高中数学选修1-1教案三篇

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修1-1教案三篇

【导语】以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。而今的数学教学要求把学生的生活经验带到课堂,要求在简单的知识框架和结构上创造性的使用教材,让课堂变得有血有肉。

《椭圆》

一、教材分析

(一)教材的地位和作用

本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

(二)教学重点、难点

1.教学重点:椭圆的定义及其标准方程

2.教学难点:椭圆标准方程的推导

(三)三维目标

1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。*

3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

二、教学方法和手段

采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

“授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

三、教学程序

1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

6.例题讲解:通过例题规范学生的解题过程。

7.巩固练习:以多种题型巩固本节课的教学内容。

8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。

9.课后作业:面对不同层次的学生,设计了必做题与选做题。

10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

四、教学评价

本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

《简单的逻辑联结词》

【学情分析】:

(1)“常用逻辑用语”是帮助学生正确使用常用逻辑用语,更好的理解数学内容中的逻辑关系,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流,避免在使用过程中产生错误。

(2)“常用逻辑用语”应通过实例理解,避免形式化的倾向.常用逻辑用语的教学不应当从抽象的定义出发,而应该通过数学和生活中的丰富实例理解常用逻辑用语的意义,体会

常用逻辑用语的作用。对逻辑联结词“或”、“且”、“非”的含义,只要求通过数学实例加以了解,使学生正确地表述相关的数学内容。

(3)“常用逻辑用语”的学习重在使用.对于“常用逻辑用语”的学习,不仅需要用已学过的数学知识为载体,而且需要把常用逻辑用语用于后继的数学学习中。

(4)培养学生用所学知识解决综合数学问题的能力。

【教学目标】:

(1)知识目标:

通过实例,了解简单的逻辑联结词“且”、“或”的含义;

(2)过程与方法目标:

了解含有逻辑联结词“且”、“或”复合命题的构成形式,以及会对新命题作出真假的判断;

(3)情感与能力目标:

在知识学习的基础上,培养学生简单推理的技能.

【教学重点】:

通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容.

【教学难点】:

简洁、准确地表述“或”命题、“且”等命题,以及对新命题真假的判断.

【教学过程设计】:

教学环节教学活动设计意图

情境引入问题1:

下列三个命题间有什么关系?

(1)12能被3整除;

(2)12能被4整除;

(3)12能被3整除且能被4整除; 通过数学实例,认识用用逻辑联结词“且”联结两个命题可以得到一个新命题;

知识建构归纳总结:

一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,

记作,读作“p且q”.

引导学生通过通过一些数学实例分析,概括出一般特征。

三、自主学习 1、引导学生阅读教科书上的例1中每组命题p,q,让学生尝试写出命题,判断真假,纠正可能出现的逻辑错误。学习使用逻辑联结词“且” 联结两个命题,根据“且”的含义判断逻辑联结词“且” 联结成的新命题的真假。

2、引导学生阅读教科书上的例2中每个命题,让学生尝试改写命题,判断真假,纠正可能出现的逻辑错误。

归纳总结:

当p,q都是真命题时,是真命题,当p,q两个命题中有一个是假命题时,是假命题,

学习使用逻辑联结词“且” 改写一些命题,根据“且”的含义判断原先命题的真假。

引导学生通过通过一些数学实例分析命题p和命题q以及命题的真假性,概括出这三个命题的真假性之间的一般规律。

四、学生探究问题2:

下列三个命题间有什么关系?判断真假。

(1)27是7的倍数;

(2)27是9的倍数;

(3)27是7的倍数或27是9的倍数; 通过数学实例,认识用用逻辑联结词“或”联结两个命题可以得到一个新命题;

归纳总结

1.一般地,用逻辑联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作“p∨q”,读作“p或q”.

相关文档
最新文档