初中数学勾股定理微课优质课评选PPT课件
合集下载
勾股定理数学优秀ppt课件
![勾股定理数学优秀ppt课件](https://img.taocdn.com/s3/m/9a953da55ff7ba0d4a7302768e9951e79b896900.png)
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
初中数学勾股定理优质课PPT课件
![初中数学勾股定理优质课PPT课件](https://img.taocdn.com/s3/m/6f54f706c1c708a1294a4401.png)
一 剪拼图法证明
b b
c a
b
c b
a
a
a
a
b
赵爽弦图
勾股定理:
如果直角三角形两条直角边长分别为a、b, 斜边长为c,那么a2+b2=c2 .
A
bc CaB
勾 股
证明方法二 面积恒等法证明
a bc
ac b
b S大正方形= (a+b)2
c
a S大正方形= S小正方形+ 4 S直角三角形
A
4
C
B
3
① 斜边=
分类讨论 A 4 C3 B 32 42 ② 直5 角边=
42 32 7
4.如图,图中所有的三角形都是直角三角形,四边形都是正 方形.已知正方形A,B,C,D的面积分别是3 ,4,1,3
,求最大正方形E的面积.
B A
C D
勾股树
E
H
E
公就知DA 元知道C前道许P 和多约大中的载应3勾约总高的0B用股0公结低第0勾数元出差一年大商记I 股组前了.位,约高载定,2勾可与古在就在0理如股以勾巴公提《0公欧给,30术说股比元出周,年4元几出他,,定伦前“髀,5,前里一们.用禹理人1勾算大3德个1还来是有经三世0禹巨勾0确世关》、纪在年著股定界的中股,治,《定两上人.四古水周几理处有.、希的朝何的水史弦腊实数公汉明原证位记五数践学元时了本明”学家2期勾》.世,家,股中纪刘定的徽理东证.
2
c a2 b2 12 22 5
C 1B
② 已知b = 2, c = 4, 求a .
A
a c2 b2 42 22 2 3
4 2
C
B
2. 在RtΔABC中, ∠B = 90º, 已知a = 2, b = 5, 求c .
b b
c a
b
c b
a
a
a
a
b
赵爽弦图
勾股定理:
如果直角三角形两条直角边长分别为a、b, 斜边长为c,那么a2+b2=c2 .
A
bc CaB
勾 股
证明方法二 面积恒等法证明
a bc
ac b
b S大正方形= (a+b)2
c
a S大正方形= S小正方形+ 4 S直角三角形
A
4
C
B
3
① 斜边=
分类讨论 A 4 C3 B 32 42 ② 直5 角边=
42 32 7
4.如图,图中所有的三角形都是直角三角形,四边形都是正 方形.已知正方形A,B,C,D的面积分别是3 ,4,1,3
,求最大正方形E的面积.
B A
C D
勾股树
E
H
E
公就知DA 元知道C前道许P 和多约大中的载应3勾约总高的0B用股0公结低第0勾数元出差一年大商记I 股组前了.位,约高载定,2勾可与古在就在0理如股以勾巴公提《0公欧给,30术说股比元出周,年4元几出他,,定伦前“髀,5,前里一们.用禹理人1勾算大3德个1还来是有经三世0禹巨勾0确世关》、纪在年著股定界的中股,治,《定两上人.四古水周几理处有.、希的朝何的水史弦腊实数公汉明原证位记五数践学元时了本明”学家2期勾》.世,家,股中纪刘定的徽理东证.
2
c a2 b2 12 22 5
C 1B
② 已知b = 2, c = 4, 求a .
A
a c2 b2 42 22 2 3
4 2
C
B
2. 在RtΔABC中, ∠B = 90º, 已知a = 2, b = 5, 求c .
勾股定理课件(共19张PPT)人教版初中数学八年级下册
![勾股定理课件(共19张PPT)人教版初中数学八年级下册](https://img.taocdn.com/s3/m/cae6b03e0a1c59eef8c75fbfc77da26924c59678.png)
1
+2·
2
ab =
即:在Rt△ABC 中,∠C=90 °
c2 = a2 + b2
1 2
c +ab
2
伽
菲
尔
德
证
法
归纳小结
“赵爽弦图”通过图形的切割、拼接,巧妙地利用面积关系证实
了命题的正确性,命题与直角三角形的边有关,我国把它称为
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
即a2+b2=c2.
勾股定理: 直角三角形两直角边a、b的平
方和,等于斜边c的平方。
即:a2+b2 =c2
谢谢观看
哲学家、数学家、天文学家
新知探究
思考
图17.1-2中三个正方形的面积有什么关系?等腰
直角三角形的三边之间有什么关系?
A
B
a
b
c
C
图17.1-2
三个正方形A、
B、C的面积有
什么关系?
新知探究
探究
等腰直角三角形有上述性质,其他
直角三角形是否也有这个性质?
C
A
B
C'
图1
A'
B'
图17.1-3
图2
(图中每个小方格代表一个单位面积)
教 学 目 标 / Te a c h i n g a i m s
1
2
了解勾股定理文化背景,体验勾股定理的探究过
程。
理解不同勾股定理的证明方法,能够分析
它们的异同。
能够用勾股定理解决直角三角形的相关学习
3
和解决生活中的实际问题。
情景导入
图17.1-1
毕达哥拉斯(Pythagoras,约前
《勾股定理》PPT精品课件(第1课时)
![《勾股定理》PPT精品课件(第1课时)](https://img.taocdn.com/s3/m/767bacf009a1284ac850ad02de80d4d8d15a01b2.png)
解:本题斜边不确定,需分类讨论: B 4
当AB为斜边时,如图
BC2 AB2 AC2 16 9 7,
3 C 图
B
4 AA 3 C
图
BC 7.
方法点拨:已知直角三角形的两边求
当BC为斜边时,如图
第三边,关键是先明确所求的边是直
BC2 AB2 AC2 16 9 25, 角边还是斜边,再应用勾股定理. BC 5.
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
c2 4 1 ab b a 2 a2 b2.
2
cb a b-a
赵爽弦图
知识讲解
右图是四个全等的直角三角形拼成的.请你根据此图, 利用它们之间的面积关系推导出: a2 b2 c2
∵S大正方形=(a+b)2=a2+b2+2ab,
知识讲解
猜想直角三角形的三边关系
B
C A
图中每个小方格子都是 边长为1的小正方形.
问题1
1、 BC=_3__, AC=_4__, AB=__5_ 2、 S黄 =_9__, S蓝 =1_6__, S红 =2_5__
3、S黄、S蓝与S红的关系是S_黄__+_S_蓝_=__S_红_.
4、能不能用直角三角形ABC的三边表 示S黄、S蓝、S红的等量关系?
S大正方形=4S直角三角形+ S小正方形 =4× 1 ab+c2
2
=c2+2ab, ∴a2+b2+2ab=c2+2ab,
∴a2 +b2 =c2.
a b
ac b
b ca
cb a
知识讲解
勾股定理
《勾股定理》PPT优质课件(第1课时)
![《勾股定理》PPT优质课件(第1课时)](https://img.taocdn.com/s3/m/9ae0e188c0c708a1284ac850ad02de80d4d806b4.png)
A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
勾股定理微课公开课一等奖优质课大赛微课获奖课件
![勾股定理微课公开课一等奖优质课大赛微课获奖课件](https://img.taocdn.com/s3/m/3b592b24bf1e650e52ea551810a6f524ccbfcbee.png)
D1 A1 D
A
4
C1
1 B1 C
2 B
假如长方形长、宽、高分别是a、b、c(a >b>c),你能求出蚂蚁从顶点A到C1最短 路径吗?
从A到C1最短路径是
a 2 (b c)2
第8页
例1、如图,长方体长为15cm,宽为10cm,高为 20cm,点B到点C距离为5cm,一只蚂蚁假如要沿着 长方体表面从A点爬到B点,需要爬行最短距离是多 少?
B C 20
分析 依据题意分析蚂蚁爬行路线有两 种情况(如图①② ),由勾股定理可求得 图1中AB最短.
15 A 10
①
5B
20
B
5
②
20
A 10 15
A 10 15
AB =√202+152 =√625
AB =√102+252 =√725
第9页
台阶中最值问题
例2、如图,是一个三级台阶,它每一级长、宽和高分 别等于5cm,3cm和1cm,A和B是这个台阶两个相正确 端点,A点上有一只蚂蚁,想到B点去吃可口食物.请你 想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点, 最短线路是多少?
B 1
6
3
2
A
8
第12页
小溪边长着两棵树,正好隔岸相望,一棵树高 30尺,另外一棵树高20尺;两棵树干间距离是 50尺,每棵树上都停着一只鸟,忽然两只鸟同 时看到两树间水面上游出一条鱼,它们立刻以 同样速度飞去抓鱼,结果同时到达目的。问这 条鱼出现在两树之间何处?
第13页
如图,等边三角形边长是2。
A
第16页
已知,一轮船以16海里/时速度从港口A出发 向西北方向航行,另一轮船以12海里/时速度 同时从港口A出发向东北方向航行,离开港口 2小时后,则两船相距( )
初二数学《勾股定理》课件
![初二数学《勾股定理》课件](https://img.taocdn.com/s3/m/6818bf64abea998fcc22bcd126fff705cd175c5b.png)
18世纪,欧拉证明了任意三角形的三 条边长都可以用三种不同的实数来表 示,这三种实数之和等于另外三种实 数的平方和。
勾股定理的重要性
勾股定理是几何学中的重要定理 之一,它揭示了直角三角形三边 之间的关系,是解决几何问题的
重要工具。
勾股定理在数学、物理、工程等 领域都有广泛的应用,如物理中 的力学、光学、声学等都涉及到
06
思考题
总结词:拓展思维
你能举出一些生活中应用 勾股定理的实际例子吗?
你认为勾股定理在现代科 技中有哪些应用?
列举
如何理解勾股定理在数学 中的地位和意义?
如何通过勾股定理来探索 和研究更复杂的几何问题
?
THANKS.
勾股定理在复数域的应用
勾股定理在复数域的应用
勾股定理可以在复数域中找到应用,例如在量子力学和信号处理等领域。
应用实例
在量子力学中,勾股定理可以用于描述粒子在三维空间中的运动状态;在信号处理中,勾股定理可以 用于计算信号的能量或功率等。
练习与思考
05
基础练习题
总结词:巩固基础
01
02
列举
勾股定理的基本形式是什么?
总结词
利用相似三角形证明勾股定理
详细描述
欧几里得通过构造两个相似三角形,利用相似三角形的性质,推导出直角三角 形两条直角边的平方和等于斜边的平方,从而证明了勾股定理。
赵爽的证法
总结词
利用面积证明勾股定理
详细描述
赵爽通过将直角三角形转化为矩形,利用面积关系,推导出直角三角形两条直角 边的平方和等于斜边的平方,从而证明了勾股定理。
勾股定理在解决与自然界的规律、现象等相关的问题时也 有着广泛的应用。例如,在解决与地球的自转、公转、太 阳系行星运动等相关的问题时,勾股定理可以提供重要的 思路和方法。
勾股定理的重要性
勾股定理是几何学中的重要定理 之一,它揭示了直角三角形三边 之间的关系,是解决几何问题的
重要工具。
勾股定理在数学、物理、工程等 领域都有广泛的应用,如物理中 的力学、光学、声学等都涉及到
06
思考题
总结词:拓展思维
你能举出一些生活中应用 勾股定理的实际例子吗?
你认为勾股定理在现代科 技中有哪些应用?
列举
如何理解勾股定理在数学 中的地位和意义?
如何通过勾股定理来探索 和研究更复杂的几何问题
?
THANKS.
勾股定理在复数域的应用
勾股定理在复数域的应用
勾股定理可以在复数域中找到应用,例如在量子力学和信号处理等领域。
应用实例
在量子力学中,勾股定理可以用于描述粒子在三维空间中的运动状态;在信号处理中,勾股定理可以 用于计算信号的能量或功率等。
练习与思考
05
基础练习题
总结词:巩固基础
01
02
列举
勾股定理的基本形式是什么?
总结词
利用相似三角形证明勾股定理
详细描述
欧几里得通过构造两个相似三角形,利用相似三角形的性质,推导出直角三角 形两条直角边的平方和等于斜边的平方,从而证明了勾股定理。
赵爽的证法
总结词
利用面积证明勾股定理
详细描述
赵爽通过将直角三角形转化为矩形,利用面积关系,推导出直角三角形两条直角 边的平方和等于斜边的平方,从而证明了勾股定理。
勾股定理在解决与自然界的规律、现象等相关的问题时也 有着广泛的应用。例如,在解决与地球的自转、公转、太 阳系行星运动等相关的问题时,勾股定理可以提供重要的 思路和方法。
(精选幻灯片)勾股定理ppt课件
![(精选幻灯片)勾股定理ppt课件](https://img.taocdn.com/s3/m/dd085138a55177232f60ddccda38376baf1fe024.png)
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
勾股定理微课课件-PPT
![勾股定理微课课件-PPT](https://img.taocdn.com/s3/m/aaa5713224c52cc58bd63186bceb19e8b9f6ec65.png)
证明1: 赵爽弦图的证法
S S 4S = + 大正方形
小正方形
直角三角形
c
b a
b a
c2=(b-a)2+4×1 ab c
2
中黄实 b (b -a)2
c
b a
a
化简得:
c
c2 =a2+ b2
证明2:
大正方形的面积可以表示为 (a+b)2 ;
c 也可以表示为 4 ab 2
2
c a
b
c a
b
∵
(a
bc
a2+b2=c2
猜想两直角边a、b与斜边c 之间的关系?
勾股定理 (毕达哥拉斯定理)
直角三角形两直角边的平方和 等于斜边的平方.
弦c 股b
┏
勾a
a2+b2=c2
我国早在三千多年就知道了这个定理,人们把 弯曲成直角的手臂的上半部分称为“勾”,下半 部分称为“股”,我国古代学者把直角三角形较 短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.因此就把这一定理称为 勾股定理.
勾股定理微课课件
问题:
相传2500年前,毕达哥拉斯有一次 在朋友家里做客时,发现朋友家用砖铺 成的地面中反映了直角三角形三边的某 种数量关系.
我们也来观察右
图中的地面,看看有 什么发现?
A
B
C
探究一:等腰直角三角形
(1)观察图1
C A
正方形A中含有 9 个
小方格,即A的面积是
___9__个单位面积。
C A
S正方形c
B 图1
C A
B 图2
(图中每个小方格代表一个单位面积)
把C看成边长为6的 正方形面积的一半
第1课时勾股定理微课ppt课件
![第1课时勾股定理微课ppt课件](https://img.taocdn.com/s3/m/d73610b1760bf78a6529647d27284b73f242360d.png)
如图我国古代证明该命题 的“赵爽弦图”.
赵爽指出:按弦图,又可以
勾股相乘为朱实二,倍之为
朱实四.以勾股之差自相乘为 中黄实.加差实,亦成弦实.
赵爽弦图
思考 你是如何理解的?你会证明吗?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的
如何称呼直角三角形的三 边吗?
弦 股
勾
那么勾、股、弦之间有什么关系呢?这 就是我们今天要探究的问题。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
C'
A面、积B/格、C的9面积有25什么关3系4 ? SA+SB=SC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
思考
等腰直角三角形三条边长度 之间有怎样的特殊关系?
小结
等腰直角三角形斜边的平 方等于两直角边的平方和.
证明
赵爽弦图
小正方形的面积= (a-b)2
=c2-4×
1 2
ab
即c2=a2+b2.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
赵爽指出:按弦图,又可以
勾股相乘为朱实二,倍之为
朱实四.以勾股之差自相乘为 中黄实.加差实,亦成弦实.
赵爽弦图
思考 你是如何理解的?你会证明吗?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的
如何称呼直角三角形的三 边吗?
弦 股
勾
那么勾、股、弦之间有什么关系呢?这 就是我们今天要探究的问题。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
C'
A面、积B/格、C的9面积有25什么关3系4 ? SA+SB=SC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
思考
等腰直角三角形三条边长度 之间有怎样的特殊关系?
小结
等腰直角三角形斜边的平 方等于两直角边的平方和.
证明
赵爽弦图
小正方形的面积= (a-b)2
=c2-4×
1 2
ab
即c2=a2+b2.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
17.1.1勾股定理课件(45张)
![17.1.1勾股定理课件(45张)](https://img.taocdn.com/s3/m/de30d1e83186bceb18e8bb31.png)
大正方形的面积可以表示为 (a+b)2 ;
c a
b
c a
b
也可以表示为
c2
+4•
ab 2
∵ (a+b)2
c2
+4•
ab 2
= a2+2ab+b2 = c2 +2ab
c a
b
c a
b
∴a2+b2=c2
美国总统的证明
伽菲尔德经过反复 的思考与演算,终于弄 清楚了其中的道理,并 给出了简洁的证明方 法.1876年4月1日,伽 菲尔德在《新英格兰教 育日志》上发表了他对 勾股定理的这一证法。 1881年,伽菲尔德就任 美国第二十任总统后, 人们为了纪念他对勾股 定理直观、简捷、易懂、 明了的证明,就称这一 证法称为“总统”证法。
章前图中左下角的图案有什么意义?为什么选 它作为2002年在北京召开的国际数学家大会的会 徽?
本章我们将探索并证明勾股定理及其逆定理, 并运用这两个定理去解决有关问题,由此可以加 深对直角三角形的认识。
读一读 勾 股 世 界
我国是最早了解勾股定理的国家之一。早在三千多年 前,周朝数学家商高就提出,将一根直尺折成一个直角三 角形,如果勾等于三,股等于四,那么弦就等于五。即 “勾三、股四、弦五”。故称之为“勾股定理”或“商高 定理” 。图1-1称为“弦图”,最早是由公元前3世纪我 国汉代的数学家赵爽在为《周髀算经》注解时给出的. 赵 爽利用它来证明勾股定理。在这本书中的另一处,还记载 了勾股定理的一般形式。
C A C的面积怎么求呢?
S正方形c
=
72
-4×
1 2
×4×3
25 (面积单位)
B
C
勾股定理公开课优秀课件ppt
![勾股定理公开课优秀课件ppt](https://img.taocdn.com/s3/m/511dd7eee87101f69f319547.png)
实验
在方格纸上,画 一个顶点都在格点 上的直角三角形;并 分别以这个直角三 角形的各边为一边 向三角形外作正方 形,仿照上面的方法 计算以斜边为一边 的正方形的面积.
P
Q CR
P
Q CR
用了“补”的方法
用了“割”的方法
如图,小方格的边长为1.
(1)你能求出正方形R的面积吗?
观察所得到的各组数据,你有什么发现?
P
SP+SQ=SR
a
Qb c
R
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
观察所得到的各组数据,你有什么发现?
SP+SQ=SR
a
bc
a2+b2=c2
猜想两直角边a、b与斜边c 之间的关系?
勾股定理 (毕达哥拉斯定理)
直角三角形两直角边的平方和 等于斜边的平方.
弦c 股b
┏
勾a
a2+b2=c2
国我家国之是一。最早早在三了千解多勾年前股,定理的 国国家家之之一。一早。在早三千在多三年前千,多年前,周 朝国家数之学一。家早商在高三千就多提年前出,,将一根直 尺国家折之成一。一早个在直三千角多,年前如,果勾等于三, 股国家等之于一。四早,在那三千么多弦年前就,等于五,即 “国家勾之三一。、早股在四三千、多弦年前五,”,它被记 载国家于之我一。国早古在代三千著多名年前的,数学著作 《国家周之髀一。算早经在》三千中多。年前
出水面1米 ,一阵大风吹过,红莲被吹至一边,花朵
齐及水面,如果知道红莲移动的水平距离为2米 ,问
这里水深多少?
A
x2+22=(x+1)2
1
C
2
Hห้องสมุดไป่ตู้
初二数学《勾股定理》PPT课件
![初二数学《勾股定理》PPT课件](https://img.taocdn.com/s3/m/b302c6a7d4bbfd0a79563c1ec5da50e2534dd179.png)
如果直角三角形两直角边分别为a, b,斜边为c,那么
即直角三角形两直角边的平方和等于 斜边的平方.
a
c
勾
弦
b
股
在RT△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
勾股定理的各种表达式:
c2=a2+b2 a2=c2-b2 b2=c2-a2
5米
B
A
C
12米
解:∵BC⊥AC, ∴在Rt△ABC中, AC=12,BC=5, 根据勾股定理,
1.求下列图中表示边的未知数x、y、z的值.
①
81
144
x
y
z
②
③
625
576
144
169
如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( )
B
A
勾 股 定 理
C
一、情景引入
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
5米
B
A
C
12米
电线杆折断之前的高度=BC+AB=5米+AB的长
SA+SB=SC
图甲
图乙
A的面积
B的面积
C的面积
4
4
A
B
C
C
图甲
1.观察图甲,小方格 的边长为1. ⑴正方形A、B、C的 面积各为多少?
A.3米 B.4米 C.5米 D.6米
C
2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )
A
B
C
A.50米 B.120米 C.100米 D.130米
即直角三角形两直角边的平方和等于 斜边的平方.
a
c
勾
弦
b
股
在RT△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
勾股定理的各种表达式:
c2=a2+b2 a2=c2-b2 b2=c2-a2
5米
B
A
C
12米
解:∵BC⊥AC, ∴在Rt△ABC中, AC=12,BC=5, 根据勾股定理,
1.求下列图中表示边的未知数x、y、z的值.
①
81
144
x
y
z
②
③
625
576
144
169
如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( )
B
A
勾 股 定 理
C
一、情景引入
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
5米
B
A
C
12米
电线杆折断之前的高度=BC+AB=5米+AB的长
SA+SB=SC
图甲
图乙
A的面积
B的面积
C的面积
4
4
A
B
C
C
图甲
1.观察图甲,小方格 的边长为1. ⑴正方形A、B、C的 面积各为多少?
A.3米 B.4米 C.5米 D.6米
C
2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )
A
B
C
A.50米 B.120米 C.100米 D.130米
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理
主要元素:边、角
证明方法一 剪拼图法证明
b b
c a
b
c b
a
a
a
a
b
赵爽弦图
勾股定理:
如果直角三角形两条直角边长分别为a、b, 斜边长为c,那么a2+b2=c2 .
A
bc CaB
勾 股
证明方法二 面积恒等法证明
a bc
ac b
b S大正方形= (a+b)2
c
a S大正方形= S小正方形+ 4 S直角三角形
在探索勾股定理的过程中,你有什么感悟和欣赏.
C B
A
H
D C
E
A
P
I B
c
a
b
a bc
ac b
b
c
a
cb a
GQ
F
放眼未来,华罗庚曾设想:向太空发射一种图形,因为这种图形在几千年前 就已经被人类所认识,如果外星人是“文明人”,也必定认识这种图形.
如图,以直角三角形各边为直径向外作半圆,
则半圆A,B,C的面积关系为
A
分类讨论
A
4
C
B
3
① 斜边= 32 42 5
4 C3 B
②直角边= 42 32 7
4.如图,图中所有的三角形都是直角三角形,四边形 都是正方形.已知正方形A,B,C,D的面积分别是
3 ,4,1,3,求最大正方形E的面积.
B A
C D
勾股树
E
H
E
公就知DA 元知道C前道许P 和多约大中的载应3勾约总高的0B用股0公结低第0勾数元出差一年大商记I 股组前了.位,约高载定,2勾可与古在就在0理如股以勾巴公提《0公欧给,30术说股比元出周,年4元几出他,,定伦前“髀,5,前里一们.用禹理人1勾算大3德个1还来是有经三世0禹巨勾0确世关》、纪在年著股定界的中股,治,《定两上人.四古水周几理处有.、希的朝何的水史弦腊实数公汉明原证位记五数践学元时了本明”学家2期勾》.世,家,股中纪刘定的徽理东证.
=c2+ 4×
1
ab
2
c
b
∴ (a+b)2 = c2+ 4×
1
2ab
a2 + 2ab+b2 = c2+ 2ab
a
∴ a2 + b2 = c2
证明方法三 毕达哥拉斯证法
a bc
b
b
c
a
a
a a
ac b
cb b
a
b
b a
学以致用
பைடு நூலகம்
A
1. 在RtΔABC中, ∠C = 90º
① 已知a = 1, b = 2, 求c.
C c
b B
aA
根据勾股定理, a2 + b2=c2, 圆的面积公式: S=πr2 , 得到半圆A,B,C的面积关系
C
c aA b
为SA+SB=SC.
B
数形结合
从直角三角形的各边向外作正方形能否推广到从 各边向外作等边三角形(正n边形)吗?
C c aA b
B
C c aA b
B
C caA b
B
C
ca A b
B
作业:
(1)整理课堂上所提到的勾股定理的证明方法; (2)教材28页,1、2、3 (3)通过上网等方式查找勾股定理的有关史料、趣事及其他证 明方法.
谢 谢!
2
c a2 b2 12 22 5
C 1B
② 已知b = 2, c = 4, 求a .
A
a c2 b2 42 22 2 3
4 2
C
B
2. 在RtΔABC中, ∠B = 90º, 已知a = 2, b = 5, 求c .
A
c b2 a2 52 22 21
5
B2
C
3. 在RtΔABC中,两条边的长度分别是3和 4, 求另一边的长度.
GQ
前3000年
F
前2000年
前1000年
公元元年
1000年
2000年
B
前2500年
前1500年
前500年
500年
1500年
a
c
朱实
大建滥.朱约筑后实C公宏的朱黄实实元伟土朱前的地b实2金时5字,0A0塔也年公毕规大《作和应,元达律约周出测用古前哥的公髀了量过埃拉证5元算详尼勾世及斯明2学为前经细罗股纪0人就.家大02》注河定,在2公5大会内释年泛理古0开会会年的和在希发,徽,勾证北腊表就的赵股明京数了以图爽定.召学这赵案对理开家一爽.的弦国图际作数
主要元素:边、角
证明方法一 剪拼图法证明
b b
c a
b
c b
a
a
a
a
b
赵爽弦图
勾股定理:
如果直角三角形两条直角边长分别为a、b, 斜边长为c,那么a2+b2=c2 .
A
bc CaB
勾 股
证明方法二 面积恒等法证明
a bc
ac b
b S大正方形= (a+b)2
c
a S大正方形= S小正方形+ 4 S直角三角形
在探索勾股定理的过程中,你有什么感悟和欣赏.
C B
A
H
D C
E
A
P
I B
c
a
b
a bc
ac b
b
c
a
cb a
GQ
F
放眼未来,华罗庚曾设想:向太空发射一种图形,因为这种图形在几千年前 就已经被人类所认识,如果外星人是“文明人”,也必定认识这种图形.
如图,以直角三角形各边为直径向外作半圆,
则半圆A,B,C的面积关系为
A
分类讨论
A
4
C
B
3
① 斜边= 32 42 5
4 C3 B
②直角边= 42 32 7
4.如图,图中所有的三角形都是直角三角形,四边形 都是正方形.已知正方形A,B,C,D的面积分别是
3 ,4,1,3,求最大正方形E的面积.
B A
C D
勾股树
E
H
E
公就知DA 元知道C前道许P 和多约大中的载应3勾约总高的0B用股0公结低第0勾数元出差一年大商记I 股组前了.位,约高载定,2勾可与古在就在0理如股以勾巴公提《0公欧给,30术说股比元出周,年4元几出他,,定伦前“髀,5,前里一们.用禹理人1勾算大3德个1还来是有经三世0禹巨勾0确世关》、纪在年著股定界的中股,治,《定两上人.四古水周几理处有.、希的朝何的水史弦腊实数公汉明原证位记五数践学元时了本明”学家2期勾》.世,家,股中纪刘定的徽理东证.
=c2+ 4×
1
ab
2
c
b
∴ (a+b)2 = c2+ 4×
1
2ab
a2 + 2ab+b2 = c2+ 2ab
a
∴ a2 + b2 = c2
证明方法三 毕达哥拉斯证法
a bc
b
b
c
a
a
a a
ac b
cb b
a
b
b a
学以致用
பைடு நூலகம்
A
1. 在RtΔABC中, ∠C = 90º
① 已知a = 1, b = 2, 求c.
C c
b B
aA
根据勾股定理, a2 + b2=c2, 圆的面积公式: S=πr2 , 得到半圆A,B,C的面积关系
C
c aA b
为SA+SB=SC.
B
数形结合
从直角三角形的各边向外作正方形能否推广到从 各边向外作等边三角形(正n边形)吗?
C c aA b
B
C c aA b
B
C caA b
B
C
ca A b
B
作业:
(1)整理课堂上所提到的勾股定理的证明方法; (2)教材28页,1、2、3 (3)通过上网等方式查找勾股定理的有关史料、趣事及其他证 明方法.
谢 谢!
2
c a2 b2 12 22 5
C 1B
② 已知b = 2, c = 4, 求a .
A
a c2 b2 42 22 2 3
4 2
C
B
2. 在RtΔABC中, ∠B = 90º, 已知a = 2, b = 5, 求c .
A
c b2 a2 52 22 21
5
B2
C
3. 在RtΔABC中,两条边的长度分别是3和 4, 求另一边的长度.
GQ
前3000年
F
前2000年
前1000年
公元元年
1000年
2000年
B
前2500年
前1500年
前500年
500年
1500年
a
c
朱实
大建滥.朱约筑后实C公宏的朱黄实实元伟土朱前的地b实2金时5字,0A0塔也年公毕规大《作和应,元达律约周出测用古前哥的公髀了量过埃拉证5元算详尼勾世及斯明2学为前经细罗股纪0人就.家大02》注河定,在2公5大会内释年泛理古0开会会年的和在希发,徽,勾证北腊表就的赵股明京数了以图爽定.召学这赵案对理开家一爽.的弦国图际作数