第12章套利定价理论
套利定价理论-金融市场的套利均衡机制(ppt70张)
第一节 套利交易行为
1. 2. 3.
套利交易(同时买低卖高) 实现过程:不需要承担风险,而从市场价格的 不均衡中赚取好处; 实现结果:随着套利者的套利活动的进行,市 场价格逐渐趋于平衡; 例子: 日常生活中所说的“倒买倒卖”有某种套利的 意思; 杨百万的起家历程
第一节 套利交易行为
1. 2. 3.
33.91 -0.15 1 -0.87 -0.38 48.15 -0.29 -0.87 1 0.22 8.58 0.68 -0.38 0.22 1
发现什么明显的套利机会了吗?
第三节 聪明的套利交易者与无风险 套利机会的消失
若构造一个由等权重的A、B、C三种股票组 成的资产组合,将其可能的未来回报率与第 四种股票D进行对比:
第二节 投资预期收益的多因素模型
市场指数模型是最简单的预期收益的因素模型;
影响 多种因素 的变化 市场指数 的变动 影响 市场内资产 价格的变动
问题:既然市场指数综合所有风险,提高投资 直接影响分析 决策的效率,我们还需要关注各种风险因素的 影响吗?
第二节 投资预期收益的多因素模型
多因素模型的存在意义
1.
2.
3.
牛市套利:期铜的跨期套利—买短期卖长期 熊市套利:大豆的跨期套利—卖短期买长期 蝶式套利:中期的跨期套利
5.
无风险套利:杨百万的起家史
第一节 套利交易行为
1.
套利交易发生的条件: 资产定价出现了偏差
1.
相同现金流的资产的价格不同
1
P 证 券 1 的 价 格 C 1 P 证 券 2 的 价 格 2
章套利定价理论 —金融市场的套利均衡机制
第一节 套利交易行为
套利定价理论概述
套利定价理论概述套利定价理论是金融经济学中的一个重要理论框架,用于解释和分析金融市场中的套利机会和定价行为。
套利定价理论主要基于无风险套利的原则,即通过利用市场中的不完全信息、不平衡的供需关系和价格差异,以无风险的方式获取利润。
本文将对套利定价理论进行概述。
套利定价理论的核心思想是市场是有效的,即所有的信息都被充分反映在资产价格中。
基于这个前提,任何未获得利润的套利机会都将被市场参与者迅速发现并加以利用。
根据套利定价理论,当市场存在未获得利润的机会时,会有投资者利用这些机会进行交易,逐步将市场价格调整到一个平衡状态。
因此,套利定价理论认为,市场中的价格是基于套利行为和投资者的决策而形成的。
套利定价理论的基本原则是无风险套利的存在。
无风险套利是指在不持有任何资金、不承担风险的情况下,通过买入低价资产并卖出高价资产来获取利润。
无风险套利的存在对于套利定价理论的有效性至关重要,因为只有在无风险套利的条件下,市场价格才会被有效地调整到一个平衡状态。
套利定价理论还包括两个重要概念:相对定价和绝对定价。
相对定价是指在两个或多个相关资产之间进行比较,确定它们之间的价值关系。
相对定价考虑了资产之间的相关性和互换性,以确定其相对价值。
绝对定价是指单独对一个资产进行定价,不考虑其他资产的影响。
绝对定价更注重资产本身的内在价值和基本经济原理。
虽然套利定价理论在金融市场中起着重要的作用,但在实际应用中存在一些限制。
首先,套利定价理论基于市场是有效的和无风险套利的前提,然而实际市场中存在着信息不对称、流动性不足、交易成本等问题,这些都会影响套利活动的效果。
其次,套利定价理论忽视了投资者的行为偏好和风险承受能力,而实际市场中的交易决策往往受到投资者情绪和风险偏好的影响。
综上所述,套利定价理论是金融经济学中的一个重要理论框架,通过无风险套利的原则解释和分析金融市场中的套利机会和定价行为。
尽管套利定价理论在理论上是有效的,但在实际应用中需要考虑市场的非理性行为和各种限制条件。
《套利定价理论讲》课件
PART 02
套利定价模型的假设条件
市场的有效性
投资者无法通过交易 影响市场价格,即市 场是有效的。
投资者无法通过信息 优势获取超额收益。
投资者无法获得超额 收益,只能获得与市 场风险相匹配的收益 。
投资者偏好
投资者对风险和收益的偏好不同,因 此对同一投资组合的估值也不同。
投资者偏好可以用无差异曲线来表示 ,无差异曲线上的投资组合给投资者 带来的满足程度是相同的。
如果存在套利机会,投资者会迅速买入低估资产、卖出高估资产,从而消除套利 机会,使市场重新达到均衡状态。
PART 03
套利定价模型的推导与验 证
套利定价模型的推导过程
假设条件
关键步骤
假设市场存在无风险套利机会,投资 者可以无限制地借贷,市场是完美的 。
利用无套利机会的条件,通过比较不 同资产的风险和收益,推导出资产价 格之间的关系。
它通过相对少量的经济因素来解释资产价格的变动,使得模型更易于理
解和应用。
02
理论基础坚实
该理论基于现代金融学的核心理论——有效市场假说,并在此基础上进
一步发展。它揭示了市场价格机制的作用原理,为投资者提供了深入了
解市场的视角。
03
适用范围广
套利定价理论不仅适用于股票市场,还可以应用于债券、期货、期权等
套利定价理论是一种现代金融理论,它 通过建立一个多因素模型来描述资产价 格的变动,并解释了为什么不同资产的
价格会存在差异。
该理论认为,套利行为是市场的一种自 我调节机制,通过套利者的买卖操作消 除价格差异,使资产价格回归其基本价
值。
套利定价理论的核心是“套利关系”, 即两个或多个资产价格之间应该存在一 种均衡关系,如果这种关系被打破,套 利者就会通过买卖操作来获取无风险利
套利定价理论
股票(i) 1
期望收益率(Eri) 15%
敏感度(i) 0.5
2
20%
2.0
3
10%
1.5
可知套利组合满足下面方程的解:
1+2+3=0
0.51+2.02+1.53=0
0.151+0.202+0.103>0 满足这三个条件的解有无数个,如(5,-2,-3),即买入5份股票1,卖空2
所有投资者具有相同的预期,任何证券i的回报率满 足k因子模型: ri=E(ri)+i1F1+i2F2++ikFk+i
E(i)=0,i与其他所有因子不相关,而且cov(i,j)=0; Fj是均值为0的第j个因子。
市场上的证券的种类大于因子的数目k.
套利组合与APT模型的推导:
APT假定的市场条件是无套利的,而CAPM假定有效 市场组合的存在;
APT不需要对收益的分布作出假设; APT允许允许资产收益受多个因素的影响; APT不需要定义有效市场组合; APT可以是多时期模型.
2 套利定价模型的实证检验
实证检验APT的程序一般分为两个步骤: 第一步 根据方程
0.25
50
60
-10
70
40
-30
25
30
各股票的基本统计数据为:
相关系数
股票 现价 期望价格 标准差
A
B
C
D
A
15
27.5
20.16
1
B
15
30
29.44.98 0.02 -0.9
1
D
15
22.5
3.23
套利定价理论
第12章 套利定价理论 选择:1、根据套利定价理论:a. 高贝塔值的股票都属于高估定价。
b. 低贝塔值的股票都属于低估定价。
c. 正阿尔法值的股票会很快消失。
d. 理性的投资者将会从事与其风险承受力相一致的套利活动。
2、 在什么条件下,会产生具有正阿尔法值的零资产组合?a. 投资的期望收益率为零。
b. 资本市场线是机会集的切线。
c. 不违反一价定律。
d. 存在无风险套利的机会。
3、套利定价理论不同于单因素C A P M 模型,是因为套利定价理论: a. 更注重市场风险。
b. 减小了分散化的重要性。
c. 承认多种非系统风险因素。
d. 承认多种系统风险因素。
计算1、已知由下述股票构成的组合的方差为0.06,求(1)每只股票的非系统风险;(2)组合的BETA 值;(3)组合的方差;(4)组合的期望收益;(5)若A 与B 、A 与C 、B 与C 之间2、假定证券收益由单指数模型确定:i M i i i R R εβα++=其中,i R 是证券i 的超额收益,而M R 是市场超额收益,无风险利率为2%。
假定有三种证券A 、B 、C ,其特性的数据如下所示:a. 若M σ=2 0%,计算证券A 、B 、C 的收益的方差。
b. 现假定拥有无限资产,并且分别与A 、B 、C 有相同的收益特征。
如果有一种充分分散化的资产组合的A 证券投资,则该投资的超额收益的均值与方差各是多少?如果仅是由B 种证券或C 种证券构成的投资,情况又如何?c. 在这个市场中,有无套利机会?如何实现?具体分析这一套利机会(用图表)。
套利定价理论与实证例题和知识点总结
套利定价理论与实证例题和知识点总结一、套利定价理论(APT)的基本概念套利定价理论是一种资产定价模型,由斯蒂芬·罗斯于1976 年提出。
它试图解释资产的预期收益率与多个因素之间的线性关系,与资本资产定价模型(CAPM)不同,APT 并不依赖于市场组合这一单一的风险因素。
APT 的核心假设是:资产的收益率受到多个系统性风险因素的影响,并且不存在套利机会。
套利机会是指在不承担风险的情况下,能够获得正的收益。
二、APT 的数学表达式假设资产的收益率受到 K 个因素的影响,可以用以下线性方程来表示:\R_i = E(R_i) +\beta_{i1}F_1 +\beta_{i2}F_2 +\cdots +\beta_{iK}F_K +\epsilon_i\其中,\(R_i\)是资产 i 的收益率,\(E(R_i)\)是资产 i 的预期收益率,\(\beta_{ij}\)是资产 i 对因素 j 的敏感性系数,\(F_j\)是因素 j 的价值变动,\(\epsilon_i\)是资产 i 的特异性风险(非系统性风险)。
三、影响资产收益率的因素在实际应用中,选择哪些因素来解释资产收益率是一个关键问题。
常见的因素包括宏观经济变量,如通货膨胀率、利率、经济增长率等;行业特定因素,如行业竞争程度、原材料价格等;以及公司特定因素,如公司规模、财务杠杆等。
四、实证例题假设我们要研究股票 A 的收益率,并且认为它受到两个因素的影响:宏观经济增长率(\(F_1\))和利率水平(\(F_2\))。
经过一段时间的观察和数据分析,我们得到以下估计值:\(E(R_A) = 5\%\)\(\beta_{A1} = 12\),\(\beta_{A2} =-08\)在某一时期,宏观经济增长率为 3%,利率水平为 2%。
则股票 A 在该时期的预期收益率为:\\begin{align}R_A&=5\%+ 12×3\% 08×2\%\\&=5\%+ 36\% 16\%\\&=7\%\end{align}\五、套利机会的判断如果市场上存在两种资产,资产 1 和资产 2,它们的预期收益率和风险因素敏感性如下:资产 1:\(E(R_1) = 8\%\),\(\beta_{11} = 1\),\(\beta_{12} = 05\)资产 2:\(E(R_2) = 6\%\),\(\beta_{21} = 08\),\(\beta_{22} = 06\)假设两个因素的值分别为\(F_1 = 2\%\),\(F_2 = 1\%\)。
套利定价理论和风险收益多因素模型PPT课件
INVESTMENTS | BODIE, KANE, MARCUS
11-45
强势有效检验:内幕消息
• Jaffe, Seyhun, Givoly和Palmon的研究表 明内幕人员能够通过交易本公司的股票来 获利。
• 美国证券交易委员会(SEC)要求所有的 内部人员登记他们的交易活动。
有效市场假设
INVESTMENTS | BODIE, KANE, MARCUS
11-24
有效市场假设(EMH)
• 莫里斯·肯德尔(1953) 发现股价不存在 任何可预测范式。
• 价格在任何一天都可能上升或下降。 • 我们如何解释股价的随机变化?
INVESTMENTS | BODIE, KANE, MARCUS
• Keim和Stambaugh – 债券收益之间的差幅可以预测收益。
INVESTMENTS | BODIE, KANE, MARCUS
11-41
半强式检验:市场异象
• 市盈率效应 • 小公司效应(1月效应) • 被忽略的公司效应和流动性效应 • 净市率效应 • 盈余报告后的价格漂移
INVESTMENTS | BODIE, KANE, MARCUS
11-25
有效市场假说(EMH)
• 股价可以反映所有已知信息的观点称之为 有效市场假说EMH。
• 由于市场参与者急需新的交易信息,关于 未来良好表现的预测导致目前表现良好。
– 结果: 价格变化到与股票风险相称的收益率。
INVESTMENTS | BODIE, KANE, MARCUS
11-26
有效市场假设(EMH)
INVESTMENTS | BODIE, KANE, MARCUS
罗斯《公司理财》(第9版)配套题库【章节题库-套利定价理论】
第12章套利定价理论一、单选题下列哪个不是CAPM的假设?()(中央财大2011金融硕士)A.投资者风险厌恶,且其投资行为是使其终期财富的期望效用最大B.投资者是价格承受者,即投资者的投资行为不会影响市场上资产的价格运动C.资产收益率满足多因子模型D.资本市场上存在无风险资产,且投资者可以无风险利率无限借贷【答案】C【解析】套利定价理论(APT)假设资产收益率满足多因子模型。
套利定价模型的优点之一是它能够处理多个因素,而资本资产定价模型就忽略了这一点。
根据套利定价的多因素模型,收益与风险的关系可以表示为:式中,β1代表关于第一个因素的贝塔系数,β2代表关于第二个因素的贝塔系数,依此类推。
二、简答题1.请解释什么是证券组合的系统性风险和非系统性风险,并图示证券组合包含证券的数量与证券组合系统性风险和非系统性风险间的关系。
(对外经贸大学2004研)答:(1)系统风险亦称“不可分散风险”或“市场风险”,与非系统风险相对,指由于某些因素给市场上所有的证券都带来经济损失的可能性,如经济衰退、通货膨胀和需求变化给投资带来的风险。
这种风险影响到所有证券,不可能通过证券组合分散掉。
即使投资者持有的是收益水平及变动情况相当分散的证券组合,也将遭受这种风险。
对于投资者来说,这种风险是无法消除的。
系统风险的大小取决于两个方面,一是每一资产的总风险的大小,二是这一资产的收益变化与资产组合中其他资产收益变化的相关关系(由相关关系描述)。
在总风险一定的前提下,一项资产与市场资产组合收益变化的相关关系越强,系统风险越大,相关关系越弱,系统风险越小。
非系统风险,亦称“可分散风险”或“特别风险”,是指那些通过资产组合就可以消除掉的风险,是公司特有风险,例如某些因素对个别证券造成经济损失的可能性。
这种风险可通过证券持有的多样化来抵消,因此,非系统风险是通过多样化投资可被分散的风险。
多样化投资之所以可以分散风险,是因为在市场经济条件下,投资的收益现值是随着收益风险和收益折现率的变化而变化的。
套利定价理论
套利定价理论套利定价理论(Arbitrage Pricing Theory, APT)套利定价理论是由斯蒂夫?罗斯于1976年提出的。
他试图提出一种比传统CAPM更好的解释资产定价的理论模型。
经过十几年的发展,APT在资产定价理论中的地位已不亚于CAPM。
其基本思想是从套利的角度来考察套利与市场均衡的关系,应用套利原理得出在投资市场均衡状态下资本资产的定价关系。
由于套利定价理论具有同资本资产定价模型一样的经济解释功能,而且所涉及的假设条件较少,与现实生活更加接近,因此该理论日益受到理论界与实际工作者的重视。
一、套利的含义所谓套利,是指利用一个或多个市场上所存在的各种价格差异,在不冒任何风险或冒很小风险的情况下赚取较高收益的一种交易活动。
也就是说,套利是利用资产定价的错误、价格联系的失常,以及资本市场缺乏有效性等机会,通过买进价格被低估的资产,同时卖出价格被高估的资产来获取无风险利润的一种行为。
一种简单而又明显的套利机会是,某相同资产在两个市场上的价格不同且价格差高于交易成本,此时,投资者只需在价格高的投资市场上将该资产卖空并同时在价格低的市场上买入该资产,这样就可以从一买一卖中获取一个正的价差收益,而且这种套利没有风险。
很明显,在一个高度竞争的、流动性很强的市场体系中,上述的套利机会一旦被发现,所有理性的投资者都会利用它进行套利,这会立即引起市场的反应,但是机会稍纵即逝。
这种套利行为直接改变着这两个市场上该种货币的供求,最终导致二者供求实现均衡,同类资产在不同市场上的价格也会很快趋同。
价格同一意味着套利机会的消失。
这也意味着有效均衡市场的形成。
二、套利定价理论的主要观点套利定价理论认为,如果市场未达到均衡状态的话,市场上就会存在无风险的套利机会。
由于理性投资者具有厌恶风险和追求收益最大化的行为特征,因此,投资者一旦发现有套利机会就会设法利用他们,随着套利者的买进和卖出,有价证券的供求状况将随之改变,套利空间逐渐减少直至消失,有价证券的均衡价格得以实现,因此,这种理论实际上也隐含了对一价定律的认同。
套利定价理论Arbitrage Pricing Theory
套利定价理论套利定价理论(Arbitrage Pricing Theory,简称APT)[编辑]套利定价理论概述套利定价理论APT(Arbitrage Pricing Theory) 是CAPM的拓广,由APT给出的定价模型与CAPM一样,都是均衡状态下的模型,不同的是APT的基础是因素模型。
套利定价理论认为,套利行为是现代有效率市场(即市场均衡价格)形成的一个决定因素。
如果市场未达到均衡状态的话,市场上就会存在无风险套利机会. 并且用多个因素来解释风险资产收益,并根据无套利原则,得到风险资产均衡收益与多个因素之间存在(近似的)线性关系. 而前面的CAPM模型预测所有证券的收益率都与唯一的公共因子(市场证券组合)的收益率存在着线性关系。
[编辑]套利定价理论与资本资产定价模型的异同点1976年,美国学者斯蒂芬·罗斯在《经济理论杂志》上发表了经典论文“资本资产定价的套利理论”,提出了一种新的资产定价模型,此即套利定价理论(APT理论)。
套利定价理论用套利概念定义均衡,不需要市场组合的存在性,而且所需的假设比资本资产定价模型(CAPM模型)更少、更合理。
与资本资产定价模型一样,套利定价理论假设:1.投资者有相同的投资理念;2.投资者是回避风险的,并且要效用最大化;3.市场是完全的。
与资本资产定价模型不同的是,套利定价理论不包括以下假设:1.单一投资期;2.不存在税收;3.投资者能以无风险利率自由借贷;4.投资者以收益率的均值和方差为基础选择投资组合。
[编辑]套利定价理论的意义套利定价理论导出了与资本资产定价模型相似的一种市场关系。
套利定价理论以收益率形成过程的多因子模型为基础,认为证券收益率与一组因子线性相关,这组因子代表证券收益率的一些基本因素。
事实上,当收益率通过单一因子(市场组合)形成时,将会发现套利定价理论形成了一种与资本资产定价模型相同的关系。
因此,套利定价理论可以被认为是一种广义的资本资产定价模型,为投资者提供了一种替代性的方法,来理解市场中的风险与收益率间的均衡关系。
套利定价理论
n
lim
n
p
2
lim D(
n i1
wi (ai
bi
f
ei ))
lim
n
bp2
f
2
2 ep
n
n
其中,bp
wi
bi,
2 ep
wi2
2 ei
i 1
i 1
18
假设残差有界,即
2 ei
s2
且组合p高度分散化,即wi充分小,则对
于资产i成立 wi / n
则有 从而
2 ep
1 n2
n
2s2
26
3. 按12%的利率贷出一笔1年期的款项金 额为1000万元。
4. 1年后收回1年期贷款,得本息1127万 元(等于1000e0.12×1),并用1110万 元(等于1051e0.11×0.5)偿还1年期的 债务后,交易者净赚17万元(1127万 元-1110万元)。
这是哪一种套利?
27
套利不仅仅局限于同一种资产(组合), 对于整个资本市场,还应该包括那些“相 似”资产(组合)构成的近似套利机会。
APT与CAPM的比较
– APT对资产的评价不是基于马克维茨模型, 而是基于无套利原则和因子模型。
– 不要求“同质期望”假设,并不要求人人一致 行动。只需要少数投资者的套利活动就能消除 套利机会。
– 不要求投资者是风险规避的!
29
APT的基本假设
1. 市场是有效的、充分竞争的、无摩擦的 (Perfectly competitive and frictionless capital markets);
bi1bj1
2 f1
bi2bj2
2 f2
《套利定价理论A》课件
资产价格由其内在价值决定假设
资产价格由其内在价值决定假设意味着市场中 的证券价格是由其内在价值决定的,而不是由 市场情绪、投机等因素决定的。
在资产价格由其内在价值决定假设下,市场中 的所有投资者都是价值投资者,他们总是追求 购买低估的证券和卖出高估的证券。
在资产价格由其内在价值决定假设下,市场中 的所有信息都是关于证券内在价值的,即信息 是相关的和有用的。
套利定价理论需要大量的历史数据和精确 的参数估计,对于数据质量和数量要求较 高。
套利定价理论建立在严格的假设条件下, 如市场无摩擦、投资者理性等,现实市场 难以完全满足这些假设。
无法解释非理性行为
无法处理金融创新
套利定价理论难以解释市场中的非理性行 为和过度反应等现象。
随着金融市场的不断发展和创新,套利定 价理论在解释新出现的金融产品和服务方 面存在局限。
实证研究与理论建模相结合
未来的研究可以更多地采用实证研究与理论建模相结合的方法,以更 好地检验和发展套利定价理论。
06
套利定价理论的实际应用案例
基于套利定价理论的资产配置策略
资产配置策略
套利定价理论为投资者提供了基于风险和收益之间平衡的资 产配置策略。通过分析不同资产之间的风险和回报关系,投 资者可以构建有效的投资组合,实现风险和收益的优化平衡 。
多元化投资
套利定价理论强调不同资产之间的相关性,投资者可以利用 这一理论进行多元化投资,以降低整体投资组合的风险。通 过分散投资,投资者可以将风险分散到不同的资产类别中, 提高投资组合的稳定性。
利用套利定价理论进行金融衍生品定价
衍生品定价
套利定价理论为金融衍生品的定价提供了基础。通过分析衍生品与基础资产之间的价格关系,投资者 可以利用套利定价理论计算衍生品的合理价格。这有助于投资者做出更准确的投资决策,降低投资风 险。
《套利定价理论》课件
投资者可以通过比较不同货币对之间的汇率或同一货币对在不同交易平台上的价格,寻找汇率差异或价格差异, 并利用这些差异进行套利交易。例如,当美元对欧元在某一交易平台上的汇率较低,而在另一交易平台上的汇率 较高时,投资者可以通过借入另一种货币,然后兑换成基础货币的方式获利。
期货市场的套利机会与策略
优点分析
理论完整性
套利定价理论提供了一个完整的 框架来描述和预测资产价格行为 ,它基于无套利原则,通过均衡 价格的形成来解释资产价格的变 动。
适用性广泛
该理论适用于多种资产类别,包 括股票、债券、商品等,有助于 投资者在不同市场环境中进行资 产配置和风险控制。
考虑风险因素
套利定价理论通过引入多个风险 因素来解释资产价格的变动,为 投资者提供了更全面的风险评估 和管理工具。
未来的研究应该进一步加强实证研究和应用研究,通过大量的实证数据来检验套利定价理 论的预测准确性和适用性,并探索该理论在投资策略和风险管理中的应用价值。
CHAPTER 06
套利定价理论的实际应用案例
股票市场的套利机会与策略
总结词
股票市场中的套利机会通常出现在不同市场、不同资产类别或同一市场不同交易工具之间的价格差异 。
总结词
期货市场中的套利机会通常出现在同一商品的不同合约之间或不同商品之间的价格差异 。
详细描述
投资者可以通过比较同一商品的不同合约之间的价格或不同商品之间的价格,寻找价格 差异,并利用这些差异进行套利交易。例如,当某一商品的主力合约与次主力合约之间 的价格出现较大差异时,投资者可以通过买入主力合约,卖出次主力合约的方式获利。
3
假设检验
设置适当的假设,通过实证检验验证假设是否成 立。
实证检验过程与结果分析
证券投资学12--证券投资组合理论
四、证券特征线
1. α系数 处于均衡状态的资本资产定价模型中,每一种资产 都位于证券市场线上,即资产期望收益率与它的均 衡期望收益率完全一致。而事实上,总有一部分资 产或资产组合位于SML上下,这时,资产价格与期 望收益率处于不均衡状态,又称资产的错误定价。 资产的错误定价用α系数度量,其计算公式为:
北京语言大学
• CML给出每一个证券组合的风险水平应得的收益 回报。因而,不同投资者可根据自己的无差别曲 线在资本市场线上选择自己的资产组合。 (1)对于风险承受能力弱、偏爱低风险的投资者,可 在CML上的左下方选择自己的资产组合。一般可 将全部资金分为两部分,一部分投资于无风险资 产,一部分投资于风险资产。越是追求低风险, 在无风险资产上投资越大,所选择的资产组合上 越接近于纵轴上的Kf。
3. 套利定价模型
北京语言大学
证券组合的预期收益和方差可以表示:
且:
北京语言大学
二、套利定价理论
套利定价模型假设:每个投资者都想使用套 利组合在不增加风险的情况下增加组合的收 益率,但在一个有效率的均衡市场中是不存 在无风险的套利机会的 。 套利定价理论认为证券的收益率和单因素或 多因素模型情况相似,即证券的收益率取决 于影响所有证券的共同因素。但套利定价理 论本身并不严格地要求这些因素是什么,有 多少个因素,而只假定证券收益率和各因素 之间是线型关系。
北京语言大学
任意两个证券之间的协方差为:
• 协方差可以通过它们对每个因素的敏感性 以及各因素的方差和因素间的协方差计算 得到。 • 在计算出每个证券的预期收益率、方差、 协方差后就可以确定出最有利的证券投资 风险组合。
北京语言大学
在多因素模型下,证券的预期收益率可表示: 证券i的方差可以表示为:
套利定价理论
套利定价理论套利定价理论是金融领域中重要的理论之一,它通过利用市场中的不完全信息和价格差异,以获得无风险利润的交易策略。
套利定价理论表明,在有效市场中,任何无风险套利机会都会被迅速消除,从而确保市场的公平和有效。
套利定价理论基于以下两个假设:市场是高度有效的,所有的市场参与者都会根据所有可得信息进行合理的决策;资金可以自由流动,并且没有交易成本和税收。
在这种情况下,套利交易是不可能的,因为任何价格差异都会被市场参与者迅速利用来赚取利润,从而将价格差异消除。
然而,套利定价理论提出了一个重要的观点,即市场参与者并不总是能够立即获取和利用所有的信息。
这导致了市场上的临时价格差异和套利机会。
套利交易者会利用这些差异来进行套利操作,从而获得无风险利润。
套利定价理论的核心思想是公允价值的概念。
公允价值是基于市场风险和预期回报来确定的一种价格。
当一个资产的市场价格低于其公允价值时,购买该资产可以获得超额回报。
相反,当一个资产的市场价格高于其公允价值时,卖出该资产可以获得超额回报。
这些超额回报形成了套利机会。
套利定价理论主要有三种类型的套利:空间套利、时间套利和跨市场套利。
空间套利是指在同一市场内,不同的交易者以不同的价格买入或卖出同一资产。
时间套利是指在同一市场中,同一交易者在不同时间点对同一资产进行买卖,以获得价格上的差异利润。
跨市场套利是指在不同市场中,不同的交易者以不同的价格买入或卖出同一资产。
套利交易的成功需要具备高度的市场洞察力、快速的执行能力和优秀的风险管理技巧。
套利交易者通常会利用高科技手段来快速获取和处理信息,并使用自动化交易系统来实施交易策略。
此外,套利交易也受到监管机构的限制和监管规则的限制。
总之,套利定价理论可以帮助我们理解金融市场中价格差异的形成和消除机制,为市场参与者提供行为指南。
尽管市场的有效性和高度竞争性使得套利交易并不容易,但借助套利定价理论,我们可以更好地理解市场行为和价格形成,从而为投资决策提供参考。
第12章 套利定价理论
任何一个均衡的市场,都不会存在这两种套利 机会。如果存在这样的套利机会,人人都会利 用,从而与市场均衡矛盾。所以我们假设市场 上不存在任何套利机会。 套利活动是现代有效证券市场的一个关键原因。
每个投资者都会充分利用套利机会 只需要少数投资者的套利活动就能消除套利机 会
近似的套利机会(almost arbitrage):风险性 质类似得证券组合,其价格、回报率也应该 接近。在因子模型这一框架中,因子敏感度 相等时,除非因子风险外,价格、回报率行 为应该一致,否则存在近似套利机会。
作为一种回报率产生过程,因子模型具 有以下几个特点。
第一,因子模型中的因子应该是系统影响所有证券 价格的经济因素。 第二,在构造因子模型中,我们假设两个证券的回 报率相关——一起运动——仅仅是因为它们对因子 运动的共同反应导致的。 第三,证券回报率中不能由因子模型解释的部分是 该证券所独有的,从而与别的证券回报率的特有部 分无关,也与因子的运动无关。
其中
ri ri bi1 FD1t bi 2 FD2t bik FDkt eit
FDit Fit Fit
4 套利机会 何谓套利机会?最简单的说法是,不花钱 就能挣到钱。具体地说,有两种类型的套 利机会。
如果一种投资能够立即产生正的收益而在将来 不需要有任何支付(不管是正的还是负的), 我们称这种投资为第一类的套利机会。 如果一种投资有非正的成本,但在将来,获得 正的收益的概率为正,而获得负的收益(或者 说正的支出)的概率为零,我们称这种投资为 第二类的套利机会。
i i i1 1t i2 2t it
这里 F t 和 F2 t是影响证券回报率的 bi1 和 度。 eit 是随机项,而 ai 是零因子回报率。
罗斯《公司理财》(第11版)笔记和课后习题详解-第12~15章【圣才出品】
第12章看待风险与收益的另一种观点:套利定价理论12.1 复习笔记美国金融经济学家罗斯于1976年首先提出套利定价理论(Arbitrage Pricing Theory,APT),APT建立在比资本资产定价模型更少且更合理的假设之上,而其导出的均衡模型与资本资产定价模型有很多相似之处。
当市场上收益与风险不匹配,使投资者能构造一个产生安全利润的零投资证券组合时,套利机会就出现了。
套利是指利用一个或多个市场上存在的各种价格差异,在不冒任何风险或冒很小风险的情况下赚取大于零的收益的行为,套利行为需要同时进行等量证券的买卖,以便从其价格关系的差异中获取利润。
套利作为一种广泛使用的投资策略,最具有代表性的是以较高的价格出售证券同时以较低价格购入相同的证券。
1.系统性风险与贝塔系数单只股票的风险可以分为系统性风险和非系统性风险。
非系统性风险可以通过投资组合的多元化投资来消除,但系统性风险却难以消除。
因此只有单只证券的系统性风险才是值得关注的。
同时系统性风险的最优度量标准是贝塔系数。
CAPM公式表明单只证券的期望收益率与贝塔系数是线性相关关系。
贝塔系数可以用于衡量单只股票收益对某一系统性风险的反应程度,也可以度量市场组合的收益对某一特定风险的反应程度。
贝塔系数的大小描述了系统性风险对单只证券或证券组合收益的影响有多大。
股票收益的定义式是:=+=++R R U R mε其中,R是下个月的实际总收益;R_是实际总收益中期望收益部分;U表示实际总收益中的非期望收益部分;m 表示收益的系统性风险,有时又称作“市场风险”,在不同程度上m 影响着市场上所有资产的价格;ε表示收益的非系统性风险。
2.因素模型可以用一个或一些因素代表系统风险,应用β系数可以衡量股票收益对系统风险的反应程度。
因此可以推出另一种资产定价模型——因素模型。
该模型认为各种证券的收益率均受某个或某几个共同因素影响。
各种证券收益率之所以相关主要是因为它们都会对这些共同的因素起反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12章 套利定价理论 选择:
1、根据套利定价理论:
a. 高贝塔值的股票都属于高估定价。
b. 低贝塔值的股票都属于低估定价。
c. 正阿尔法值的股票会很快消失。
d. 理性的投资者将会从事与其风险承受力相一致的套利活动。
2、 在什么条件下,会产生具有正阿尔法值的零资产组合?
a. 投资的期望收益率为零。
b. 资本市场线是机会集的切线。
c. 不违反一价定律。
d. 存在无风险套利的机会。
3、套利定价理论不同于单因素C A P M 模型,是因为套利定价理论: a. 更注重市场风险。
b. 减小了分散化的重要性。
c. 承认多种非系统风险因素。
d. 承认多种系统风险因素。
计算
1、已知由下述股票构成的组合的方差为0.06,求(1)每只股票的非系统风险;(2)组合的BETA 值;(3)组合的方差;(4)组合的期望收益;(5)若A 与B 、A 与C 、B 与C 之间
2、假定证券收益由单指数模型确定:
i M i i i R R εβα++=
其中,i R 是证券i 的超额收益,而M R 是市场超额收益,无风险利率为2%。
假定有三种证券
A 、
B 、
C ,其特性的数据如下所示:
a. 若M σ=2 0%,计算证券A 、B 、C 的收益的方差。
b. 现假定拥有无限资产,并且分别与A 、B 、C 有相同的收益特征。
如果有一种充分分散化的资
产组合的A 证券投资,则该投资的超额收益的均值与方差各是多少?如果仅是由B 种证券或C 种证券构成的投资,情况又如何?
c. 在这个市场中,有无套利机会?如何实现?具体分析这一套利机会(用图表)。