多级离心泵振动原因分析及对策

合集下载

离心泵振动超标原因分析与对策

离心泵振动超标原因分析与对策

离心泵振动超标原因分析与对策摘要:针对离心泵振动故障问题,结合设备结构特点,从轴承状态、联轴器对中、零部件检查及轴向力平衡等方面对离心泵振动故障进行排查分析,确定离心泵振动超标原因,并通过各项优化,使泵振动从不允许运行状态转至良好状态,消除了设备运行设备隐患。

关键词::离心泵;振动;原因分析;对策引言机泵作为化工行业中的主体设备,其良好运行状态是装置长周期运行的重要保障,但在实际运行过程中,机泵故障时有发生,其中振动就是常见的故障之一,且具有复杂性、多样性。

在日常维护中,离心泵轴向、径向振动值超标情况时有发生,如不及时处理,进一步引发轴承损坏、密封泄漏等故障,一方面影响设备自身安全运行,另一方面对企业稳定生产造成造成一定的影响。

因此,消除设备运行隐患,才能保障装置的长周期运行。

1 离心泵振动超标存在的危害按照离心泵振动热烈度评定等级划分,通常将离心泵划分为4个区域,分别是A区域、B区域、C区域和D区域,其中A区域属于优秀状态,B区域属于合格状态,C区域属于不合格状态,D区域属于不允许状态。

当离心泵在C区域或者D区域时,将会出现振动超标问题。

离心泵振动超标的危害主要表现在以下几个方面:(1)离心泵无法正常运作;(2)发生管路振动或者电机振动影响离心泵使用寿命;(3)带来机封损害问题、轴承损害问题以及油封损害问题等;(4)出现地脚螺栓松动情况、滤器损坏情况等;(5)带来一定噪声污染,影响工作人员身心健康;(6)严重情况下会对设备造成损伤问题或者损害问题。

因此,要有效控制离心泵振动问题,采取相应的预防措施,将振动控制在合理范围内,确保离心泵安全稳定运行。

2振动原因分析引起离心泵振动的原因通常伴随多重因素、多种原因的叠加共同作用而发生。

为确定离心泵的振动原因,结合离心泵结构,按照从外到内、从易到难的故障处理原则,对泵的运行工况、轴承状态、轴向力平衡、联轴器对中等8个方面进行全面排查分析[3]。

2.1泵轴原因轴泵是造成离心泵超标振动的一个重要原因,主要表现在以下两个方面。

离心泵振动常见原因分析及预防措施

离心泵振动常见原因分析及预防措施

高速离心泵,尤其需要注意在流量为40到60m 3/h 且扬程低于800m 时需要选用多级泵[1]。

通过速度系数法设计离心泵流程模型,以寻找泵体在流水线上的最优运行方案。

在叶轮方面通过水力损失判断具体的容积效率,从而找到最合理的离心泵比转速。

(2)液体通道结构。

液体通道结构包括出口阀门、液体吸入端口和出口管道,在这三个方面的设计需要保证出口阀门的面积能够有效处理气体的理论数值,确保泵内压强符合生产需要。

液体吸入端要配备滤网等结构,避免发生堵塞,保障端口畅通。

由于离心泵内存在理论的气体残留量,所以在出口管道方面的设计要尽量减少压强波动,将排气部位设置在较为适合空气流通的位置。

(3)轴承与联轴器需要保持相对的稳定,避免在运行时不同心的情况,应当注意到扭矩在电机与泵体之间的传递足够稳定。

防止联轴器发生磨损的部件也要配备到位,确保及时更换,使得其结构设计能够发挥离心泵的功能。

2.2 保障离心泵的工程结构和材料质量离心泵的材料质量尤为关键,离心泵轴的刚性如果不达标,就会发生传动轴与静止物件的碰撞,进而造成离心泵振动。

同样的,如果离心泵轴的材料结构不合理,也会导致离心泵由于轴底结构承压不均匀而发生振动。

在最基础的离心泵泵体架构方面,泵体高速运转中的驱动装置架需要保证其形态的稳定,从基础地脚螺栓到整体离心泵基础,都需要保证其刚性达到离心泵运行需要。

在离心泵的基础以及泵支架方面考虑刚性,能够有效处理离心泵振动情况。

联轴器的结构与材料质量同样影响这离心泵振动情况,为此要调增离心泵联轴器的周向间距,保持轴体的对称性,并且维持联轴器的平衡水平来解决离心泵振动。

离心泵自身运行时如果产生不对称的压强环境也会导致离心泵震动,所以在工程结构上要维持液体流动条件的对称,叶轮结构需防止出口压力不均匀造成液体漩涡,降低液体回流,以一定的叶片倾斜度来处理脉冲压力。

由于石油化工的生产特点,需要针对性地解决液体腐蚀情况,通过加厚离心泵体的密闭层厚度,可以根据相应材料技术的发展为离心泵内的各种隔离部件增添新材料。

离心泵振动超标原因分析与对策

离心泵振动超标原因分析与对策

离心泵振动超标原因分析与对策发布时间:2022-09-25T08:10:27.595Z 来源:《科学与技术》2022年第10期5月作者:王兆华刘江松鲁宪华[导读] 由于离心泵设备结构简单、流量均匀、运行稳定可靠、检修方便等特点,广泛应用于乙烯工业生产,具有理想的应用效果王兆华刘江松鲁宪华大港油田第二采油厂摘要:由于离心泵设备结构简单、流量均匀、运行稳定可靠、检修方便等特点,广泛应用于乙烯工业生产,具有理想的应用效果。

乙烯工业生产过程中,仪器设备的连续性要求较高,需要注重在线设备运行的安全性和稳定性。

因此,积极开展离心泵振动故障的诊断和处理十分重要。

本文主要分析离心泵振动超标原因分析与对策。

关键词:离心泵;振动;原因分析;对策引言机泵作为化工行业中的主体设备,其良好运行状态是装置长周期运行的重要保障,但在实际运行过程中,机泵故障时有发生,其中振动就是常见的故障之一,且具有复杂性、多样性。

中化泉州石化有限公司汽油加氢装置新氢压缩机冷却水泵自投用以来时常出现电机、泵轴向振动值超标情况,并进一步引发轴承损坏、密封泄漏等故障,一方面影响设备自身安全运行,另一方面该泵为机组冷却系统的动力设备,频繁故障对机组平稳运行造成一定的影响。

因此,消除设备运行隐患,才能保障装置的长周期运行。

1、离心泵振动故障类型分析离心泵振动缺陷类型有:转子不平衡或不正确、轴明显弯曲、转子支承件连接松动、移动机械密封件摩擦、轴承件各种故障等。

这些缺陷反映了一个重要特征,即机器存在异常振动现象,伴随着明显的噪音。

离心泵振动信号可以对时域和频域离心泵故障信息作出反应,其中时域主要是离心泵实际工作状态的问题,频域主要是离心泵设备故障类型,具体部分因此,在离心泵振动缺陷分析中,频谱分析方法应用频率较高,故障类型如下:(1)转子不平衡:离心泵转子不平衡主要反映在转子水平振动与垂直振动90的相位差上。

(2)转子轴耦合异常现象:如果轴耦合异常现象平行发生,振动频率将为双频。

离心泵振动常见原因分析及预防措施

离心泵振动常见原因分析及预防措施

离心泵振动常见原因分析及预防措施离心泵主要由泵体、泵头、支架、泵轴、联轴器、叶轮、轴承、机封或盘根等零部件组成,振动是评价离心泵运行可靠性的一个重要技术指标,引起机泵振动的因素较多,通常包括离心泵转子动态不平衡,泵轴同轴度偏差大及对中不好,地脚螺栓未完全紧固,各零部件装配间隙不当产生碰擦,管道附加与残余应力作用,工艺操作波动或抽空等,各种因素可能单一作用于机泵上,也可能多种因素组合作用于机泵上,其引起振动现场和振动大小也不相同,需要及时采取措施,使其运行在可靠的允许振动范围内,将对机泵的损害降到最低。

标签:离心泵;联轴器;不稳定工况;振动引言:在离心泵日常应用过程中,振动作为其不稳定工况,会损耗或损坏机泵泵体、支架、泵轴、机封、轴承及油封等相关零部件。

分析离心泵常见振动问题,在振动初期及时发现并采取相应的预防措施,实现离心泵长周期稳定运行。

1.离心泵振动超标的危害根据SHS01003—2004《石油化工旋转机械振动标准》,可将离心泵振动烈度评定等级划分为4个区域,即A,B,C,D,A区为优秀状态,B区为合格状态,C区为不合格状态,D区为不允许状态,当离心泵振动到达C区和D区时,将会出现振动超标,并对机泵产生一定危害。

①导致离心泵不能正常运行;②引起管路或电机振动,影响其寿命;③造成机封、轴承或油封等损害;④使地脚螺栓、联轴器螺栓等松动;⑤造成基础裂缝或破损;⑥造成管路阀门、滤器等损坏;⑦产生噪声,损害员工身心健康;⑧严重时,会造成设备损伤或损坏。

2.离心泵振动原因分析2.1泵轴原因(1)离心泵转子轴多为带多级台阶的细长直轴,其运行挠度较大,易出现局部刚度不足和整体同心度偏差大等情况,引起泵轴和轴承、直口等部位碰磨,产生振动。

(2)叶轮和转子的重量附加在泵轴上,当机泵长时间停车时,使泵轴受一个方向作用力,引起泵轴弯曲,再次使用时,叶轮、轴承及泵轴等传动部件会出现动态不平衡,使叶轮与泵体和隔板发生摩擦,便会出现不同程度的振动。

多级离心泵振动原因分析及解决办法

多级离心泵振动原因分析及解决办法

多级离心泵振动原因分析及解决办法胡桂清;王兵和;陈存利;王永祥;刘炎【摘要】对多级离心泵的异常振动原因进行查找分析,将止推间隙、平衡盘问隙,叶轮口环与泵体口环导叶口环之间的间隙做了合理的调整,密封腔直口与泵体的同心度,首级叶轮壳体腐蚀严重穿腔,进行补焊处理,对泵体产生振动的原因进行简单的阐述,并提出有针对性的解决方法,最终使泵达到良好的运行状态.%Abnormal vibriation reasons of multistage centrifugal pumps were analyzed, then some measures were carried out, such as rationally adjusting the clearance of thrust, clearance of balance disk, clearance between impeller ring and pump mouth ring, checking concentricity between direct export of seal cavity and pump body, welding the place where breakage happened in the first stage impeller casing because of severe corrosion. At last, the pumps can run very well.【期刊名称】《当代化工》【年(卷),期】2012(041)006【总页数】3页(P651-652,660)【关键词】多级离心泵;振动;间隙;同心度【作者】胡桂清;王兵和;陈存利;王永祥;刘炎【作者单位】中国石油抚顺石化公司,辽宁抚顺1130004;中国石油抚顺石化公司,辽宁抚顺1130004;中国石油抚顺石化公司,辽宁抚顺1130004;中国石油抚顺石化公司,辽宁抚顺1130004;中国石油东北化工销售抚顺分公司,辽宁抚顺113008【正文语种】中文【中图分类】TQ051辽宁省抚顺市乙烯化工厂乙二醇车间乙二醇工段冷凝液循环.泵由美国英格索兰设计制造,为多级离心泵,型号 3x9-7,流量 45 m3/h,扬程 416m,级数7级,转数 2 975 r/min。

多级立式离心泵振动高问题解决方法及应用

多级立式离心泵振动高问题解决方法及应用

多级立式离心泵振动高问题解决方法及应用摘要:我国经济水平和科技水平的快速发展,泵设备在运行过程中的振动状况,一方面,除了与泵本身的设计制造质量有关外,还与客户的使用条件好坏直接相关,只有双方都具备了所需的良好条件,才可能取得好的运行效果。

因为对泵设备振动影响因素多而复杂,涉及到泵本身设计、制造、使用及维护等多方面,作为泵设备的设计制造企业,泵设计工程师们往往不知道客户的详细安装使用情况,而泵设备使用单位对泵自身的技术细节也往往缺乏深入了解,因此经常产生因对对方要求条件缺乏了解而导致的泵系统振动值偏大问题。

如果供需双方能够对影响泵设备及系统振动因素的认知相通,无疑对所选用泵设备的安全使用是一件十分有益的工作。

关键词:泵系统;振动;影响因素引言离心泵转动时,电动机通过泵轴带动叶轮高速旋转,从而使进入叶轮中的介质随着旋转产生离心力。

在离心力的作用下,介质从叶轮中心甩向叶轮周围。

介质进入泵壳内,速度能转化为静压能,从泵出口排出。

介质被叶轮甩出,叶轮中心形成低压,与吸入口形成压差,在压差作用下,介质从吸入口连续不断地进入叶轮。

1油田离心泵分析油田离心泵设备的组成部分主要就是叶轮结构、轴和轴承的结构、泵壳结构、轴封装结构和密封环结构。

其中叶轮属于油田离心泵在运行过程中产生离心力非常主要的构件,同时也是支持油田离心泵对液体做功的重要部件,当前在油田离心泵方面可以应用的叶轮款式较多,较为常见的是开式类型和半闭式类型2种,开式类型的叶轮在应用期间所运输的液体颗粒杂质多,运行的效率较低,而半闭式类型的叶轮,运行功率较高,多应用在含有固体杂质类型的液体运输中。

另外,全封闭类型的叶轮虽然应用效率极高,但是只能进行纯净液体的运输,很少在油田离心泵中应用。

轴与轴承属于十分重要的连接构件,用来进行联轴器部分和叶轮部分的连接,两端和叶轮、联轴器分别相连,主要涉及到滚动类型和滑动类型2种轴承;泵壳是油田离心泵运行期间非常重要的压力负荷部分,目前在油田离心泵设备中主要采用径向剖分类型、轴向剖分类型2种,而多级泵设备和单级泵设备存在很大的差异,多级泵的形状是圆形或是环形,单级泵的形状是蜗壳形,当前在油田生产期间经常应用的是单级泵;轴封的部分是油田离心泵非常重要的辅助设施,功能在于有效预防泵内的气体泄漏或者是外界的空气进入设备内;密封环部件在泵壳与叶轮盖板的区域,功能在于预防设备内部液体泄漏,且密封环部件具有一定的耐磨性能,主要原因就是油田离心泵设备中普遍采用耐磨性能较高的密封环。

多级离心泵振动原因分析及对策

多级离心泵振动原因分析及对策

多级离心泵振动原因分析及对策摘要:论文对使用中多级离心泵的振动原因进行分析,确定了相应的解决方案,并有效实施,是现场设备安装问题的一次总结。

关键词离心泵振动原因分析对策1 概述长庆兴隆园直燃机房的热水循环泵为多级离心泵,型号MY40.35×6,流量m3/h,扬程209m,级数6级,转数2950r/min。

该泵投用一年半,经常出现泵体振动,最初以为是机泵密封环磨损造成的,多次检查和更换磨损零件后,问题依然得不到根本性解决,且主备用泵都出现同一症状。

2 泵体振动的原因分析2.1 泵在运行之前未进行充分预热在运行之前未对泵体进行充分预热,当高温液体进入泵体后,转子马上受热,由于转子尺寸小,直径只有40mm,又是四周受热,因此比定子受热要快的多。

转子在静止状态下受热,由于主轴向上、下受热不均匀,会使主轴产生一个向上弯曲的热变形,加大转子不平衡的离心力,使转子和定子径向间隙减少,在转子热挠度较大时,动静部分径向间隙可能消失,转子在旋转时与定子可能发生摩擦,从而导致泵体本身的强烈振动.2.2 机泵出口经常性完全关闭导致泵体气蚀液体的温度越高,挥发性越大,饱和蒸汽压越高,导致液流低压区某点的压力不必降低到很低时,泵就会产生气蚀。

此循环泵出口有两股管线,当甲醇饱和热水塔内液位满足工艺要求时,LV102就处于关闭状态,而另一股送往合成车间冷凝液汽提塔的补充液也要求不能输送。

此时必然造成泵体内的流体随着转子的运转,压力温度都随之增高,从而大大增加了泵体气蚀的可能性。

在以后的泵体维修中发现泵体机械密封动静环接触面出现大量的点蚀面充分说明了这一点。

2.3 口环间隙过小口环间隙设定合理,可以使盘车轻松,避免转子和定子在泵的启停运行过程中发生碰撞,更为重要的是确保泵运行时的正常流量与压力。

影响泵口环间隙设定的因素包括轴的挠度、隔板止口间隙、温升导致的热膨胀、转子晃动量及间隙余量等。

泵的静挠度一般在0.2~0.3mm,动挠度一般在0.05~0.08mm,而新隔板止口间隙一般要求在0~0.01 mm。

多级离心泵振动故障诊断分析及处理研究

多级离心泵振动故障诊断分析及处理研究

多级离心泵作为关键的能量转化装置和流体输送装置, 它的使用给人们带来了便捷,但如果出现设备故障则会影响 生产,严重的还会污染环境或造成人员伤亡。多级离心机出现 故障的主要信号为异常振动,通过振动测试仪可以及时发现故 障。多级离心泵的整体结构复杂,如果使用的材料不匀、装配 不齐、加工误差等因素都会引起振动。顺利的对振动故障进行 分析诊断并处理并不容易。下面对炼油厂球罐装置P-2/1进行研 究,分析出故障并解决振动超标的问题,对类似的装置的振动 故障具有一定参考意义。
动故障是由于泵体内部的转子和静止部分存在摩擦导致的。
3 故障原因 由泵体的故障细节可以得出,转子和静止部件出现摩擦
的原因和首级叶轮的材料有较大的关系。现场的观察和研究发 现,该泵体上一次的运行周期为7天,一直有不能长时间运作的 情况,远不及该泵体18个月的维修周期。
经过对泵体的内部检查发现,叶轮口环的间歇经过磨损产 生的缝隙从上到下逐渐加大,间距为0.8~2.5mm,超过该装置的 装配间隙的标准距离0.5~0.6mm。底端的首级叶轮和口环在多级 离心泵中的主要作用是承担径向的冲击力,这样产生故障的问题 基本定位在首级叶轮和口环上。经过检查发现,口环制作材料为 磷青铜。根据API 610 标准的C-6的要求,口环的材料应该为低于 叶轮50个硬度。磷青铜材料符合要求,排除口环的问题,导致多 级离心泵振动故障的原因只有首级叶轮的材料。
经过对离心泵的出厂资料阅读审查,发现叶轮口环的原始 设计材料应该为SS304不锈钢[3]。现场对离心泵的首级叶轮拆检 发现制造材料为普通碳钢,分析研究确定离心泵振动的原因为 首级叶轮的材料不符合标准,导致表面的耐磨性无法达到设备 的使用要求。经过现场询问以及厂家回复,为了降低成本,将 叶轮口环的材料降级为普通碳钢,没有确认该泵体所传输的介 质液化气,导致磨损不达标。厂家建议可以将普通叶轮的表面 进行镀铬处理,进而提升耐磨度。通过进行磨合实验,得出SS 普通不锈钢的摩擦因数约为1.06,镀铬层的摩擦因数约为0.55, 镀铬层的摩擦因数明显小于普通碳钢材料,耐磨性更好。厂家 建议可以采用。

离心泵机组振动过大的原因及解决措施

离心泵机组振动过大的原因及解决措施

离心泵机组振动过大的原因及解决措施天津市300450摘要:在管道输送中通常使用离心泵作为原油输送的动力源,是管道输送中的“心脏”。

在离心泵运行过程中会产生一定的振动和噪声,振动是评价泵机组运行可靠性的一个重要指标,影响泵机组的正常运转,同时长期处于超过听力保护标准的环境中听觉疲劳难以恢复,持续累积可使听阈由生理性转变成不可恢复的病理过程。

本文针对探索造成离心泵振动超标的原因有哪些,是否与设计构造、施工安装、工艺操作以及运行维护等方面因素有关,根据原因并找到更好地预防或减少振动超标的方法,从而保障设备的安全。

关键词:离心泵;振动;原因;措施一、离心泵机组振动超标原因分析1、设计制造设计制造环节出现的问题是离心泵振动超标的根本原因,也是最不能忽视的。

叶轮是离心泵最主要的部件,它将机械能传递给液体,使液体获得动能。

叶轮在设计制造过程中质量控制不好,如:加工精度不合格、叶轮口环和泵体口环之间以及级间衬套不合格等原因都会使叶轮偏心,从而造成振动超标。

2、安装施工在安装时如果没有良好的泵基础,就算是安装上也难免会在后期运行时产生较大的振动。

还要保证地脚的螺栓固定良好,因为离心泵会通过地脚的螺栓固定在地上,一旦地脚螺栓固定不稳,就会使泵体得不到良好的固定。

与此同时还要保证垫铁的厚度合适,使泵体在运行时保持平衡。

除此以外,泵的进出口都要与管线对齐,一旦进出口与管线不在同一水平线,管线与泵机组将产生共振现象。

3、同轴度差在安装过程中离心泵的泵体与电机是通过联轴器来联系的,联轴器的安装对泵体和电机之间的同轴度要求很高,如果联轴器不对中,在运行过程中会造成离心泵振动过大。

4、轴弯曲变形轴是离心泵转子中重要的部件,它不仅作为扭矩的传输,而且在轴上有很多的零部件。

在泵轴的运转过程中,有可能会有不平衡量增大的情况发生,造成这一情况的原因主要是泵轴发生弯曲变形。

在泵轴的运输和安装过程中也需要特别注意,尤其是对于某些长度较长的泵轴,极易发生弯曲。

多级离心泵振动、泄漏的原因及处理措施

多级离心泵振动、泄漏的原因及处理措施

多级离心泵振动、泄漏的原因有哪些?下面专业的水泵厂来给你分析一下原因:1.多级离心泵存在较大轴向推力每次检修拆开检查平衡盘,都发现其表面被擦伤,多为轴向推力过大而造成的。

多级离心泵的轴向推力比单级离心泵大得多,如果设单级叶轮的轴向推力为FA,对同样尺寸的多级离心泵叶轮,其级数为i,则总的轴向推力为iFA,多级离心泵的轴向推力可在几十kN,甚至上百kN。

它的轴向推力的平衡方法是采用平衡盘,其结构如图1。

离心泵正常工作时,末级叶轮出口处压力P2通过径向间隙b后,泄漏到平衡盘中间室的液体压力降到平衡盘前的压力P1,液体再经过轴向间隙,压力降为P0,在平衡盘两侧由于压力差P1-P0的存在,作用在相应的有效面积上,便产生了与轴力方向相反的平衡力-FA。

若因负荷的变化使轴向推力增大,当作用在平衡盘上的平衡还未改变时,轴向推力将大于平衡力,转子便朝吸入侧位移一段微小距离。

此时,轴向间隙减小,泄漏的液体量将会减小。

而径向间隙b是不变的,当泄漏量减小时,阻力损失减少,平衡盘前的压力P1升高。

同时泄漏量减少也会使平衡室内的压力P0下降。

这样在平衡盘两侧的压力差增大,平衡力增加。

直到轴向间隙b0减少到使平衡力与轴向推力相等为止。

反之亦然。

多级离心泵振动、泄漏的原因及处理措施2.叶轮密封环间隙的影响检查中发现,叶轮的密封环间隙磨损较为严重,检修规程要求控制在0.3~0.44mm,而实际多数已达到1mm以上,有的间隙甚至有2mm。

当密封环的间隙变大后使叶轮前盖板与泵腔内产生了径向流动,当有径向流动时,会改变泵腔内的压力分布,使前泵腔中液体压强减小。

这是因为叶轮出口压力不变,液体在流动中必然产生附加压力。

于是增大了轴向力。

8个叶轮的密封环间隙都有较大磨损,单个叶轮的轴向推力也都增大了,而整台泵的轴向推力是8个叶轮轴向推力的迭加。

而且导叶轮与叶轮之间的间隙也磨损增大,又进一步增大了轴向推力。

整个轴向推力增大后,以前平衡盘的结构就不能完全抵消轴向推力了。

离心泵振动原因分析和解决方案

离心泵振动原因分析和解决方案

离心泵振动原因分析和解决方案作者:张永哲来源:《科学与财富》2018年第24期摘要:在炼油化工生产装置中,较为常用的一项设备就是离心泵,其发挥着运输流体的作用。

但是在运行过程中常常会出现振动故障,为此,本文首先对离心泵振动的原因进行分析,并在此基础上探讨其有效的解决方案,希望能对广大同行有所助益。

关键词:离心泵;振动;原因;解决;方案一、离心泵振动的原因分析(一)机械方面原因第一,转子质量分布不均。

转子质量分布不均极易导致轴承不平衡,一旦启动离心泵,如若轴承受力不对称就会出现小幅振动,而一旦转速不断加大,直至其大过规定限额后,其振幅便会大大增加。

一些离心泵,因为使用时间过长,部分轴承转动零件以及叶轮出现严重老化,或是离心泵其内部产生腐蚀或磨损,而导致该类现象出现的原因归根究底在于转子质量不对称,进而导致离心泵出现震动故障。

由于该问题引发的振动故障往往具有较大的破坏性,所以一旦出现该类故障则需要立即将转子更换,且校验校正下一步的平衡性,进而将振动源彻底消除。

第二,离心泵机组中心不正。

在离心泵中,一个重要动力构件就是其机组,如若机组中心不正,则必定会导致在转动时机组振动的产生,且符合不断增加,随之而造成的振动频率与幅度也会不断变大。

归纳来说,导致该问题出现原因主要在于以下几点:一是离心泵质量不达标,一些机组做工质量低劣,在实际安装时没能正确校正位置;二是前后轴瓦不对称或轴承磨损。

由于机组中心不正而导致的振动,需要对离心泵的运行参数进行细致检测,且合理调配离心泵的性能,防止出现振动情况。

三是联轴器不对正。

在离心泵中一个关键部位就是联轴器,在安装离心泵时,如若连接螺栓相应精度不准或是联轴器不同心均会导致离心泵轴承与原动机轴承不在相同水平线上。

一旦启动离心泵,便会产生振动故障。

如若是联轴器不对正,则会在刚开始运行离心泵时产生较小振动,而通过较常时间运行,就会由于基础下沉或地脚螺栓松动垫板移动而导致泵中心偏移,进而引发振动。

离心泵振动原因分析及整改措施

离心泵振动原因分析及整改措施

离心泵振动原因分析及整改措施摘要:离心泵在电站输水、生活用水等工农业生产和人民日常生活中发挥着重要作用。

如果离心泵出现异常振动,不仅影响运转效率,甚至容易导致事故。

文章主要对造成离心泵振动的因素进行详细分析,并针对水力、机械、电气三方面提出离心泵振动防治技术。

另外结合某离心泵机组实际,通过对离心泵关键监测点进行振动测试和分析,发现其出现振动的主要因素是水力脉动,通过将离心泵进口半螺旋型优化为直流道型,并进行受力仿真模拟验算及实际测试,验证了优化后的离心泵的振动幅值显著下降,符合规范要求。

关键词:离心泵;振动原因;整改措施引言离心泵是炼厂不可缺少的转动设备动力设备,离心泵的运行状态决定了泵能否安全稳定地长周期运行,进而决定整个装置是否能够平稳运行。

离心泵在运转过程中轴承位置的振动值一般采用速度有效值来表示,单位mm/s。

轴承座的振动标准执行ISO10816—3或者GB/T6075.3等相关标准。

1振动故障的原因分析1.1结构问题多级离心泵的叶轮、轴承和机壳等部件的质量和精度直接影响到离心泵的运行状态。

如果这些部件存在缺陷、磨损或损坏等问题,会引起离心泵的不平衡现象,继而引起离心泵振动。

当离心泵内部部件存在缺陷、磨损或损坏等问题时,叶轮的重心位置就会发生变化,使得叶轮失去平衡状态,从而导致离心泵内部产生不平衡力,这些不平衡力会引起离心泵的振动,进而影响设备的正常运行。

同时,轴承损坏也会导致轴的偏心和振动,增加离心泵的摩擦和磨损,进而使离心泵的振动问题更加严重。

因此,离心泵的叶轮、轴承和机壳等部件的质量和精度对于离心泵的稳定运行至关重要。

1.2汽蚀离心泵在运转中,在过流区域的局部,液流的绝对压力低于当时温度下的汽化压力时,液体开始汽化,形成气泡。

这些气泡随液流流动到高压处,周围的高压液体使气泡急剧地变小以至破裂,同时周围液体将高速填充空穴,发生互相撞击而形成水击,这一过程称为汽蚀。

1.3运行环境恶化比较常见的是泵未在设计流量下运行,即偏流量(小流量)运行。

离心泵振动故障分析及排查措施

离心泵振动故障分析及排查措施

离心泵振动故障分析及排查措施摘要:离心泵广泛应用于炼化、采油、电力、冶金等行业中,它运行状态的好坏,直接影响环保和生产等安全工作,加强对其维护与管理,防止设备发生事故,具有十分重要的意义。

随着工业的发展,新时期对设备的检、维修工作提出了更为严格的要求。

关键词:离心泵;故障诊断;设备维护1 离心泵振动的原因分析1.1 机械方面原因第一,转子质量分布不均。

转子质量分布不均极易导致轴承不平衡,一旦启动离心泵,如若轴承受力不对称就会出现小幅振动,而一旦转速不断加大,直至其大过规定限额后,其振幅便会大大增加。

一些离心泵,因为使用时间过长,部分轴承转动零件以及叶轮出现严重老化,或是离心泵其内部产生腐蚀或磨损,而导致该类现象出现的原因归根究底在于转子质量不对称,进而导致离心泵出现震动故障。

由于该问题引发的振动故障往往具有较大的破坏性,所以一旦出现该类故障则需要立即将转子更换,且校验校正下一步的平衡性,进而将振动源彻底消除。

第二,离心泵机组中心不正。

在离心泵中,一个重要动力构件就是其机组,如若机组中心不正,则必定会导致在转动时机组振动的产生,且符合不断增加,随之而造成的振动频率与幅度也会不断变大。

归纳来说,导致该问题出现原因主要在于以下几点:一是离心泵质量不达标,一些机组做工质量低劣,在实际安装时没能正确校正位置;二是前后轴瓦不对称或轴承磨损。

由于机组中心不正而导致的振动,需要对离心泵的运行参数进行细致检测,且合理调配离心泵的性能,防止出现振动情况。

三是联轴器不对正。

在离心泵中一个关键部位就是联轴器,在安装离心泵时,如若连接螺栓相应精度不准或是联轴器不同心均会导致离心泵轴承与原动机轴承不在相同水平线上。

一旦启动离心泵,便会产生振动故障。

如若是联轴器不对正,则会在刚开始运行离心泵时产生较小振动,而通过较常时间运行,就会由于基础下沉或地脚螺栓松动垫板移动而导致泵中心偏移,进而引发振动。

第四,支撑部件出现故障。

离心泵的稳定运行离不开支撑部件的支持,防止因为地基下沉等因素而降低离心泵的运行效率。

离心泵的振动原因及处理措施

离心泵的振动原因及处理措施

THANKS
感谢您的观看
振动对离心泵的影响
振动对设备的影响
长期振动会导致离心泵的零部件松动 、磨损和疲劳失效,降低设备的使用 寿命和性能。
振动对操作的影响
过大的振动会影响离心泵的操作稳定 性,可能导致流体流量和压力波动, 影响工艺流程和产品质量。
02
离心泵振动原因分 析
机械原因
转动部件不平衡
由于制造或材料缺陷,离心泵 的转动部件(例如叶轮、轴等 )可能存在不平衡,导致振动
05
结论与展望
结论
要点一
离心泵的振动原因
已确定离心泵的振动原因主要包括安装和调试问题、运行 中的机械故障、电气故障、管道系统问题等。其中,安装 和调试问题包括泵与电机的对中不良、地脚螺栓松动等; 机械故障包括轴承、齿轮、叶轮等部件的磨损或损坏;电 气故障包括电机运行异常、变频器故障等;管道系统问题 包括管道支撑不当、管道应力传递等。
离心泵的振动原因及 处理措施
汇报人:
日期:
目录
CONTENTS
• 引言 • 离心泵振动原因分析 • 离心泵振动处理措施 • 案例分析与实践 • 结论与展望
01
引言
离心泵的概述
离心泵的工作原理
离心泵是利用叶轮旋转时产生的 离心力将流体吸入,通过增加流 体的速度和压力后将其排出。
离心泵的种类
离心泵根据不同的应用需求有不 同的类型,如单级离心泵、多级 离心泵、管道离心泵等。
对未来工作的展望和思考
加强人员培训和管理
为了确保离心泵的稳定运行,应加强操作人员和管理人员的培训和管理。培训内容包括离心泵的基本 原理、操作规程、维护方法等;同时,应建立完善的管理制度,明确岗位职责和工作流程,确保设备 的正确使用和维护。

离心泵振动原因分析和解决方案

离心泵振动原因分析和解决方案

离心泵振动原因分析和解决方案篇一:浅谈离心泵的结构、原理及振动的原因及处理浅谈离心泵的结构、原理及振动的原因及处理【摘要】目前,油田注水所用的注水泵机组分为离心泵和往复泵机组,其中离心泵使用广泛,流量在5-30000立方米每小时,扬程在8-4000米的范围内。

离心泵液体是连续流动的,所以离心泵排量均匀,压力平稳。

维修工作量少,特别是离心泵的排量可用出口闸门来调节,比往复泵相比方便很多,正是由于这些优点,所以离心泵在油田开发生产中得到广泛发展和应用。

为了确保生产任务的顺利完成,延长设备的使用寿命,我们注水泵工必须了解离心泵的结构、原理及出现故障的处理方法,以便更好的服务生产。

【关键词】离心泵振动处理1 多级离心泵的工作原理泵内灌满液体后,在原动机的带动下,叶轮高速的旋转,叶轮带动液体高速旋转。

产生离心力,液体受离心力的作用高速甩出,高速甩出的液体经过泵壳流道,增大压力,降低速度,最后进入排出管,当液体甩出的同时,中轮的中心形成低压或真空,与外界形成夺差,在大罐液柱压力的作用下,液体被压入叶轮的进口,于是旋转着的叶轮就连续不断地吸入和排出液体。

2 多级离心泵的组成离心泵的结构形式很多,作用原理都是相同的,所以主要零部件的形状是相近的,离心泵有六大部分组成:转动部分、泵壳部分、密封部分、轴承部分、传动部分、平衡部分。

下面对各部分的作用、构造及材质作一简单介绍。

转动部分包括:叶轮,叶轮是离心泵的最重要的零件,由前盖板、后盖板,轮鼓叶片组成。

它是把泵轴的机械能传给液体使其变成液体的压能和动能,泵的流量、扬程、效率都和叶轮的形状、尺寸的大小及表面粗糙度有着直接密切的关系,一般叶轮的外径越大,流道越窄产生的压力就越高,流道越粗糙流经叶轮时产生的水力损失就越大,所以对叶轮要进行流道加工,清除表面残渣。

轴套:一般是圆柱形。

是用来保护泵轴的,使泵轴不致于应腐蚀和磨损而影响其机械强度,它主要是与密封件配合使用,工作时,密封件静止,轴套旋转,防止泵同介质外漏,所以轴套是易磨损件。

离心泵振动及噪音大的原因及对策简述

离心泵振动及噪音大的原因及对策简述

离心泵振动及噪音大的原因及对策简述离心泵原理简单的说就是叶轮高速旋转时,带动叶片间的液体旋转,由于离心力的作用,液体从叶轮中心被甩向叶轮外缘,当液体进入泵壳后,由于蜗壳形泵壳中的流道逐渐扩大,液体流速逐渐降低,一部分动能转变为静压能,于是液体以较高的压强沿排出口流出,故称为离心泵。

在处理不当的情况下,叶轮产生的离心力会导致泵出现振动和不正常的噪音。

离心泵使用时发现泵振动及噪音异常,应立即停机作检查。

1、泵基础是否牢靠当发生振动时,首先应检查离心泵的地脚螺栓是否紧固。

若未紧固会造成离心泵震动。

还要考虑地脚基础强度是否够用,有时由于设计原因,基础偏软也能引起震动。

2、联轴器找正很多离心泵是通过联轴器进行驱动,联轴器的种类也很多。

常规的三爪联轴器找正的好坏直接影响到联轴器、轴、轴承、机封等正常运行和使用寿命。

3、找中心中心不正也是引起震动的常见原因,必须严格按照标准将中心调整在规定范围之内。

4、轴承检查轴承安装是否出现问题或是否损坏。

5、转子中心位置调整水泵转子应与定子同心,否则在水泵运行时会产生摩擦,产生震动。

6、动静平衡检测在离心泵拆解后,为了避免开泵时震动,还应将叶轮作静平衡试验。

外部条件对水泵的影响当水泵本身可能有的问题全部排除后,如仍不能解决震动的问题时,还要考虑外部条件对水泵的影响。

滚动轴承在运转中有异声且温度高1、轴承存在质量问题。

检查轴承需注意轴承外观、滚动体是否转动灵活、轴承各部分尺寸间隙等。

2、轴承跑套。

当轴承箱温度高且有异声,振幅时大时小,振动周期不定,解体检查发现轴承外圈的外圆面有磨损痕迹,并且间隙过大,说明轴承以及跑套,可用胶粘、补焊、镶套的方法修复。

跑套严重,不能用上述方法修复需更换。

3、轴承磨损严重或已损坏。

轴承运转响声很大,并且温度高、振幅大,需更换轴承。

4、轴承轴向定位问题。

泵运转时,温度高而振动不大,可能是轴承轴向间隙过大,停车后,用工具轻轻敲击联轴器靠背轮发现有明显的轴向窜动,需重新调整间隙。

给水泵振动原因分析及解决方案

给水泵振动原因分析及解决方案

给水泵振动原因分析及解决方案摘要:对于分段式高压多级离心泵,当泵运行在设计点流量50% ~ 70% 范围内(最高效率点流量为530m3/h)时,瓦振动(壳体振动)的振动速度超过 iso10816标准,不能满足变负荷发电厂的供电要求。

通过对流体流态和振动频谱的分析,调整导叶进口叶片的角度,改善流态,解决了振动问题,满足变负荷供电的节能要求。

关键词:离心泵;振动;频谱图;叶片角度1给水泵的结构此项目所采用的给水泵,其结构为HGC型卧式、多级、高压离心泵,此种产品为模块化、标准化产品,具体由转子部件(包括水力部件)、壳体部件、轴承部件等组成。

其中叶轮和导叶体属于泵的水力部件,其设计选型直接决定了泵的水力性能。

2振动原因分析及解决方案2.1振动原因分析2.1.1流体激励泵是把原动机的机械能转化成液体能量的机械。

离心泵属于叶片泵,可以连续运转,通过叶轮的高速运转对液体做功,使其能量增加,从而实现能量的转化。

但是在其运转过程中,由于过流部件叶轮和导叶所组成流道的变化和不连续性,使得液体在高速旋转的叶轮及固定导叶中流动时产生液压激励振动,从而有可能会引起泵运转的不稳定,导致泵的振动。

2.1.2流体流态对比及分析由图1可知,泵的壳振超标发生在运行流量270~350m3/h之间,也就是最高效率点的50%~70%(Qopt=530m3/h,Qopt为泵的最高效率点),因此说明振动不合格点发生于泵在非满负荷点运行情况下。

叶片泵的水力部件由转子(叶轮)和定子(导叶)两部分组成。

在叶轮的径向截面可以看出叶轮的出口边截面积大于叶轮入口边截面积,因此流体从进入旋转叶轮到流出叶轮的运行过程中是减速流动的,在此过程中静压力是增加的。

由于流量泄漏的客观存在,当泵的流量减少时,流体在叶轮中的相对速度也是减少的。

在流量减少的情况下,当减速发生在流体流速较低的情况下,就会产生失速,使液体相对回流,这就意味着当低于某一特定流速时,在叶轮内部由于速度分离,不同流向的液体相互作用而产生紊流。

离心泵振动的原因分析及处理措施

离心泵振动的原因分析及处理措施

离心泵振动的原因分析及处理措施1、振动是评价离心泵机组运行可靠性的一个重要指标。

振动超标的危害主要有:(1)振动造成离心泵机组不能正常运行;(2)引发电机和管路的振动;(3)造成轴承等零部件的损坏;(4)造成连接部件松动,基础裂纹或电机损坏;(5)造成与离心泵连接的管件或阀门松动、损坏;(6)形成振动噪声。

2、引起离心泵振动的原因是多方面的,主要有:(1)离心泵的转轴一般与驱动电机轴直接相连,使得泵的动态性能和电机的动态性能相互干涉;(2)高速旋转部件多,动、静平衡未能满足要求;(3)与流体作用的部件受离心流状况影响较大;(4)流体运动本身的复杂性,也是限制泵动态性能稳定性的一个因素。

3、对引起泵振动原因的分析3.1电机(1)电机结构件松动、轴承定位装置松动、铁芯硅钢片过松、轴承因磨损而导致支撑刚度下降,会引起振动。

(2)质量偏心、转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标。

(3)鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动,电机缺相、各相电源不平衡等原因也能引起振动。

(4)电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。

3.2基础及泵支架(1)驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。

(2)离心泵基础松动,或者离心泵机组在安装过程中形成弹性基础,或者由于油浸起泡造成基础刚度减弱,离心泵就会产生与振动相位差180°的另一个临界转速,从而使离心泵振动频率增加,如果增加的频率与某一外在因素频率接近或相等,就会使离心泵的振幅加大。

(3)基础地脚螺栓松动,导致约束刚度降低,会使电机的振动加剧。

3.3联轴器(1)联轴器连接螺栓的周向间距不良,对称性被破坏;(2)联轴器加长节偏心,将会产生偏心力;(3)联轴器锥面度超差;(4)联轴器静平衡或动平衡不好;(5)弹性销和联轴器的配合过紧,使弹性柱销失去弹性调节功能,造成联轴器不能很好地对中;(6)联轴器与轴的配合间隙太大;(7)联轴器胶圈的机械磨损导致的联轴器胶圈配合性能下降;(8)联轴器上使用的传动螺栓质量互相不等。

离心泵的振动分析及预防措施,一定要懂!

离心泵的振动分析及预防措施,一定要懂!

离心泵的振动分析及预防措施,一定要懂!本文的内容就石化行业使用的离心泵振动原因进行分析,并提出了相应的预防措施,希望能对现场运行人员的维护和检修工作提供借鉴。

离心泵是石化行业使用的重要辅助设备,其能否可靠运行直接影响着企业的安全和经济性。

随着动力装置的大型化和回转设备的高速化,离心泵的振动问题也日渐显现。

根据石化行业设备故障统计,振动问题已成为设备部件损坏、密封泄漏以及造成设备停运的重要原因。

一、离心泵振动原因分析从广义上讲,引起离心泵振动的原因是多方面的,包括离心泵的设计、制造、安装、运行、使用及系统管路布置等因素。

但在使用现场,造成设备振动增大的原因更集中在以下几个方面。

1、转子不平衡当转子的质心偏离回转轴线时,便会产生偏心质量。

高速运转下的转子便会产生方向周期变化的离心力,该力作用在支撑轴承上,便诱发了轴承部位的振动。

理论上影响偏心质量的因素很多,但根据设备实际运行情况,转子不平衡引发振动,多集中在以下几方面:1)转子平衡精度较低,存在较大的残余不平衡量。

2)叶轮等回转零件,在高速转动时,因回转应力造成内孔扩张,形成叶轮和轴的配合间隙变大,从而使转子部件的平衡品质劣化。

3)泵轴自身在实际运行中,因某种原因发生弯曲变形,造成不平衡量增大。

4)叶轮磨损、断裂或被异物堵塞,造成不平衡量增大。

2、机组同轴度调整不良产生振动一般情况下电动机和泵通过联轴器实现动力传递。

装配时电机和泵的同轴度有严格的调整精度要求。

机组运行状态下,同轴度超差会破坏联轴器工作的平衡状态;为补偿这种偏差,联轴器的挠性原件便会产生交变的协调变形,从而产生交变的协调内里,此力作用在泵和电机上,便引起机组振动。

3、轴承原因引发振动轴承磨损,造成内外套间隙变大。

转子部件偏心运行,产生振动。

这种情况多集中于立式泵。

对于滑动轴承,如果轴瓦顶部间隙过小或瓦盖紧力过大,都会造成轴与上瓦的部分接触,接触点的摩擦力作用于转子旋转的相反方向上,迫使转子激烈地振动旋转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多级离心泵振动原因分析及对策
摘要:论文对使用中多级离心泵的振动原因进行分析,确定了相应的解决方案,并有效实施,是现场设备安装问题的一次总结。

关键词离心泵振动原因分析对策
1 概述
长庆兴隆园直燃机房的热水循环泵为多级离心泵,型号MY40.35×6,流量m3/h,扬程209m,级数6级,转数2950r/min。

该泵投用一年半,经常出现泵体振动,最初以为是机泵密封环磨损造成的,多次检查和更换磨损零件后,问题依然得不到根本性解决,且主备用泵都出现同一症状。

2 泵体振动的原因分析
2.1 泵在运行之前未进行充分预热在运行之前未对泵体进行充分预热,当高温液体进入泵体后,转子马上受热,由于转子尺寸小,直径只有40mm,又是四周受热,因此比定子受热要快的多。

转子在静止状态下受热,由于主轴向上、下受热不均匀,会使主轴产生一个向上弯曲的热变形,加大转子不平衡的离心力,使转子和定子径向间隙减少,在转子热挠度较大时,动静部分径向间隙可能消失,转子在旋转时与定子可能发生摩擦,从而导致泵体本身的强烈振动.
2.2 机泵出口经常性完全关闭导致泵体气蚀液体的温度越高,挥发性越大,饱和蒸汽压越高,导致液流低压区某点的压力不必降低到很低时,泵就会产生气蚀。

此循环泵出口有两股管线,当甲醇饱和热水塔内液位满足工艺要求时,LV102就处于关闭状态,而另一股送往合成车间冷凝液汽提塔的补充液也要求不能输送。

此时必然造成泵体内的流体随着转子的运转,压力温度都随之增高,从而大大增加了泵体气蚀的可能性。

在以后的泵体维修中发现泵体机械密封动静环接触面出现大量的点蚀面充分说明了这一点。

2.3 口环间隙过小
口环间隙设定合理,可以使盘车轻松,避免转子和定子在泵的启停运行过程中发生碰撞,更为重要的是确保泵运行时的正常流量与压力。

影响泵口环间隙设定的因素包括轴的挠度、隔板止口间隙、温升导致的热膨胀、转子晃动量及间隙余量等。

泵的静挠度一般在0.2~0.3mm,动挠度一般在0.05~0.08mm,而新隔板止口间隙一般要求在0~0.01 mm。

当隔板因检修而多次拆卸后,配合间隙将会变大,因逐级累加,口环间隙最大一般为0.03~0.05Inln。

温升将导致口环径向膨胀,膨胀量是由材质、温升的高低和口环直径几个因素决定,对于温差变化大的离心泵,口环的径向膨胀量一般在0.03mm左右。

综合上述几个数字来考虑,其口环的间隙应该至少控制在0.50mm,此数值还未考虑口环间隙余量,而泵生
产厂家给出的间隙值为0.45~0.50mm,最初的装配口环间隙一直以厂家的数值为参考,但每次都会出现装配之后试运行时泵体振动,解体之后发现口环磨损的情况,尤其以3级、4级磨损的最为严重。

通常要将口环车削掉0.05mm后才能去掉高点,说明口环间隙是设定过小。

2.4 止推轴承的间隙过大造成平衡盘和平衡座产生刮磨
在最初泵体拆卸检修测量中,发现止推轴承间隙达到0.80mm,平衡盘间隙仅0.10mm,如进行泵体装配必然会导致转子可以轴向窜动很大的距离。

在泵运转以后,由于轴向力作用会使转子向泵的人口侧窜动,而平衡盘问隙过小,会导致平衡盘和平衡座旋转摩擦。

因为无论平衡盘和平衡座所构成的平衡室面积有多小,它所产生的平衡力永远都小于轴向力。

即如止推轴承的间隙大于平衡盘和平衡座间隙,就一定会造成平衡盘和平衡座的刮磨而使泵体产生强烈振动。

2.5 转子的轴向窜量调节不合理
多级泵合理轴窜量的确定应根据其内部结构关系,使泵在设计的特征状态下工作。

水泵装配时,根据水泵的性能曲线图(见图1),如果水泵运转中脱离了最佳工况位置点,对于单级离心泵来说,虽然引起的仅是效率的下降、流量的变化以及扬程的变化,但对于多级离心泵来说,由于压力的升高,水流流速的增加,尤其是此泵介质的温度很高,都将会使泵内产生大量的气体,从而引起水泵输出水量的减少和泵体的振动。

在最初的泵体拆卸过程中,将泵的首级叶轮单独装配后对轴窜量进行了测量(见图2),测量叶轮前轮盖到导叶距离b1为4.5 mm,叶轮后轮盖到导叶距离b2为3.0nlln,总窜量为7.5mm。

这与厂家给出的bl为2.5mm,b2为3.0mm,总窜量为5.5mm有很大的出入。

b1的值在水泵运行的时候是很重要的,因为在轴向力的作用下,转子总是向进口端,即向着b1方向运动,而2mm的出入会造成叶轮和导叶的中心偏差过大引起泵体的振动。

3 对策
3.1 预热泵体和常开最小回流线,解决气蚀问题。

在每次泵运行之前要对泵体进行彻底的预热,不断将泵体里的热气通过排气阀排出,消除转子的热变形。

同时此台泵在设计上也有轴向膨胀滑销,在最初的维修中忽略了这个问题,后来在泵体预热之前将地脚螺栓松开,完全预热之后再将螺栓把紧,最大程度的消除了轴向热应力。

在泵运行之后,也将最小回流线阀留出小开度,让泵体出口阀在关闭的情况下,气体也能够流向排出,大大消除气蚀的可能性。

3.2 加大口环间隙,装配后的转子进行整体动平衡测试,消除不平衡力。

设定口环间隙时,在满足泵运行条件情况下,根据经验和表1高温介质的要求,将中间3、4级叶轮口环的间隙设定为标准最大值0.80mm,由中间往两侧依次递减,最小为0.60mm进行装配,这比习惯上采用统一口环间隙更为合理。

按照这一方法去设定口环的间隙值,有效避免了多级泵在检修后因口环间隙的原因而出现的盘车卡涩或流量不好的情况,口环不发生偏磨,也延长了口环的使用寿命。

在装配之后,还将转子整体进行动平衡测试,平衡精度G2.5,彻底消除了转子的不平衡力。

3.3 调整止推间隙,保证平衡盘窜量。

运行中的多级泵由于轴向力的存在和平衡装置的作用,使泵转子处于动态平衡(如图3),即转子不停的左右窜动,窜动量一般在0.10~0.15mm之间,窜动次数在10~15min。

从末级出来的带有压力的液体,经过平衡盘和平衡间隙流人到平衡腔,平衡盘后有平衡管与泵的人口相连,其压力近似为人口压力。

这样平衡盘两侧压力不相等就产生了向后的轴向推力,即平衡力。

平衡力与轴向力方向相反,因而自动地平衡了叶轮的轴向推力。

当叶轮的轴向推力大于平衡力时,泵转子就会向人口侧移动,并由于惯性的作用,这种移动并不会立即停止在平衡位置上,而要超出限度,引起平衡盘轴向间隙b0过量减少,使泄漏量减小,平衡室的压力升高,于是平衡盘上的平衡力增加,超过叶轮的轴向推力,把转子又拉向出口侧。

同样这个过程有惯性,使平衡盘的轴向间隙b0增大,引起平衡力小于轴向推力,转子又向人口侧移动,重复上述过程。

一旦泵稳定运行,转子始终是向着进口方向运动,这种运动趋势始终存在。

在装配过程中只有用调整止推间隙来控制平衡盘的轴向窜量,也就是将止推窜量的数值控制到小于平衡盘窜量,才可以保证平衡盘不会刮磨到平衡座,在维修过程中,通过测量和车削轴承压盖,将止推间隙控制为0.15~0.20mm。

3.4 合理调节轴向窜量
根据厂家提供的数据,为了将叶轮b1值调整到位,在首级叶轮的前端,减了1.5min的调整垫,这样bl的数值调整为3.0mm,b2的数值调整为4.5mm,基本符合设计要求。

同时在装配后级叶轮时,都进行轴向窜量的检查,对于其值大于首级的,均算合格,小于首级的,通过改变定位套或切削叶轮改变轴向尺寸来进行调整。

最终装配后窜量可能还有小许变化,但基本满足设计要求。

相关文档
最新文档