最新浙教版七年级数学下教案全集

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1平行线

教学目标:

1.理解平行线的意义,了解同一平面内两条直线的位置关系;

2.会根据几何语句画图,会用直尺和三角板画平行线;

3.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;

重点:平行线的概念与平行公理;

难点:对平行公理的理解.

教学过程:

一、新课导入:

1.相交线是如何定义的?

2.平面内两条直线的位置关系除相交外,还有哪些呢?

二、解决新知:

1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.(画出图形)

2.同一平面内两条直线的位置关系有两种:(1);(2).

3.对平行线概念的理解:

两个关键:一是“”(举例说明);二是“”.

一个前提:对直线而言.

4.平行线的画法:

平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:

一“落”(三角板的一边落在已知直线上),

二“靠”(用直尺紧靠三角板的另一边),

三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),

四“画”(沿三角板过已知点的边画直线).

5.平行公理:

过点B画直线a的平行线,能画出几条?再过点C画直线a的平行线,能画出几条?

.C

.B

m

回忆垂线性质:

平行公理: . 上图中过点C画直线a的平行线,它和前面过点B画出的直线平行吗?

平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.

即:如果b∥a,c∥a,那么. c

b

a

三.拓展应用

1.读下列语句,并画出图形:

(1)点P是直线AB外一点,直线CD经过点P,且与直线AB平行;

(2)直线AB,CD是相交直线,点P是直线AB,CD外的一点,直线EF经过点P且与直线AB 平行,与直线CD相交于点E ;

2.如图,直线a,b被直线c所截,形成的8个角中,其中同位角有对,内错角有对,同旁内角有对.

1.2同位角 内错角 同旁内角

〖教学目标〗

◆1、了解同位角、内错角、同旁内角的意义。

◆2、会在简单的图形中辨认同位角、内错角、同旁内角。

◆3、会在给定某个条件下进行有关同位角、内错角、同旁内角的判定和计算。 〖教学重点与难点〗

◆教学重点:同位角、内错角、同旁内角的概念。

◆教学难点:各对关系角的辨认,复杂图形的辨认是本节教学的难点。 〖教学过程〗 (三)教学过程: 一. 引入:中国最早的风筝据说是由古代哲学家墨翟制作的,风筝的骨架构成了多种关系的

角。

a1

a2

a387

6

54

32

1

这就是我们这节课要讨论的问题:两条直线和第三条直线相交的关系。 二.让我们接受新的挑战:

------讨论:两条直线和第三条直线相交的关系

如图:两条直线a1 , a2和第三条直线a3相交。 (或者说:直线 a1 , a2 被直线 a3 所截。)) a1

a2

a387

6

54

32

1

其中直线 a1 与直线 a3 相交构成四个角,直线 a2 与直线 a3 相交构成四个角。所以这个问题我们经常就叫它“三线八角”问题。 三.让我们来了解 “三线八角”:

a1a2

87

6

5

43

21

如图:直线 a1 , a2 被直线 a3 所截,构成了八个角。

1. 观察∠ 1与∠5的位置:它们都在第三条直线 a3 的同旁,并且分别位于直线 a1 , a2 的相同一侧,这样的一对角叫做“同位角”。

类似位置关系的角在图中还有吗?如果有,请找出来? 答: 有。 ∠2与∠6; ∠4与∠8; ∠3与∠7

2. 观察∠ 3与∠5的位置:它们都在第三条直线 a3 的异侧,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“内错角”。

类似位置关系的角在图中还有吗?如果有,请找出来? 答: 有。 ∠2与∠8

3. 观察∠ 2与∠5的位置:它们都在第三条直线 a3 的同旁,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“同旁内角”。 答: 有。 ∠3与∠8 四. 知识整理(反思):

问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?

确定前提(三线)

寻找构成的角(八角) 确定构成角中的关系角 问题2:在下面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?

结论:两个角的在同一直线上的边所在直线就是前提中的第三线。 五.试试你的身手:

例1:如图:请指出图中的同旁内角。(提示:请仔细读题、认真看图。)

答: ∠1与∠5; ∠4与∠6; ∠1与∠A ; ∠5与∠A 合作学习:请找出以上各对关系角成立时的其余各对关系角。

1. 其中:∠1与∠5 ;∠4与∠6是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。

2.其中: ∠1与∠A 是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。

3.其中: ∠5与∠A 是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。 六.让我们自己来试一试 :(练习) 1.看图填空:

相关文档
最新文档