管理运筹学 第五章 整数规划
运筹学课件第五章 整数规划
第一节 整数规划的数学模型
解的特点: 整数规划
松弛问题
max c x Ax b s .t . x 0, x为整数
max c x Ax b s .t . x 0
1、整数规划可行域是松弛问题可行域的子集
2、整数规划最优值小于等于松弛问题的最优值
第一节 整数规划的数学模型
P1 P2
P4
以上描述了目前解整数规划问题的一种思路。
第二节 分支定界法
思路:切割可行域,去掉非整数点。 解题步骤: 1、不考虑整数约束,解相应松弛问题。 2、检查是否符合整数要求,是,则得最优解,完毕。 否则,转下步。 3、任取一个非整数变量xi=bi,构造两个新的约束条 件:xi ≤[bi],xi≥[bi]+1,分别加入到上一个LP问 题,形成两个新的分枝问题。 4、不考虑整数要求,解分枝问题。若整数解的Z值 大于所有分枝末梢的Z值,则得最优解。否则, 取Z值最大的非整数解,继续分解,Go to 3。
序号 1 2 3 4 5 6 7
物品
重量 系数
食品
5 20
氧气
5 15
冰镐
2 18
绳索
6 14
帐篷
12 8
相机
2 4
设备
4 10
第三节
0-1型整数规划
解:令xi=1表示登山队员携带物品i,xi=0表示登 山队员不携带物品i,则得: Max Z=20x1+15x2+18x3+14x4+8x5+4x6+10x7
第三节
(x1,x2,x3) z值
0-1型整数规划
1 2 3 4 过滤条件
(0,0,0)
运筹学第五章整数规划
分解 ai0 , j和 bi0 成最大整数与正分数之和:
浙江理工大学 经济管理学院
管理运筹学
wxj
Page:21
xi0 ai0 , j x j bi0 xi0 ( Ni0 , j f i0 , j )x j Ni0 f i0 xi0 Ni0 , j x j Ni0 f i0 f i0 , j x j
S1
x2 2
B: x1=2,x2=23/9 Z=41/9
x2 3
D: S12 x1=33/14,x2=2 Z=61/14
S11
无可行解
浙江理工大学 经济管理学院
管理运筹学
wxj
Page:15
对S12分枝:
构造约束:
x1 3
X
2 5
4
和
x1 2
3
3 10 A( , ) 2 3
形成分枝问题S121 和S122,得解E和F
形成松弛问题2
浙江理工大学 经济管理学院
管理运筹学
wxj
Page:24
CB XB 3 x1 -1 0 0 x2 x4 x6
3 -1 0 0 x1 x2 x3 x4 1 0 1/7 0 0 0 0 0 1 -2/7 0
0 x5 2/7 3/7
0 x6 0 0 0 1 0
b 13/7 9/7 31/7 -6/7
首先不考虑变量的整数约束,求解相应的线性规划问题:
z0
Max z = CX AX = b X0
D
C
下界
O Ir
Max z = CX AX = b xr Ir X0 Max z = CX AX = b xr Ir+1 X0
项目管理运筹学第5章资料
X2 ≤ 1
B21 X1=5.44,X2=1.00 Z=308
340 ≤ z ≤ 341
X2 ≥2
B22 无可行解
第三节 割平面法
割平面法的基本思想 这里仅介绍求解纯整数规划的割平面法 基本步骤:
设整数规划问题(IP),对应的松弛问题为(P) ①用单纯形法求解问题(P),设得到(P)的最优解。 ②若(P)的最优解符合取整约束,则停止;否则,必有一个基 变量Xi取值为分数。 ③任取一个基变量取值为分数的约束,构造切割平面(新约束)。 ④将新约束加入到原约束中,求解新的松弛问题(P)。用灵敏 度分析的方法求解问题(P),转② 。
?
Ma x化
?
?
第五节 指派问题
问题的扩展
人员数=任务数
Min
化
基本问题
人员数≠任务数
人员数>任务数:虚设任务 人员数<任务数:虚设人员 系数矩阵中对应元素为0。 使人员数=任务数 。
Ma 找出系数矩阵中的最大元
x化
素,记做W,用W减去系 数矩阵中的每个元素,得
到新矩阵。转化为Min化问
题。
第五节 指派问题
第三节 割平面法
例:求解 Max z=x1+x2 -x1+x2≤1 3x1+x2≤4 x1、x2≥0,且取整
注意:要求每个bi,以及aij必须取整。否则,可以对相应的约束乘上 一个数,使其变为整数。 Max z=x1+x2 -x1+x2 +x3 =1 3x1+x2 + x4 = 4 x1,x2,···, x4≥0,且取整
第四节 0-1规划及隐枚举法
求解纯0-1规划问题的隐枚举法 基本思想: 穷举法的不足; 隐枚举法: “最优解=目标值最优的可行解” 只要目标值不是最优,不用检查是 否为可行解,必定不是最优解。 一个例子
管理运筹学-整数规划
§3整数规划的应用(5)
五、投资问题 例8.某公司在今后五年内考虑给以下的项目投资。已知: 项目A:从第一年到第四年每年年初需要投资,并于次年末回收本利115%,但要求第一年投资最低金额 为4万元,第二、三、四年不限; 项目B:第三年初需要投资,到第五年未能回收本利128%,但规定最低投资金额为3万元,最高金额为5 万元; 项目 C:第二年初需要投资,到第五年未能回收本利140%,但规定其投资额或为2万元或为4万元或为6 万元或为8万元。 项目 D:五年内每年初可购买公债,于当年末归还,并加利息6%,此项投资金额不限。 该部门现有资金10万元,问它应如何确定给这些项目的每年投资额,使到第五年末拥有的资金本利总额 为最大? 解:1) 设xiA、xiB、xiC、xiD ( i =1,2,3,4,5)分别表示第 i 年年初给项目A,B,C,D的投资额; 设yiA, yiB,是0—1变量,并规定取 1 时分别表示第 i 年给A、B投资,否则取 0( i = 1, 2, 3, 4, 5)。 设yiC 是非负整数变量,并规定:2年投资C项目8万元时,取值为4; 2年投资C项目6万元时,取值为3; 2年投资C项目4万元时,取值为2; 2年投资C项目2万元时,取值为1; 2年不投资C项目时, 取值为0; 这样我们建立如下的决策变量: 第1年 第2年 第3年 第4年 第5年
解:设:0--1变量 xi = 1 (Ai 点被选用)或 0 (Ai 点没被选用)。 这样我们可建立如下的数学模型: Max z =36x1+40x2+50x3+22x4+20x5+30x6+25x7+48x8+58x9+61x10 s.t. 100x1+120x2+150x3+80x4+70x5+90x6+80x7+140x8+160x9+180x10 ≤ 720 x1 + x2 + x3 ≤ 2 x4 + x5 ≥ 1 x6 + x7 ≥ 1 x8 + x9 + x10 ≥ 2 xj ≥ 0 xj 为0--1变量,i = 1,2,3,……,10
运筹学 第五章整数规划
n xij ai s.t j 1
i 1,2, m
xij 0 yi 0,1
混合型整数规划
总结
整数规划的可行域包含在其对应的一般线性规划可
行域之内; 整数规划的最优解可能不是其对应的一般线性规划 的顶点; 整数规划的最优解不会优于其对应的线性规划的最
(0)
(4)修改上、下界:按照以下两点规则进行。 ①在各分枝问题中,找出目标函数值最小者作为新的下界; ②从已符合整数条件的分枝中,找出目标函数值最小者作为 新的上界。 (5)比较与剪枝 : 各分枝的目标函数值中,若有大于 者,则剪掉此枝,表 明此子问题已经探清,不必再分枝了;否则继续分枝。 如此反复进行,直到得到 即得最优解 X* 。 为止,
f
n
rj
x j fr
a rj
的小数部分
br 的小数部分
(3)将所得的割平面方程作为一个新的约束条件置于最优单 纯形表中(同时增加一个单位列向量),用单纯形法求出新的 最优解,返回1。
m ax Z x 2
例:用割平面法求解整数规划问题
3 x1 2 x 2 6 3 x1 2 x 2 0 x , x 0且为整数 1 2
子问题 L1 : 剪枝 1 、L1无最优解, 2、最优解 X *1 ( x *11 ,x *12 ,, x *1n ), 最优值 z1 (1) X *1 为整数解 , z1为下界 关闭
子问题 L2 :
(2) X *1 中至少有一个是分数: 继续分枝
割平面法 割平面法的基本思想:
若整数规划IP的松弛规划L0的最优解不是整数解,对L0增 加一个约束条件,得线性规划 L1 ,此过程缩小了松弛规划的 可行解域,在切去松弛规划的最优解的同时,保留松弛规划 的任一整数解,因此整数规划IP的解均在L1中,若L1的最优解
运筹学第五章 整数规划ppt课件
第二步:确定A的最优目标函数值z*的上下界,其上界即为 z ,再用观察法
找到A的一个整数可行解,求其目标函数值作为z*的下界,记为z。
第三步:判断 z 是否等于z 。若相等,则整数规划最优解即为其目标函
数值等于z的A的那个整数可行解;否则进行第四步。
2020/3/2
11
•割平面法,即通过添加约束条件,逐步切割可行区域的 边角余料,让其整数解逐步的露到边界或顶点上来,只要 整数解能曝露到顶点上来,则就可以利用单纯形法求出来。
•关键是通过添加什么样的约束条件,既能让整数解往边 界露,同时又不要切去整数解,这个条件就是Gomory约束 条件。 •Gomory约束只是割去线性规划可行域的一部分,保留了 全部整数解。
2020/3/2
7
7
第二节 割平面法
2x1 2x2 11
13/4,5/2
松弛问题 x1+x2≤5 第二次切割
2020/3/2
第一次切割 4,1
8
设纯整数规划
n
m a x Z c j x j j 1
s
.t
.
n j 1
aij x j
bi
x
j
0且
为
整
数
,
j
1,L
引入约束 xi ≤ M yi ,i =1,2,3,M充分大,以保证yi=0 xi=0 这样我们可建立如下的数学模型:
Max z = 4x1 + 5x2 + 6x3 - 100y1 - 150y2 - 200y3 s.t. 2x1 + 4x2 + 8x3 ≤ 500
运筹学 第四版 第五章 整数规划
货物/箱 甲 乙
托运限制/集 装箱
体积/米3 5 4
24
重量/百斤 2 5
13
利润/百元 20 10
表 3.1
货物/箱 甲 乙
托运限制/集 装箱
体积/米3 5 4
24
重量/百斤 2 5
13
利润/百元 20 10
解 设 x1,分x2 别为甲、乙两种货物的托运箱数.则这是一个
纯整数规划问题 .其数学模型为:
(pzreorgor-aomnme iinngte)ger linear
若不考虑整数条件,由余下的目标函数和约束条件构成
的规划问题称为该整数规划问题的松弛问题(slack
problem)
n
max Z (或 min Z ) c j x j j 1
整数线性规划数学
n
st. j1 aij x j
max Z 20 x1 10 x2
5x1 4x2 24 s.t 2x1 5x2 13
x1, x2 0, 整数
(1)
若暂且不考虑 x1, x取2 整数这一条件.则(1)就变为下列 线性规划 :
max Z 20 x1 10 x2
s.t
52xx11
4x2 5x2
24 13
x1, x2 0
目前,常用的求解整数规划的方法有: 分支定界法和割平面法; 对于特别的0-1规划问题采用隐枚举法和匈牙利法。
§2 解纯整数规划的割平面法
考虑纯整数规划问题
n
max Z cjxj j 1
n
aijxj bis.tj 1xj0
xj取整数
i 1, 2....m
j 1, 2...n j 1, 2,..n
n
max Z (或 min Z ) c j x j j 1
管理运筹学讲义第5章目标规划
C
•2
PPT文档演模板
• 2 • A • 6• 8 • 1 • x
管理运筹学讲义第5章目标规划 0
1
•二、升级调资问题
例 某单位领导在考虑本单位职工的升级调资方案时,依次遵 守以下规定: • (1) 不超过月工资总额60000元; • (2) 每级的人数不超过定编规定的人数; • (3) Ⅱ、Ⅲ级的升级面不低于现有人数的20%且无越级提升; • (4) Ⅲ级不足编制的人数可录用新职工,又Ⅰ级的职工中有 10%要退休。 • 有关资料汇总于表中,问该领导应如何拟订一个满意的方案。
• (4) 按单纯形法进行基变换运算,建立新的计算表,返回(2)。 • (5) 当所有检验数 j≥0时,计算结束。表中的解即为满意解。
PPT文档演模板
管理运筹学讲义第5章目标规划
例4 试用单纯形法来求解例2。 将例2的数学模型化为标准型:
PPT文档演模板
管理运筹学讲义第5章目标规划
① 取xs,d1-,d2-,d3-为初始基变量,列初始单 纯形表,见表5-1。
PPT文档演模板
管理运筹学讲义第5章目标规划
解 按决策者所要求的,分别赋予这三个目标P1,P2, P3优先因子。这问题的数学模型是:
PPT文档演模板
管理运筹学讲义第5章目标规划
目标规划的一般数学模型为
•
PPT文档演模板
为权系数。
管理运筹学讲义第5章目标规划
课堂练习:
某公司经销两种货物,售出每吨甲货物可盈利202元, 乙货物可盈利175元,各种货物每吨所占用的流动资 金为683元,公司现有流动资金1200万元,货物经销中 有8.48%的损耗。公司的决策者希望下月能达到以下 目标。 (1)第一目标:盈利5030000元以上; (2)第二目标:经销甲货物5000吨以上; (3)第三目标:经销乙货物18000吨以上; (4)第四目标:经销损耗在1950吨以下。 试问应怎样决策?
管理运筹学讲义:整数规划
福建师范大学经济学院
第一节
• 步骤:
整数规划问题
二、 整数规划的图解法
在线性规划的可行域内列出所有决策变量可能取的整数值, 求出这些变量所有可行的整数解, 比较它们相应的目标函数值,最优的目标函数值所对应的 解就是整数规划的最优解。 x2
• 实用性:
只有两个决策变量, 可行的整数解较少。
x2
5
4
3 2 1
•
• • •
1
• • •
2
x2=3
• •
3
•
4
5x1 +7 x2 =35 2x1 + x2 =9
x2 =2
x1
10
福建师范大学经济学院
第二节
分枝定界法
• 求解相应的线性规划的最优解
问题4相应的线性规划的最优解: x1=3,x2 =2,Z4=28 问题5相应的线性规划的最优解:x1=14/5,x2 =3,Z5=159/5
11
福建师范大学经济学院
第二节
问题6:maxZ= 6x1 +5 x2 2x1 + x2 ≤9 5x1 +7 x2 ≤35 x1≤3 x2 ≥3 x1≤2 x1, x2 ≥0 x1, x2取整数
分枝定界法
问题7: maxZ= 6x1 +5 x2 2x1 + x2 ≤9 5x1 +7 x2 ≤35 x1 ≤3 x2 ≥3 x1 ≥ 3 x1, x2 ≥0 x1, x2取整数
第6章
整数规划
• 线性规划的决策变量取值可以是任意非负实数,但许多
实际问题中,只有当决策变量的取值为整数时才有意义。
例如,产品的件数、机器的台数、装货的车数、完成工作的人 数等,分数或小数解显然是不合理的。
运筹学 第五章 整数规划PPT课件
x 32
x 42
400
x 13
x 23
x 33
x 43
300
x 14 x 24 x 34 x 44 1 5 0
s
.t
x 11 x 21
x 12 x 22
x 13 x 23
x 14 x 24
400 600
x
31
x 32
x 33
x 34
200 y3
x 41 x 42 x 43 x 44 2 0 0 y 4
max Z 85x11 92x12 73x13 90x14 95x21 87 x22 78x23 95x24 82x31 83x32 79x33 90x34 86x41 90x42 80x43 88x44
要求每人做一项工作,约束条件为:
x11 x12 x13 x14 1
例5.3 设整数规划问题如下
max Z x1 x2
14 x1 9 x2 51
6 x1
3x2
1
x
1
,
x2
0且 为 整 数
首先不考虑整数约束,得到线性规划问题(一般称为松弛问题)
max Z x 1 x 2
14
x1 6x
1
9x2 3x
2
51 1
ቤተ መጻሕፍቲ ባይዱ
x
1
,
x2
0
用图解法求出最优解为:x1=3/2, x2 = 10/3,且有Z = 29/6
在很多场合,我们建立最优化模型时,实际问题要求决 策变量只能取整数值而非连续取值。此时,这类最优化 模型就称为整数规划(离散最优化)模型。
整数规划的求解往往比线性规划求解困难得多,而且, 一般来说不能简单地将相应的线性规划的解取整来获得。
燕山大学运筹学第五章 整数规划
-1/4x4 + 1/4x6≤-3/4 余下略
第三节 分支定界法
一、基本思想
定界:为求解纯整数规划和混合整数规 划问题(A),先求出其松弛问题(B)的最优 解,作为问题A的最优目标函数值的上界, 同时选择任意整数可行解作为A的最优目标 函数值的下界。
分支:将应为整数解,但尚是非整数解 之一的决策变量取值分区,并入松弛问题中, 形成两个分支松弛问题,分别求解。依结果 来调整上下界。
xij≥0, y=0或1
第二节 解纯整数规划的割平面法
一、基本思想
找到纯整数线性规划的松弛问题,不考 虑整数约束条件,但增加线性约束条件,将 松弛问题的可行域切割一部分,但不切割掉 任何整数解,只切割掉包括松弛问题的最优 解在内的非整数解。
二、割平面求解举例
Max Z=x1+x2
-x1+x2≤1
MaxZ=3x1-x2 3x1-2x2≤3 5x1+4x2≥10 2x1+x2≤5 x1,x2≥0
1 1 0 00
CB XB
b
x1 x2 x3 x4 x5
3 x1 13/7 1 0 1/7 0 2/7
-1 x2 9/7 0 1 -2/7 0 3/7
0 x4 31/7 0 0 -3/7 1 22/7
3x1+x2 ≤4
松弛问题
x1 , x2≥0且为整数
Max Z=x1+x2 -x1+x2≤+1x3 =1 3x1+x2 ≤+4x4=4 x1 , x2≥0
不考虑整数解约束,解松弛问题的最优单纯形表为:
1
1
0
0
CB
XB
b
x1
x2
运筹学 第五章 整数规划
M是足够大的整数,y 是0-1变量
14
f(x)-5 0
f(x) 0
(1)
(2)
-f(x)+5 M(1-y)
f(x) My
(3)
(4)
当y=1时,(1)(3)无差别,(4)式显然成立;
当y=0时,(2)(4)无差别,(3)式显然成立。
以上方法可以处理绝对值形式的约束
f(x) a (a>0)
31
5.1 分枝定界法 (Branch and Bound Method)
原问题的松驰问题: 任何整数规划(IP),凡放弃某些约束 条件(如整数要求)后,所得到的问题 (P) 都称为(IP)的松驰问题。 最通常的松驰问题是放弃变量的整数性 要求后,(P)为线性规划问题。
32
去掉整数约束,用单纯形法 IP LP
23
解法概述
当人们开始接触整数规划问题时,常会有 如下两种初始想法: 因为可行方案数目有限,因此经过穷举 法一一比较后,总能求出最好方案,例如, 背包问题充其量有2n种方式,实际上这种 方法是不可行。
设想计算机每秒能比较1000000个方式,那 么比较完260种方式,大约需要360世纪。
24
先放弃变量的整数性要求,解一个 线性规划问题,然后用“四舍五入” 法取整数解,这种方法,只有在变量 的取值很大时,才有成功的可能性, 而当变量的取值较小时,特别是0-1规 划时,往往不能成功。
Yes xI* = xl*
xl*
判别是否整数解
No 去掉非整数域 多个LP ……
33
分枝定界法步骤
一般求解对应的松驰问题,可能会出现 下面几种情况:
若所得的最优解的各分量恰好是整数, 则这个解也是原整数规划的最优解,计 算结束。
运筹学[第五章整数规划]山东大学期末考试知识点复习
第五章整数规划1.整数规划的特点(1)整数规划:决策变量要求取整数的线性规划。
(2)整数规划可分为纯整数规划和混合整数规划。
(3)整数规划的可行域为离散点集。
2.整数规划的建模步骤整数规划模型的建立几乎与线性规划模型的建立完全一致,只是变量的部分或全体必须限制为整数。
3.求解整数规划的常用方法1)分支定界法没有最大化的整数规划问题A,与它相应的线性规划问题为问题B,从解问题B开始,若其最优解不符合A的整数条件,那么B的最优目标函数必是A的最优目标函数z*的上界,记作,而A的任意可行解的目标函数值将是z*的一个下界 ,分支定界法就是将B的可行域分成子区域的方法,逐步减小和增大,最终求得z*。
将要求解的整数规划问题称为问题A,将与它相应的线性规划问题称为问题B。
(1)解与整数规划问题A相应的线性规划问题B,可能得到以下几种情况之一:①B没有可行解,A也没有可行解,停止计算。
②B有最优解,并符合问题A的整数条件,则此最优解即为A的最优解,停止计算。
③B有最优解,但不符合A的整数条件,记它的目标函数值为。
(2)用观察法找问题A的一个整数可行解,求得其目标函数值,并记作。
以z*表示问题A的最优目标数值,则≤z*≤。
下面进行迭代.分支,在B的最优解中任选一个不符合整数条件的变量xi ,其值为bi。
构造两个约束条件xj ≤[bj]①和xj ≥[bj]+1 ②其中[bj ]为不超过bj的最大整数。
将这两个约束条件分别加入问题B,求两个后继规划问题B1和B2。
不考虑整数约束条件求解这两个后继问题。
定界,以每个后继问题为一分支标明求解的结果。
第一步:先不考虑整数约束,变成一般的线性规划问题,用图解法或单纯形法求其最优解,记为 ) ;第二步:若求得的最优解,刚好就是整数解,则该整数就是原整数规划的最优解,否则转下步;第三步:对原问题进行分支寻求整数最优解。
第四步:对上面两个子问题按照线性规划方法求最优解。
若某个子问题的解是整数解,则停止该子问题的分支,并且把它的目标值与上一步求出的最优整数解相比较以决定取舍;否则,对该子问题继续进行分支。
运筹学第五章 整数规划
第五章 整数规划主要内容:1、分枝定界法; 2、割平面法; 3、0-1型整数规划; 4、指派问题。
重点与难点:分枝定界法和割平面法的原理、求解方法,0-1型规划模型的建立及求解步骤,用匈牙利法求解指派问题的方法和技巧。
要 求:理解本章内容,熟练掌握求解整数规划的方法和步骤,能够运用这些方法解决实际问题。
§1 问题的提出要求变量取为整数的线性规划问题,称为整数规则问题(简称IP )。
如果所有的变量都要求为(非负)整数,称之为纯整数规划或全整数规划;如果仅一部分变量要求为整数,称为混合整数规划。
例1 求解下列整数规划问题211020max x x z += ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,13522445x x x x x x x x 如果不考虑整数约束,就是一个线性规划问题(称这样的问题为原问题相应的线性规划问题),很容易求得最优解为:96max ,0,8.421===z x x 。
50用图解法将结果表示于图中画“+”号的点都是可行的整数解,为满足要求,将等值线向原点方向移动,当第一次遇到“+”号点(1,421==x x )时得最优解为1,421==x x ,最优值为z=90。
由上例可看出,用枚举法是容易想到的,但常常得到最优解比较困难,尤其是遇到变量的取值更多时,就更困难了。
下面介绍几种常用解法。
§2 分枝定界法分枝定界法可用于解纯整数或混合的整数规划问题。
基本思路:设有最大化的整数规划问题A ,与之相应的线性规划问题B ,从解B 开始,若其最优解不符合A 的整数条件,那么B 的最优值必是A 的最优值*z的上界,记为z;而A 的任意可行解的目标函数值是*z的一个下界z,采取将B 的可行域分枝的方法,逐步减少z 和增大z ,最终求得*z 。
现举例说明: 例2 求解A219040max x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,702075679x x x x x x x x 解:先不考虑条件⑤,即解相应的线性规划B (①--④),得最优解=1x 4.81, =2x 1.82, =0z 356(见下图)。
运筹学 第三版 清华大学出版社 第5章整数规划
依照决策变量取整要求的不同,整数规划可分为纯整数规 依照决策变量取整要求的不同,整数规划可分为纯整数规 全整数规划、混合整数规划、 整数规划。 划、全整数规划、混合整数规划、0-1整数规划。
8
纯整数规划:所有决策变量要求取非负整数( 纯整数规划:所有决策变量要求取非负整数(这时引 进的松弛变量和剩余变量可以不要求取整数)。 进的松弛变量和剩余变量可以不要求取整数)。
举例说明。 举例说明。
10
例:设整数规划问题如下
max z = x 1 + x 2 14 x 1 + 9 x 2 ≤ 51 − 6 x1 + 3 x 2 ≤ 1 x , x ≥ 0 且为整数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问 首先不考虑整数约束,得到线性规划问题(一般称为松弛问 伴随问题)。 题或伴随问题)。 max z = x + x
x2 3
⑴ ⑵ (3/2,10/3)
3
x1
按整数规划约束条件, 按整数规划约束条件,其可行解肯定在线性规划问题的可 行域内且为整数点。故整数规划问题的可行解集是一个有限集, 行域内且为整数点。故整数规划问题的可行解集是一个有限集, 如图所示。 如图所示。
12
因此, 因此,可将集合内 的整数点一一找出, 的整数点一一找出, 其最大目标函数的值 为最优解, 为最优解,此法为完 全枚举法。 全枚举法。 如上例:其中( , 如上例:其中(2, 2)( ,1)点为最大 )(3, ) )( z 。 值, =4。
3
个地点建厂, 例2、(建厂问题)某公司计划在 个地点建厂,可供选择的 、 建厂问题)某公司计划在m个地点建厂 地点有A1,A2…Am ,他们的生产能力分别是a1,a2,…am(假设 地点有 他们的生产能力分别是 生产同一产品)。第 个工厂的建设费用为f 生产同一产品)。第i个工厂的建设费用为 i (i=1.2…m),又有 )。 又有 n个地点 1,B2, … Bn 需要销售这种产品,其销量分别为 个地点B 需要销售这种产品, 个地点 b1.b2…bn 。从工厂运往销地的单位运费为 ij。试决定应在哪 从工厂运往销地的单位运费为C 些地方建厂,即满足各地需要, 些地方建厂,即满足各地需要,又使总建设费用和总运输费 用最省? 用最省?单
运筹学课件 第5章:整数规划
依照决策变量取整要求的不同,整数规划可分为纯 整数规划/全整数规划、混合整数规划、0-1整数规划
整数规划解的性质
求解整数规划问题
max Z 3 x1 2 x2 2 x1 x2 9 ( IP)2 x1 3 x2 14 x1 , x2 0且为整数
分析:考虑对应的线性规划问题(LP)
b
x1
2
2 3
x2
1
3 2
x3
1
0 0
x4
0
1 0
b
x1
1
0 0
x2
0
1 0
x3
3/4
-1/2
x4
-1/4 1/2
0
0
x3 9 x4 14
9/2
14/2
3
2
x1 13/4 x2 5/2
-5/4
-1/4
初始表
最终表
可见,最优解为x1=3.25 x2=2.5 z(0) =59/4=14.75
选 x2 进行分枝,即增加两个约束x2≤2 和x2 ≥3 ,则
max Z 3 x1 2 x2 2 x1 x2 9 2 x 3 x 14 2 ( IP1) 1 x2 2 x1 , x2 0且为整数
max Z 3 x1 2 x2 2 x1 x2 9 2 x 3 x 14 2 ( IP2) 1 x2 3 x1 , x2 0且为整数
b
7/2 2 1 3 -29/2 7/2 2 1 -1/2 -29/2
x1
1 0 0 1 0 1 0 0 0 0
x2
0 1 0 0 0 0 1 0 0 0
x3
1/2 0 -1 0 -3/2 1/2 0 -1 -1/2 -3/2
管理运筹学 第五章 整数规划
j 1
整数规划的类型
纯整数规划:变量全部是整数 混合整数规划:变量部分整数,部分非整数 0-1型整数规划:变量= 0或1
x2
3 2
2x1+3x2 =14.66
1
x1
2x1+3x2 =14
1
2
3 2x1+3x2 =6
4
整数规划对应松弛问题最优解为:
x1=2.44, x2=3.26,目标函数值为14.66。
如果A2和A3两地必 须有且只有一个建 厂,怎么办?
1、整数规划数学模型的一般形式
n
max(min) z c jx j n a ijx j ( , )b i (i 1,2, , m ) j 1 st. x j 0( j 1,2, , n ) xj部分或全部取整数
负数所在列加上一个常数,继续循环。
直到系数矩阵中没有负数,而且整个消耗系数矩阵的所有元素总和已经变小;此 时调整结束,重新回到step2。
步骤1:行减、列减
15 19 C 26 19
21 24 23 22 18 17 16 19 21 23 17 17
例5.6 有三种资源被用于生产三种产品,资源量、产品单件可变费用 及售价、资源单耗量及组织三种产品生产的固定费用见下表。要求制 定一个生产计划,使总收益最大。
5.3.2 0-1ILP的隐枚举法
解 为提高搜索效率,减少运算量,先按照目标函数中各变量系数的大小顺 序重新排列各变量。 对于求极大值问题,按照从小到大排为x3,x2,x1。(注意: 对于求极小值问题,应从大到小排序)
运筹学 第五章 整数规划
( Integer Programming )
本章主要内容:
整数规划的特点及应用 分支定界法 0-1 整数规划 指派问题
1 2022/1/24
在很多场合,我们建立最优化模型时,实际问题要求决 策变量只能取整数值而非连续取值。此时,这类最优化 模型就称为整数规划模型。
整数规划的求解往往比线性规划求解困难得多,而且, 一般来说不能简单地将相应的线性规划的解取整来获得。
现求整数解(最优解):如用舍
入取整法可得到4个点即(1,
x2
⑴
⑵
3),(2,3),(1,4),(2,4)。显然,
它们都不可能是整数规划的最优 3 解。
(3/2,10/3)
按整数规划约束条件,其可行 解肯定在线性规划问题的可行域 内且为整数点。故整数规划问题 的可行解集是一个有限集,如右
图所示。其中(2,2),(3,1)点的目 标函数值最大,即为Z=4。
x2
找到整数解,问题已探明,此
枝停止计算。
3
同理求LP2,如图所示。在C 点 取得最优解。即:
x1=2, x2 =10/3,
Z(2)=-56/3≈-18.7
1
∵Z(2)< Z(1)=-16
∴原问题有比-16更小的最优
解,但 x2 不是整数,故继续 分支20。22/1/24
⑵ ⑴
A(18/11,40/11)
5
x1
x1
6x2 30 4
LP
2022/1/24
x1 , x2 0
17
分支定界法
用图解法求松弛问题的最优解,如图所示。
x1=18/11, x2 =40/11 Z=-218/11≈(-19.8)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果A2和A3两地必 须有且只有一个建 厂,怎么办?
1、整数规划数学模型的一般形式
n
max(min) z c jx j n a ijx j ( , )b i (i 1,2, , m ) j 1 st. x j 0( j 1,2, , n ) xj部分或全部取整数
此时独立零元素有3个,第四行没有,故转入步骤4。
步骤4:调整
0 1 10 2 1 6 9 4 4 0 √ -1 0 0 3 3 6 0 √ -2
√+ 2
第四行没有独立零元素,所 以让该行减2 第四行第四列的0变为-2, 所以让第四列再加2 第四列的独立零元素被破坏, 所以让第二行再减1
分支:若松弛问题最优解中存在变量xi=bi′不满足整数约
束,记[bi′]为不超过bi′的最大整数,则构造两个新 的约束 xi≤ [bi′] ,和xi≥ [bi′]+1。将它们分别并入到原松弛问题中,
形成原松弛问题的两个分支(后继问题)。当分支的最优
解也不满足整数约束时,可以继续构造它们的分支。
定界:在分支的过程中,若某个后继问题恰好获得了整数 规划的一个可行解,则这一可行解的目标函数值可看成一 个“界限”,作为处理其他分支的依据。
练习题:
11 5 6 2 15 19 26 19
8 8 4 3 18 23 17 21
6 9 7 5 21 22 16 23
9 7 5 6 24 18 19 17
Z* 19
Z* 70
非标准形式指派问题的处理
1、最大化指派问题:目标函数求max
在东区由三个点中最多选择两个; 在西区由两个点中至少选择一个; 在南区由两个点中至少选择一个; 在北区由三个点中至少选择两个。
投资总额不能超过720万元,问应该选择哪几个销售点,可使年利润为最大?
max z 36 x1 40 x 2 50 x3 22 x 4 20 x5 30 x6 25 x7 48 x8 58 x9 61x10
在东区由三个点中最多 x 3 180 x10 720 100 x1 120 x 2 150 在西区由两个点中至少 选择两个 x1 x 2 x3 2 选择一个 x 4 x5 1 在南区由两个点中至少 s.t. 选择一个 x 6 x7 1 在北区由三个点中至少 选择两个 x8 x9 x10 2 xi 0且xi为0 1变量,i 1,2,3,...,10.
(x3,x2,x1) 0,0,0 0,0,1 0,1,0
z值 a
约束条件 b c d
过滤条件
0 2 1 3 -1 1 0 2
z0
z2
不检验
0,1,1
1,0,0 1,0,1 1,1,0 1,1,1
不检验
不检验 不检验 不检验
不检验
5.4 指派问题
例5.9 有四个工人,要分别指派他们完成四项不同的工作,每人做各 项工作所消耗的时间(我们称之为消耗系数)如表5-6所示,问应如何分 配任务,才能使总的消耗时间最少?
m c 1n m c 2n m cnn
最大化指派问题例题
有5个工人,要指派去做5项工作,每人做各项工作的能力见下表。应如 何指派,才能使总的得分最大? 工作 工人 S1 S2 S3 S4 S5
J1
15 5 1 7 12
J2
5 11 0 12 9
J3
0 0 10 0
1 6 11 3 3 2 0 0 5 1 4 0
步骤2 再次试指派
0 0 10 0 1 6 11 3 3 2 0 0 5 1 4 0
此时独立零元素还是只有3个,第二行没有,故转入步骤4。
步骤4:调整
0 0 10 0
例5.4 求解如下整数规划:
首先求解其松弛规划:
max z 3x1 2 x 2 2 x1 3x 2 14 s.t.4 x1 2 x 2 18 x1, x 2 0
最优解为X=(3.25,2.5)’,z=14.75
因为x2=8/3,所以将其分 为x2<=2和x2>=3两个分支
因为x1=3.25,所以将其 分为x1<=3和x1>=4两个分 支
x1 3
x1 4
x2 3
x2 2
所以X*=(4,1),Z*=14
5.3 0-1ILP
例5.5 广州某食品公司计划在市区的东、西、南、北四区建立销售门市部,目前有10个
位置可供选择,考虑到各地区居民的消费水平及居民居住密集程度,规定:
负数所在列加上一个常数,继续循环。
直到系数矩阵中没有负数,而且整个消耗系数矩阵的所有元素总和已经变小;此 时调整结束,重新回到step2。
步骤1:行减、列减
15 19 C 26 19
21 24 23 22 18 17 16 19 21 23 17 17
步骤2 再次试指派
1 0 12 2
0 1 X* 0 0
0 5 10 1 1 0 0 0 5 1 4 0
此时找到了4个独立零元素,所以最优方案为:
1 0 0 0 0 0 0 1 0 0 0 1
z* 17 19 16 17 69
√+ 2
第二行没有独立零元素,所 以让该行减2 第二行第一列的0变为-2, 所以让第一列再加2 第一列的独立零元素被破坏, 所以让第一行再减1
1 6 11 √ -1 3 3 2 √ -2 0 0 5 1 4 0
1 0 12 2
0 5 10 1 1 0 0 0 5 1 4 0
例5.6 有三种资源被用于生产三种产品,资源量、产品单件可变费用 及售价、资源单耗量及组织三种产品生产的固定费用见下表。要求制 定一个生产计划,使总收益最大。
5.3.2 0-1ILP的隐枚举法
解 为提高搜索效率,减少运算量,先按照目标函数中各变量系数的大小顺 序重新排列各变量。 对于求极大值问题,按照从小到大排为x3,x2,x1。(注意: 对于求极小值问题,应从大到小排序)
第五章 整数规划
5.1 整数规划实例及一般模型
5.2 分支定界法
5.3 0-1整数规划
5.4 指派问题
5.1 整数规划实例
例5.1 某公司拟用集装箱托运甲、乙两种货物,这两种货 物每件的体积、重量、可获利润以及托运所受限制如下 表所示。
货物
每件体积/立方英尺 每件重量/百千克
每件利润/百元
甲
乙 托运限制
整数规划问题的松弛问题
j 1
整数规划的类型
纯整数规划:变量全部是整数 混合整数规划:变量部分整数,部分非整数 0-1型整数规划:变量= 0或1
x2
3 2
2x1+3x2 =14.66
1
x1
2x1+3x2 =14
1
2
3 2x1+3x2 =6
4
整数规划对应松弛问题最优解为:
x1=2.44, x2=3.26,目标函数值为14.66。
195
273 1365
4
40 140
2
3
甲种货物至多托运4件,问两种货物各托运多少件,
可使获得利润最大?
解 设x1、x2分别为甲、乙两种货物托运的件数,建立模型
max
z 2 x1 3x 2
195 x1 273x 2 1365 4 x1 40 x 2 140 s.t. x1 4 x1, x 2 0 x1, x 2为整数
例5.3 某企业在A1地已有一个工厂,其产品的生产能力为30千箱,为了扩大 生产,打算在A2,A3,A4,A5地中再选择几个地方建厂,已知在A2地建厂 的固定成本为175千元,在A3地建厂的固定成本为300千元,在A4地建厂的固 定成本为375千元,在A5地建厂的固定成本为500千元,另外,在A1的产量, A2,A3,A4,A5建成厂的产量,那时销地的销量以及产地到销地的单位运 价(每千箱运费)如下表5-3所示。问应该在哪几个地方建厂,在满足销量的 前提下,使得其总的固定成本和总的运输费用之和最小?
每行减该行最小数
0 1 10 2
2 6 9 5 4 0 1 0 3 4 6 0
每列减该列最小数
0 1 10 2
1 6 9 4 4 0 0 0 3 3 6 0
步骤2:试指派(某行某列只有一个0,优先选中)
0 1 10 2 1 6 9 4 4 0 0 0 3 3 6 0
3 13 13 0 8
J4
0 8 5 3 9
J5
12 10 6 8 12
15 5 3 0 12 5 11 13 8 10 C 1 0 13 5 6 7 12 0 13 8 12 9 8 9 12
15 15 C ' 15 15 15 15 15 15 15 15 5 3 0 12 0 10 12 15 3 10 4 2 7 5 5 11 13 8 10 15 15 15 15 15 15 15 15 1 0 13 5 6 14 15 2 10 9 15 15 15 15 7 12 0 13 8 8 3 15 2 7 15 15 15 15 3 6 7 6 3 12 9 8 9 12
5.4.2 指派问题的匈牙利算法
步骤1:首先让每一行、每一列减去该行(列)的最小数,保证每一行、每一列都 有零。