 30,31x x x ∃>≥+A. B. 30,31x x x ∃><+30,31x x x ∀<≥+C. D.30,31x x x ∀><+30,31x x x ∃<<+【答案】C 【解析】【分析】直接根据特称命题的否定是全称命题得答案.【详解】命题“”的否定是. 30,31x x x ∃>≥+30,31x x x ∀><+故选:C.2. 已知函数可导,且,()0()3f x '=000()()limx f x x f x x xΛ→+∆--∆=∆A. -3 B. 0C. 3D. 6【答案】D 【解析】【分析】利用导数的概念对进行整理,可得结论.000()()limx f x x f x x x∆→+∆--∆∆【详解】000()()limx f x x f x x x ∆→+∆--∆=∆000()()limx f x x f x x ∆→+∆-∆000()()limx f x f x x x∆→--∆+∆.()026f x '==故选:D.【点睛】本题主要考查了导数的概念.属于基础题. 3. 在等比数列中,若,,则 {}n a 127a =513a =3a =A. 或 B.C. 或D.33-39-99【答案】B 【解析】【分析】根据等比数列的通项公式求解,注意此题解的唯一性.【详解】是和的等比中项,则,3a 1a 5a 23159a a a ==解得,由等比数列的符号特征知.选B. 33a =±33a =【点睛】本题考查等比数列的通项公式,属于基础题. 4. 已知,则下列大小关系正确的是() 01,0a b <<<A.B.C.D.2ab b a b <<2b ab a b <<2b a b ab <<2a b b ab <<【答案】B 【解析】【分析】根据不等式性质,不等式两边同时乘负数,改变不等号,不等式两边同时乘正数,不改变不等号,可得答案.【详解】对于A ,因为,所以,故错误;01,0a b <<<ab >b 对于B ,因为,所以,又因为,所以, 01,0a b <<<ab >b 0a <2a b ab >则,故正确;易知C ,D 错误. 2b ab a b <<故选:B.5. 已知,,若,则的最大值为(). 0x >0y >41x y +=()()411x y ++A.B.C.D. 1941434【答案】A 【解析】【分析】由基本不等式求最大值.【详解】, ()()()()2411941124x y x y +++⎡⎤++≤=⎢⎥⎣⎦当且仅当,即,时,等号成立.41141x y x y +=+⎧⎨+=⎩18x =12y =故选:A .6. 已知函数f (x ) 的图象如图所示,则导函数f '(x )的图象可能是()A. B.C. D.【答案】D 【解析】【分析】根据导函数正负与原函数单调性关系可作答【详解】原函数在上先减后增,再减再增,对应到导函数先负再正,再负再正,且[]3,3-原函数在处与轴相切,故()0,0x ()'0=0f 可知,导函数图象为D 故选:D7. 已知是递增的等比数列,且,则其公比满足() {}n a 20a <q A. B. 1q <-10q -<<C. D.1q >01q <<【答案】D 【解析】【分析】先确定,由得,根据的单调性确定的取值范围. 0q >20a <10a <{}n a q 【详解】是等比数列,故,当时,各项正负项间隔,为摆动数{}n a 11n n a a q -=0q <{}n a 列,故,显然,0q >1q ≠由得,又是递增的等比数列,故为递减数列,由指数函数的120a a q =<10a <{}n a {}1n q -单调性知. 01q <<故选:D8. 已知抛物线的焦点为,点在抛物线上,为坐标原2:2(0)C y px p =>F ()03,A y C O 点,若,则() 6AF =OA =A. 3B.C. 6D.【答案】B【解析】【分析】根据焦半径公式求出,从而可求得,再根据两点间的距离公式即可得解. p 0y 【详解】解:由题意可得,解得, 362pAF =+=6p =则, 2026336y =⨯⨯=故.OA ==故选:B .9. 已知,则“”是“”的() a ∈R 6a >236a >A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】由充分条件、必要条件的定义判断即可得解. 【详解】由题意,若,则,故充分性成立; 6a >236a >若,则或,推不出,故必要性不成立; 236a >6a >6a <-6a >所以“”是“”的充分不必要条件. 6a >236a >故选:A.10. 若变量满足约束条件,则的最大值为()x y ,+4200x y x y x y ≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩2z x y =+A. 2 B. 7C. 8D. 10【答案】B 【解析】【分析】根据约束条件,作图表示可行域,根据目标函数的几何意义,可得答案. 【详解】在平面直角坐标系内,可行解域如下图所示:平移直线,在可行解域内,经过点时,直线在纵轴上的截距最2y x z =-+B 2y x z =-+大,解二元一次方程组:的最大值为, ()+=4=331=2=1x y x B z x y y ⇒∴-⎧⎧⎨⎨⎩⎩,,,2317⨯+=故选:B.11. 2022年11月30日7时33分,神舟十五号3名航天员顺利进驻中国空间站,与神舟十四号航天员乘组首次实现“太空会师”,一般来说,航天器绕地球运行的轨道近似看作为椭圆,其中地球的球心是这个椭圆的一个焦点,我们把椭圆轨道上距地心最近(远)的一点称作近(远)地点,近(远)地点与地球表面的距离称为近(远)地点高度.已知中国空间站在一个椭圆轨道上飞行,它的近地点高度约为351,远地点高度约为385,地球km km 半径约为6400,则该轨道的离心率约为() km A.B.C.D.17676817368385736678513536【答案】A 【解析】【分析】根据题意求出即可求解.,a c 【详解】由题可知,,38564006785a c +=+=,解得,35164006751a c -=+=6768,17a c ==所以离心率为, 176768c a =故选:A.12. 已知函数及其导函数,若存在使得,则称是()f x ()f x '0x ()()00f x f x '=0x ()f x 的一个“巧值点”,下列选项中没有“巧值点”的函数是() A.B.y x =e x y =C. D. cos y x =y =【答案】D 【解析】【分析】利用新定义:存在使得,则称是的一个“巧点”,对四0x ()()00f x f x '=0x ()f x 个选项中的函数进行一一的判断即可.【详解】对于A :,则,令,则,故有“巧()f x x =()f x '1=()f x =()f x '1x =()f x 值点”;对于B ,,则,令,故方程有解,故有“巧值()x f x e =()e x f x '=()f x =()f x '()f x 点”;对于C ,,则,令, ()cos f x x =()sin f x x '=-sin cos x x -=则.πππsin cos 00ππ,Z 444x x x x k x k k ⎛⎫+=⇒+=⇒+=⇒=-∈ ⎪⎝⎭∴方程有解,故函数有“巧值点”. ()()f x f x '=()cos f x x =对于D :定义域为,则,而, ()f x ={}|0x x >()f x '0=<()0f x >显然无根,故“巧值点”. ()f x =()f x '()f x =故选:D .二、填空题(本大题共4小题,每小题5分,共20分)13. 椭圆的焦点坐标是___________.22111y x +=【答案】 (0,【解析】【分析】根据椭圆方程可判断焦点位置,并利用之间的关系直接求出,即可求出,,a b c c 焦点坐标.【详解】由知椭圆焦点在轴上,且,22111y x +=y 2222211,1,10a b c a b ===-=故焦点坐标为:, (0,故答案为:.(0,14. 写出一个离心率为___________.【答案】(答案不唯一) 2217y x -=【解析】【分析】根据题意,由双曲线的离心率公式可得,假设双曲线ce a==c =的焦点在轴且,求出双曲线的标准方程,即可得答案. x 1a =【详解】根据题意,要求双曲线的离心率, ce a==c =若双曲线的焦点在轴,令,则,x 1a =c =b ==则要求双曲线的方程为, 2217y x -=故答案为: (其他符合的也对) 2217y x -=15. 已知命题是假命题,则实数的取值范围是___________. []:1,4,4ap x x x∃∈+>a 【答案】 (,0]-∞【解析】【分析】将问题等价转化为,恒成立,利用二次函数的性质即可求解. [1,4]x ∀∈4ax x+≤【详解】命题是假命题, []:1,4,4ap x x x∃∈+>即命题,是真命题, [1,4]x ∀∈4ax x+≤也即在上恒成立, 24a x x ≤-+[1,4]令,22()4(2)4f x x x x =-+=--+因为,所以当时函数取最小值, [1,4]x ∈4x =即,所以, min ()(4)0f x f ==0a ≤故答案为:.(,0]-∞16. 《墨经·经说下》中有这样一段记载:“光之人,煦若射,下者之人也高,高者之人也下,足蔽下光,故成景于上;首蔽上光,故成影于下.在远近有端,与于光,故景库内也.”这是中国古代对小孔成像现象的第一次描述.如图为一次小孔成像实验,若物距:像距,则像高为___________. 236:1,12,cos 32OA OB A OB ∠====''【答案】##1.5 32【解析】【分析】利用余弦定理求得,再根据物距∶像距,即可求得答案. 9AB =61=∶【详解】由 ,则,23cos 32A OB ''∠=23cos 32AOB ∠=又,12OA OB ==则, 2222323228821212813232AB OA OB OA OB +-⨯⨯⨯=-=⨯⨯⨯=即,9AB =又物距∶像距, 61=∶则,即像高为, 1362A B AB ''=⨯=32故答案为:. 32三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. 设函数.2()6,f x ax ax a =-++∈R (1)当时,求关于x 的不等式的解集;1a =()0f x <(2)若关于x 的不等式的解集为,求实数a 的取值范围. ()0f x >R 【答案】(1)或 {|2x x <-3}x >(2) (24,0]-【解析】【分析】(1)由一元二次不等式的解法求解, (2)由题意列不等式组求解, 【小问1详解】当时,,即, 1a =260x x -++<260x x -->即,解得或,(2)(3)0x x +-><2x -3x >所以当时,不等式的解集为或. 1a =()0f x <{|2x x <-3}x >【小问2详解】当时,的解集为,满足题意; 0a =()0f x >R 当时,由,解得, 0a ≠2240a a a ->⎧⎨+<⎩240a -<<综上,实数a 的取值范围是. (24,0]-18. 已知是等差数列,,. {}n a 11a =47a =(1)求数列的通项公式及前项和;{}n a n n S (2)若等比数列满足,,求的通项公式.{}n b 22b a =35b a ={}n b 【答案】(1),21n a n =-2n S n =(2)13n n b -=【解析】【分析】(1)根据条件列出方程求出公差即可得解; (2)根据条件列出方程求出公比,即可得出通项公式. 【小问1详解】设等差数列的公差为, {}n a d 则. 41712413a a d --===-∴,()12121n a n n =+-=-.()21212n n n S n +-==【小问2详解】设等比数列的公比为, {}n b q 由,,可得, 223b a ==359==b a 323b q b ==∴的通项公式为.{}n b 21333n n n b --=⨯=19. 已知函数在处有极值.()325f x x ax bx =-++-1x =-1-(1)求实数的值;,a b (2)求函数在上的最值.()f x []4,2-【答案】(1) 69a b =-⎧⎨=-⎩(2)max min ()1,()55f x f x =-=-【解析】【分析】(1)求出函数的导数,根据题意列出方程,求得的值,可得答案. ,a b (2)求出函数的极值点,求得函数的极值以及区间端点处的函数值,比较可得答案. 【小问1详解】, ()325f x x ax bx =-++- ,()232f x x ax b '∴=-++解得,()()1411230f a b f a b ⎧-=--=-⎪∴⎨-=-+-='⎪⎩69a b =-⎧⎨=-⎩则,()239132(1)(3)f x x x x x =--=-++'-若,则;若,则或,()0f x ¢>31x -<<-()0f x '<3x <-1x >-即函数在处有极大值且极大值为,符合题意,()325f x x ax bx =-++-1x =-1-故:69a b =-⎧⎨=-⎩【小问2详解】由(1)知,,()32695f x x x x =----,()()()23129313f x x x x x ∴=---=-++'若,则;若,则或, ()0f x ¢>31x -<<-()0f x '<3x <-1x >-在上单调递增,在上单调递减,()f x \()3,1--[)(]4,3,1,2---又,()()()()41,35,11,255f f f f -=--=--=-=-.max min ()1,()55f x f x ∴=-=-20. 在三角形中,内角所对的边分别为,ABC ,,A B C ,,a b c cos cos 2sin a C c Ab B+=(1)求;B (2)若为锐角,,BC边上的中线长,求三角形的面积.B 6A π=AD =ABC 【答案】(1)或; 6B π=56π(2 【解析】【分析】⑴利用正弦定理进行边角互换,再结合求出;()sin sin A C B +=B⑵在三角形中利用余弦定理求出边,再利用三角形的面积公式求面积.ACD AC 【小问1详解】在△ABC 中,因为,由正弦定理得cos cos 2sin a C c A b B+=,sin cos sin cos 2sin sin 0A C C A B B +-=所以,即,又因为,所以sin()2sin sin 0A C B B +-=sin (12sin )0B B -=sin 0B ≠, 1sin 2B =因为B 是三角形的内角,所以或. 6B π=56π【小问2详解】因为为锐角,所以,△ABC 为等腰三角形,,在△ABC 中,设AC =BC B 6B π=23C π==2x , 在△ADC 中,由余弦定理得, 222222cos773AD AC DC AC DC x π=+-⋅==解得x =1,所以AC =BC =2,所以, 1sin 2ABC S AC BC C=⋅⋅=A 21. 已知椭圆的左,右焦点分别为. 222:1(1)x C y a a +=>12,F F (1)求椭圆的方程; C (2)椭圆上是否存在点使得?若存在,求的面积,若不存在,C P 12PF PF ⊥12PF F △请说明理由.【答案】(1) 2214x y +=(2)存在,面积为1【解析】【分析】(1)根据椭圆中的关系求解;,,a b c (2)根据可得,联立可求出,进而可求面积. 12PF PF ⊥22003x y +=220022003,1,4x y x y ⎧+=⎪⎨+=⎪⎩0y 【小问1详解】椭圆222:1(1)x C y a a+=>,解得. =24a =椭圆的方程为.∴C 2214x y +=【小问2详解】由(1)知, ())12,F F 假设椭圆上存在点,使得,C 00(,)P x y 12PF PF ⊥则, ())120000,,0PF PF x y x y ⋅=--⋅--= 即,22003x y +=联立解得. 220022003,1,4x y x y ⎧+=⎪⎨+=⎪⎩220081,33xy ==椭圆上存在点使得.∴C P 12PF PF ⊥. 1212011122PF F S F F y ∴==⨯=A 22. 已知函数. ()1mx x f x m=-(1)若,求曲线在处的切线方程;()e e 2.71828m =≈()y f x =1x =(2)若,证明:在上只有一个零点.01m <<()f x ()0,∞+【答案】(1)()e 1e 2e 20x y ---+=(2)证明见解析【解析】【分析】(1)通过求导求得曲线在处的切线斜率,再求切点坐标1x =(1)k f '=(1,(1))f ,点斜式求得切线方程即可;(2)将原函数的零点转化为函数的零点,通过求导判断在()m xg x x m =-()g x ()0,∞+单调,证明其在上只有一个零点.()0,∞+【小问1详解】当时,, e m =()e 1ex x f x =-.()()()()()''e e e 12e e e e e x xx x x x x x f x ---∴='=. ()()1111,11e ef f ∴=-=-'所求切线方程为, ∴()11111e e y x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭即.()e 1e 2e 20x y ---+=【小问2详解】 证明:由,变形可得, ()10mx x f x m=-=0m x x m -=当时,,01m <<0x m >则函数只有一个零点等价于函数只有一个零点, ()1m x x f x m=-()m x g x x m =-可得,()1ln m x g x mx m m -'=-⋅又由,则,01m <<10,ln 0m mx m -><即在上单调递增,()()0,g x g x >'∴()0,∞+又,在上只有一个零点, ()0g m = ()g x ∴()0,∞+即函数在上只有一个零点. ()f x ()0,∞+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 7 页高二数学(文科)上册期末考试题一.选择题:(每小题5分,共50分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( D ) A .30° B .30°或150° C .60° D .60°或120°2.在△ABC 中,AB =5,BC =7,AC =8,则BC AB ⋅的值为( D ) A .79B .69C .5D .-53.在△ABC 中,“A>300”是“sinA>12”的…………………( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.若点A 的坐标为(3,2),F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,则PF PA + 取得最小值时点P 的坐标是 ( C ) A .(0,0)B .(1,1)C .(2,2)D .)1,21(5.一个命题与他们的逆命题、否命题、逆否命题这4个命题中( C ) A. 真命题与假命题的个数相同 B. 真命题的个数一定是奇数C. 真命题的个数一定是偶数D.真命题的个数一定是可能是奇数,也可能是偶数6.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D ) A .椭圆 B .线段 C .双曲线 D .两条射线7.等差数列{}n a 中,10120S =,那么110a a +=( B ) A. 12 B. 24 C. 36 D. 48第 2 页 共 7 页8.若椭圆的短轴为AB ,它的一个焦点为1F ,则满足1ABF ∆为等边三角形的椭圆的离心率是( D )A. 41B. 21C. 22D. 239.等比数列{}n a 中,===+q a a a a 则,8,63232(C )A .2B .21C .2或21D .-2或21-10.已知平面内有一固定线段AB,其长度为4,动点P 满足|PA|-|PB|=3,则|PA|的最小值为 ( D ) (A)1.5 (B)3 (C)0.5 (D)3.5二.填空题:(每小题5分,共20分)11.如果椭圆4x 2+y 2=k 上两点间的最大距离是8,那么k 等于_______________. 16 12.动点 到点 的距离比到直线 的距离小2,则动点 的轨迹方程为________________________.13.与椭圆1251622=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为______________________14522=-x y14.若31<<x ,则22222-+-x x x 的最小值是___________. 1第 3 页 共 7 页高二数学(文科)上册期末考试题一、选择题(每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案 D D B C C D BDCD二、填空题(每小题5分,共20分)11、 16 12、13、 14522=-x y 14、 1三.解答题: (共80分)15.(14分)已知等比数列}{n a 的前n 项和记为,n S a 3=3 , a 10=384. 求该数列的公比q 和通项a n解: 由a 10= a 3q 7 得q 7=128, ∴q=2 ………………………7分又a 3=3得a 1q 2=3 ∴ a 1=43 ………………………10分∴ a n =43×2n-1=3·2n -3…………………………………14分高二( )班姓名: 考号:密封线内不要答题第 4 页 共 7 页16.(14分)抛物线的焦点F 在x 轴的正半轴上,A(m ,-3)在抛物线上,且|AF|=5,求抛物线的标准方程.解:设抛物线的方程为y 2=2px(p>0) , …………………………2分∵A 点在抛物线上,∴(-3)2 =2pm ∴m=p29①, ………………4分又|AF|=5||2=+m P②, …………………………9分 把①代入②可得:.即0910,52922=+-=+p p pp ………………12分∴p=1或p=9 ………………13分∴所求的抛物线方程为x y x y 18222==或………………………14分17. (14分)如图在⊿MNG 中,己知NO=GO=2,当动点M 满足条件sinG-sinN=21sinM 时,求动点M解:∵sinG-sinN=21sinM ,∴由正弦定理,得|MN|-|MG|=21×4.…………………………5分∴由双曲线的定义知,点M 的轨迹是以N 、G 为焦点的双曲线的右支(除去与x 轴的交点). …………………………10分 ∴2c=4,2a=2,即c=2,a=1.∴b 2=c 2-a 2=3. …………………………12分∴动点M 的轨迹方程为:x 2-32y =1(x>0,且y ≠0)………………14分第 5 页 共 7 页18.(13分)记函数f (x )=132++-x x 的定义域为A , g(x )=lg[(x -a -1)(2a -x )] (a <1) 的定义域为B . (Ⅰ) 求A ;(Ⅱ) 若B ⊆A, 求实数a 的取值范围.解:(Ⅰ)()x f 的定义域满足不等式2-13++x x ≥0, …………………2分得11+-x x ≥0, x <-1或x ≥1 …………………………6分 即A =(-∞,-1)∪[1,+ ∞) …………………………7分(Ⅱ) 条件B ⊆A 表明,集合B 是集合A 成立的充分条件,首先要求出集合B .由(x -a -1)(2a -x )>0, …………………………9分得(x -a -1)(x -2a)<0.∵a <1, ∴a +1>2a ,∴B =(2a ,a +1). …………………………11分 ∵B ⊆A , ∴2a ≥1或a +1≤-1,即a ≥21或a ≤-2, 而a <1,∴21≤a <1或a ≤-2, …………………………12分 故当B ⊆A 时, 实数a 的取值范围是(]1,2,12⎡⎫-∞-⎪⎢⎣⎭.…………………………13分19.(13分)已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈ (I )证明:数列{}1n n a a +-是等比数列;(II )求数列{}n a 的通项公式;(I )证明:2132,n n n a a a ++=-21112*2112(),1,3,2().n n n n n n n na a a a a a a a n N a a ++++++∴-=-==-∴=∈-第 6 页 共 7 页………………………7分{}1n n a a +∴-是以21a a -2=为首项,2为公比的等比数列。

……………………8分(II )解:由(I )得*12(),n n n a a n N +-=∈……………………10分112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+12*22...2121().n n nn N --=++++=-∈……………………………………13分20.(12分)已知抛物线y 2=4ax(0<a <1)的焦点为F ,以A(a+4,0)为圆心,|AF |为半径在x 轴上方作半圆交抛物线于不同的两点M和N ,设P 为线段MN 的中点.(1)求|MF |+|NF |的值;(2)是否存在这样的a 值,使|MF |、|PF |、|NF |成等差数列?如存在,求出a 的值,若不存在,说明理由. 解:(1)F (a ,0),设),(),,(),,(002211y x P y x N y x M ,由{16)4(4222=+--=y a x axy0)8()4(222=++-+⇒a a x a x ,…………………………3分)4(2,021a x x -=+∴>∆ ,8)()(21=+++=+a x a x NF MF …………………………6分 (2)假设存在a 值,使的NF PF MF ,,成等差数列, 即21022x x x NF MF PF +=⇒+= a x -=⇒40 ①, ………………………8分 ∵P 是圆A 上两点M 、N 所在弦的中点,∴MN AP ⊥1212004x x y y a x y --=--⇒, …………………………10分 由①得:0448422220022122112120<-=⇒-=+-=+⨯-=---=a y y a y y a y y a a x x y y a y ,这是不可能的. …………………………11分第 7 页 共 7 页∴假设不成立.即不存在a 值,使的NF PF MF ,,成等差数列. …………………………12分。

相关文档
最新文档