中考数学专题复习--函数应用题(有答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习 函数应用题

类型之一 与函数有关的最优化问题

函数是一描述现实世界变量之间关系的重要数学模型,在人们的生产、生活中有着广泛的应用,利用函数的解析式、图象、性质求最大利润、最大面积的例子就是它在最优化问题中的应用.

1.(莆田市)枇杷是莆田名果之一,某果园有100棵枇杷树。每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克? 注:抛物线2y ax bx c =++的顶点坐标是

2

4(,)

24b ac b a a

--

2.(贵阳市)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:

(1)房间每天的入住量y (间)关于x (元)的函数关系式.

(2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式.

(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?

类型之二 图表信息题

本类问题是指通过图形、图象、表格及一定的文字说明来提供实际情境的一类应用题,解题时要通过观察、比较、分析,从中提取相关信息,建立数学模型,最终达到解决问题的目的。 3.(08江苏南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,

设慢车行驶的时间为(h)x ,两车之间的距离为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究: 信息读取

(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解

(3)求慢车和快车的速度;

(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决

(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?

A B C

D

O

y /km

900

12 x /h

4

类型之三方案设计

方案设计问题,是根据实际情境建立函数关系式,利用函数的有关知识选择最佳方案,判断方案是否合理,提出方案实施的见解等。

4.某房地产开发公司计划建A、B两种户型的住房共80套,•该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,•两种户型的建房成本和售价如下表:

A B

成本(万元/套)25 28

售价(万元/套)30 34

(1)该公司对这两种户型住房有哪几种建房方案?

(2)该公司如何建房获得利润最大?

(3)根据市场调查,每套B型住房的售价不会改变,每套A•型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出.该公司又将如何建房获得利润最大?(注:利润=售价-成本)

类型之四分段函数应用题

分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。

5.(赣州市)年春节前夕,南方地区遭遇罕见的低温雨雪冰冻天气,赣南脐橙受灾滞销.为了减少果农的损失,政府部门出台了相关补贴政策:采取每千克补贴0.2元的办法补偿果农.

下图是“绿荫”果园受灾期间政府补助前、后脐橙销售总收入y(万元)与销售量x(吨)的关系图.请结合图象回答以下问题:

(1)在出台该项优惠政策前,脐橙的售价为每千克多少元?

(2)出台该项优惠政策后,“绿荫”果园将剩余脐橙按原售价打九折赶紧全部销完,加上政府补贴共收入11.7万元,求果园共销售了多少吨脐橙?

(3)①求出台该项优惠政策后y与x的函数关系式;②去年“绿荫”果园销售30吨,总收入为10.25万元;若按今年的销售方式,则至少要销售多少吨脐橙?总收入能达到去年水平.

6.(2009成都)某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x 为整数);又知前20天的销售价格1Q (元/件)与销售时间x(天)之间有如下关系:11

Q 302

x =

+ (1≤x≤20,且x 为整数),后10天的销售价格2Q (元/件)与销售时间x(天)之间有如下关系:2Q =45(21≤x≤30,且x 为整数).

(1)试写出该商店前20天的日销售利润1R (元)和后l0天的日销售利润2R (元)分别与销售时间x(天)之间的函数关系式;

(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.

注:销售利润=销售收入一购进成本.

7.通过实验研究,专家们发现:一个会场听众听讲的注意力指标数是随着演讲者演讲时间的变化而变化的,演讲开始时,听众的兴趣激增,中间有一段时间,听众的兴趣保持平稳的状态,随后开始分散。听众注意力指标数y 随时间x(分钟)变化的函数图像如下图所示(y 越大表示听众注意力越集中)。当0≤x≤10时,图像是抛物线的一部分,当10≤x≤20和20≤x≤40时,图像是线段。

(1)当0≤x≤10时,求注意力指标数y 与时间x 的函数关系式;

(2)王标同学竞选学生会干部需要演讲24分钟,问他能否经过适当安排,使听众在听他的演讲时,注意力的指标数都不低于36?若能,请写出他安排的时间段;若不能,也请说明理由。

相关文档
最新文档