八年级数学期中考试试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学试卷
(满分:120分答题时间:90分钟)一、
选择题(每小题2分,共12分)
1.下列交通标志中,是轴对称图形的是()
2.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()
°°°°
3.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有()
个个个个
4.如图,在下列条件中,不能证明△ABD≌△ACD的是()=DC,AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD
D.∠B=∠C,BD=DC
5.如图,DE⊥AC,垂足为E,CE=AE.若AB=12cm,BC=10cm,则△BCD的周长是()
6.等腰三角形的两边分别为3和6,则这个三角形的周长是()
或15
题号一二三四五六总分
得分
得分
第4题第5题
八年级数学试卷第1页(共8页)
二、填空题(每小题3分,共24分)
7.若点P(m,m-1)在x轴上,则点P关于x轴对称的点的坐标为 .
8.一个多边形的每一个外角都等于36°,则该多边形的内角和等于 .
9.如图,PM⊥OA,PN⊥OB,垂足分别为M、=PN,若∠BOC=30°,则∠AOB= .
10.如图,在△ABC和△FED中,AD=FC,AB=FE,当添加条件时,就可得到
△ABC≌△FED.(只需填写一个你认为正确的条件)
11.从长为3cm、5cm、7cm、10cm的四根木条中选出三根组成三角形,共有种选法.
12.若等腰三角形一腰上的高与另一腰的夹角为40°,则它的底角为 .
13.如图,△ABC为等边三角形,AD为BC边上的高,E为AC边上的一点,且AE=AD,则
∠EDC= .
14.如图,在等边△ABC中,点D、E分别在边AB、BC上.把△BDE沿直线DE翻折,使点 B落在点B′处,DB′、EB′分别与AC交于点F、G.若∠ADF=80°,则∠EGC= .
三、解答题(每小题5分,共20分)
15.如图,两个四边形关于直线 对称,∠C=90°,
试写出a,b的长度,并求出∠G的度数.
第14题
第13题
得分
第9题第10题
得分
第15题
八年级数学试卷第2页(共8页)
16.如图,已知AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.
17.如图,16个相同的小正方形拼成一个正方形网格,现将其中的两个小方格涂黑.请你
用两种不同的方法分别在图中再涂黑两个小方格,使它们成为轴对称图形.
18.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出△ABC关于y轴对称的△A
1B
1
C
1
.
(2)写出点A
1,B
1
,C
1
的坐标(直接写出答案).
A
1
B
1
C
1
(3)△A
1B
1
C
1
的面积为 .
第16题
第17题
第18题
八年级数学试卷第3页(共8页)
四、解答题(每小题7分,共28分)
19.在△ABC中,∠BAC=50°,∠B=45°,AD是△ABC的一条角平分线,
求∠ADB的度数.
20.如图:△ABC和△EAD中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE.
求证:△ABD≌△AEC.
第19题
第20题
八年级数学试卷第4页(共8页)
得分
21.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三
个关系式:①AD=BC;②DE=CF;③BE∥AF.
(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论.
(2)选择(1)中你写出的一个正确结论,说明它正确的理由.
第21题
22.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求证△ADC≌△CEB. (2)AD=5cm,DE=3cm,求BE的长度.
第22题
八年级数学试卷第5页(共8页)
23.已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交 AC于点F.求证:BE+CF=EF.
24.如图,ABC
△中,∠B=∠C,D,E,F分别在AB,BC,AC上,且BD CE
,=
DEF B
∠∠求证:=
ED EF.
第23题
八年级数学试卷第6页(共8页)
A
D
C
B
第24题
F
25.两个等腰直角三角形的三角板如图①所示放置,图②是由它抽象出的几何图形,
点B、C、E在同一条直线上,连接DC、EC.
(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:DC⊥BE.
第25题
八年级数学试卷第7页(共8页)