小波去噪举例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.6 小波去噪举例[4]
4.6.1 MATLAB中用wnoise函数测试去噪算法
sqrt_snr=3;
init=231434;
[x,xn]=wnoise(3,11,sqrt_snr,init); % WNOISE generate noisy wavelet test data.
% X= WNOISE(FUN,N) returns values of the test function given by FUN, on a % 2^N sample of [0,1]. [X,XN] = WNOISE(FUN,N,SQRT_SNR) returns the % previous vector X rescaled such that std(x) = SQRT_SNR. The returned
% vector XN contains the same test vector X corrupted by an additive Gaussian
% white noise N(0,1). Then XN has a signal-to-noise ratio of (SQRT_SNR^2).
% [X,XN] = WNOISE(FUN,N,SQRT_SNR,INIT) returns previous vectors X and % XN, but the generator seed is set to INI value.
subplot(3,2,1),plot(x)
title('original test function')
subplot(3,2,2),plot(xn)
title('noised function')
%产生一个长为2**11点,包含高斯白噪声的正弦信号,噪声的的标准偏差为3。
lev=5;
xd=wden(x,'heursure','s','one',lev,'sym8');
% [XD,CXD,LXD] = WDEN(X,TPTR,SORH,SCAL,N,'wname')
% returns a de-noised version XD of input signal X obtained by thresholding the
% wavelet coefficients. Additional output arguments [CXD,LXD] are the wavelet
% decomposition structure of de-noised signal XD.(WDEN根据信号小波分解
% 结构[C,L]对信号进行去噪处理,返回处理信号XD,以及XD的小波分解
% 结构{CXD,LXD})。
% TPTR(contains threshold selection rule)='heursure',
% 'heursure' is an heuristic variant of the first option
% (选择基于Stein无偏估计理论的自适应域值的启发式改进)
% SORH ('s' or 'h') is for soft or hard thresholding(决定域值的使用方式)
% SCAL(='onedefines multiplicative threshold rescaling:'one' for no rescaling
%(决定域值是否随噪声变化) 'wname'='sym8'
subplot(3,2,3),plot(xd)
title('One de-noised function')
% 利用’sym8’小波对信号分解,在分解的第5层上,利用启发式SURE 域值选择法对信号去噪。
xd=wden(x,'heursure','s','sln',lev,'sym8');
% 'sln' for rescaling using a single estimation
% of level noise based on first level coefficients(根据第一层小波分解的噪声方% 差调整域值)
subplot(3,2,4),plot(xd)
title('Sln de-noised function')
% 同上’sym8’小波对信号分解条件,但用软SURE域值选择算法对信号去噪。
xd=wden(x,'sqtwolog','s','sln',lev,'sym8');
% for universal threshold sqrt(2*log(.))(固定域值选择算法去噪).
subplot(3,2,5),plot(xd)
title('Sqtwolog de-noised function')
% 同上’sym8’小波对信号分解条件,但用固定域值选择算法去噪。
[c,l]=wavedec(x,lev,'sym8');
% WA VEDEC performs a multilevel 1-D wavelet analysis using either a specific
% wavelet 'wname' or a specific set of wavelet decomposition filters (see
% WFILTERS).[C,L] = WA VEDEC(X,N,'wname') returns the wavelet
% decomposition of the signal X at level N, using 'wname'. The output
% decomposition structure contains the wavelet decomposition vector C(按照一
% 定顺序存储信号小波分解的阿个曾的近似分量和细节分量的系数)and the % bookkeeping vector L(各近似分量和细节分量系数的长度).
% xd=wden(c,l,'minimaxi','s','sln',lev,'sym8'); 'minimaxi' for minimax thresholding