备战中考数学培优专题复习圆与相似练习题附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战中考数学培优专题复习圆与相似练习题附答案

一、相似

1.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.

(1)求点C的坐标(用含a的代数式表示);

(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;

(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.

【答案】(1)解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,

而抛物线与x轴的一个交点A的坐标为(﹣1,0)

∴抛物线与x轴的另一个交点B的坐标为(3,0)

设抛物线解析式为y=a(x+1)(x﹣3),

即y=ax2﹣2ax﹣3a,

当x=0时,y=﹣3a,

∴C(0,﹣3a)

(2)解:∵A(﹣1,0),B(3,0),C(0,﹣3a),

∴AB=4,OC=3a,

∴S△ACB= AB•OC=6,

∴6a=6,解得a=1,

∴抛物线解析式为y=x2﹣2x﹣3

(3)解:设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,

∵点G与点C,点F与点A关于点Q成中心对称,

∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,

∴OF=2m+1,HF=1,

当∠CGF=90°时,

∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°,

∴∠GQH=∠HGF,

∴Rt△QGH∽Rt△GFH,

∴ = ,即,解得m=9,

∴Q的坐标为(9,0);

当∠CFG=90°时,

∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°,

∴∠CFO=∠FGH,

∴Rt△GFH∽Rt△FCO,

∴ = ,即 = ,解得m=4,

∴Q的坐标为(4,0);

∠GCF=90°不存在,

综上所述,点Q的坐标为(4,0)或(9,0).

【解析】【分析】(1)根据抛物线是轴对称图形和已知条件可求得抛物线与x轴的另一个交点B的坐标,再用交点式可求得抛物线的解析式,然后根据抛物线与y轴交于点C可得x=0,把x=0代入解析式即可求得点C的坐标;

(2)由(1)的结论可求得AB=4,OC=3a,根据三角形ABC的面积=AB•OC=6可求得a的值,则解析式可求解;

(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,根据中心对称的性质可得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3。分两种情况讨论:①当∠CGF=90°时,由同角的余角相等可得∠GQH=∠HGF,于是根据有两个角相等的两个三角形相似可得

Rt△QGH∽Rt△GFH,则可得比例式,代入可求得m的值,则点Q的坐标可求解;

②当∠CFG=90°时,同理可得另一个Q坐标。

2.综合题

(1)【探索发现】

如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为多少.

(2)【拓展应用】

如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为多少.(用含a,h的代数式表示)

(3)【灵活应用】

如图③,有一块“缺角矩形”A BCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.

(4)【实际应用】

如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且

tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.

【答案】(1)解:∵EF、ED为△ABC中位线,

∴ED∥AB,EF∥BC,EF= BC,ED= AB,

又∠B=90°,

∴四边形FEDB是矩形,

则;

(2)解:∵PN∥BC,

∴△APN∽△ABC,

∴,即,

∴PN=a- PQ,

设PQ=x,

则S矩形PQMN=PQ•PN=x(a- x)=- x2+ax=- (x- )2+ ,

∴当PQ= 时,S矩形PQMN最大值为 .

(3)解:如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,

由题意知四边形ABCH是矩形,

∵AB=32,BC=40,AE=20,CD=16,

∴EH=20、DH=16,

∴AE=EH、CD=DH,

在△AEF和△HED中,

∵,

∴△AEF≌△HED(ASA),

∴AF=DH=16,

同理△CDG≌△HDE,

∴CG=HE=20,

∴BI= =24,

∵BI=24<32,

∴中位线IK的两端点在线段AB和DE上,

过点K作KL⊥BC于点L,

由【探索发现】知矩形的最大面积为×BG• BF= ×(40+20)× (32+16)=720,答:该矩形的面积为720;

(4)解:如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,

∵tanB=tanC= ,

∴∠B=∠C,

∴EB=EC,

相关文档
最新文档