第8节 图论应用实例_图着色问题

合集下载

第8章-图论

第8章-图论

第8章 图论
定义8.2―2 :路径P中所含边的条数称为路径P的
长度。长度为0的路径定义为单独一个顶点。(但注意习惯上 不定义长度为0的回路。) 定义8.2―3:在图G=〈V,E〉中,从结点vi到vj最短路径的 长度叫从vi到vj的距离,记为d(vi,vj)。若从vi到vj不存在路径,则 d(vi,vj)=∞。 注意,在有向图中,d(vi,vj)不一定等于d(vj,vi),但一般地满足 以下性质: (1) d(vi,vj)≥0; (2) d(vi,vi)=0; (3) d(vi,vj)+d(vj,vk)≥d(vi,vk)。
个图是混合图。
我们仅讨论有向图和无向图,且V(G)和E(G)限于有限集合。
第8章 图论
图 8.1―2
第8章 图论
【约定】:用〈a,b〉表示有向边,(a,b)表示无向边, 既表示有向边又表示无向边时用[a,b]。 于是,图8.1―1中的G和图8.1―2中的G′可分别简记为 G=〈V,E〉=〈{a,b,c,d},{(a,b),(a,c),(b,d),(b,c),(d,c),(a,d),(b,b)}〉
边的方向)和边的重数;
则这两个图是同构的,两个同构的图除了顶点和边的名称不 同外实际上代表同样的组合结构。
第8章 图论
例8.1-2
(1) 图8.1―6所示的(a)、(b)两图是同构的。因为可 作映射:g(1)=v3,g(2)=v1,g(3)=v4,g(4)=v2。在这映射下,边 〈1,3〉,〈1,2〉,〈2,4〉和〈3,4〉分别映射到〈v3,v4〉, 〈v3,v1〉,〈v1,v2〉和〈v4,v2〉,而后面这些边又是(b)中 仅有的边。
在V上的函数,g是定义在E上的函数。
第8章 图论
图 8.1―4

图的着色问题--C++实现(含详细注释)

图的着色问题--C++实现(含详细注释)

图的着色问题一、题目简述(1) 图的m-着色判定问题给定一个无向连通图 G 和 m 种不同的颜色。

用这些颜色为图 G 的各顶点着色,每个顶点着一种颜色,是否有一种着色法使 G 中任意相邻的两个顶点着不同颜色?(2) 图的m-着色优化问题若一个图最少需要 m 种颜色才能使图中任意相邻的两个顶点着不同颜色,则称这个数 m 为该图的色数。

求一个图的最小色数 m 的问题称为m-着色优化问题。

二、算法思想1. m-着色判定问题总体思想:通过回溯的方法,不断为每一个节点着色,每个点的颜色由一个数字代表,初始值为1。

在对前面 step - 1 个节点都合法的着色之后,开始对第 step 个节点进行着色。

如果 n 个点均合法,且颜色数没有达到 m 种,则代表存在一种着色法使 G中任意相邻的两个顶点着不同颜色。

具体步骤:1. 对每个点 step ,有 m 种着色可能性,初始颜色值为1。

2. 检查第 step 个节点颜色的可行性,若与某个已着色的点相连且颜色相同,则不选择这种着色方案,并让颜色值加1,继续检查该点下一种颜色的可行性。

3. 如果第 step 点颜色值小于等于 m ,且未到达最后一个点,则进行对第 step + 1 点的判断。

4. 如果第 step 点颜色值大于 m ,代表该点找不到合适的分配方法。

此时算法进行回溯,首先令第 step 节点的颜色值为0,并对第 step - 1 个点的颜色值+1后重新判断。

5. 如果找到一种颜色使得第 step 个节点能够着色,说明 m 种颜色的方案是可行的。

6. 重复步骤2至5,如果最终 step 为0则代表无解。

2. m-着色优化问题基于问题1,对于一个无向图 G ,从1开始枚举染色数,上限为顶点数,第一个满足条件的颜色数即为所求解。

三、实现过程(附代码)1. m-着色判定问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n和着色数m"<<endl;cin>>n>>m;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向邻接矩阵存储边cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}if (Solve(m)) {cout<<"有解";} else {cout<<"无解";}return0;}2. m-着色优化问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n"<<endl;cin>>n;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向图邻接矩阵存储边 cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}for (m=1; m<=n; m++) { // 从小到大枚举着色数mif (Solve(m)) { // 如果有解,输出答案并跳出循环cout<<"最小色数m为 "<<m;break;}}return0;}四、结果及分析问题1测试用例:问题2测试用例:经检验,最少着色数的范围为2-4,意味着使 G 中任意相邻的两个顶点着不同颜色最多需要4种颜色。

图的平面性与图的着色问题

图的平面性与图的着色问题

图的平面性与图的着色问题在图论中,图的平面性与图的着色问题是两个重要的研究方向。

图的平面性指的是一种特殊的图的布局方式,使得图的边不相交。

而图的着色问题是指如何给图的顶点进行染色,使得相邻的顶点颜色不相同。

本文将分别介绍图的平面性和图的着色问题,并对其进行详细讨论。

一、图的平面性(Planarity of Graphs)图的平面性是图论中一个经典的问题,研究的是如何将一个图画在平面上,使得图的边不相交。

具体而言,如果一个图可以被画在平面上,且不同边的交点只有顶点,那么我们称该图是一个平面图。

而对于不能在平面上画出来的图,则被称为非平面图。

定理1:一个图是平面图,当且仅当它不包含任何的子图同构于以下两种图之一:K5(五个没有共同边的顶点)或K3,3(六个节点,其中任意两个节点之间都有边相连但不交叉)。

这个定理被称为Kuratowski定理,它为我们判断一个图是否是平面图提供了一个有效的方法。

根据Kuratowski定理,我们可以使用该定理的逆否命题,即如果一个图中包含K5或K3,3,则该图一定是非平面图。

除了Kuratowski定理之外,还有一种判断图的平面性的方法,称为Euler公式。

Euler公式表达了平面图的顶点数、边数和面数之间的关系:V - E + F = 2其中V表示顶点数,E表示边数,F表示面数。

根据Euler公式,对于简单连接图(无环,无孤立点),如果它的顶点数大于等于3且边数大于等于3,且满足Euler公式,则该图是一个平面图。

二、图的着色问题(Graph Coloring)图的着色问题是指如何给一个图的顶点进行染色,使得相邻的顶点颜色不相同。

这里的相邻指的是有边相连的顶点。

在图论中,颜色通常表示为正整数,颜色数则表示为给定图所需的最小颜色数。

对于任意图G,G的最小颜色数被称为G的色数。

如果图G的色数为k,则称图G是可k着色的。

求解一个图的最小色数是一个复杂的问题,称为顶点着色问题(Vertex Coloring Problem),它是一个NP 完全问题。

离散数学图着色问题算法描述

离散数学图着色问题算法描述

离散数学图着色问题算法描述离散数学图着色问题,简单来说是指给定一个无向图,如何为每个节点上色,使得相邻节点的颜色不相同。

这个问题可以用图着色算法来解决,下面将对图着色问题的算法描述进行详细介绍。

1. 算法背景介绍在离散数学中,图着色问题是一种经典的组合优化问题,它有广泛的应用领域,如地图着色、时间表排课等。

该问题的关键在于找到一种最少的颜色分配方案,使得相邻节点的颜色不相同。

2. 算法步骤描述(1)初始化:给定一个无向图G,节点数为n,边数为m。

初始时,给每个节点分配一个未被使用的颜色。

(2)排序节点:按照节点的度数降序进行排序,从度数最大的节点开始着色。

(3)节点着色:依次对每个节点进行着色。

对于当前节点v,遍历它的所有相邻节点w,如果w已经被染色,则从可用的颜色集合中去除w的颜色。

最后,将v染色为可用的最小颜色。

(4)重复步骤3,直到所有节点都被染色。

3. 算法实例演示假设有以下无向图G:```A/ \B C/ \ / \D -E - F```首先,对节点进行排序,按照度数降序排序为:E(度数为4),A (度数为3),D(度数为2),B和C(度数为1),F(度数为0)。

接下来,按照排序后的顺序对每个节点进行着色。

首先着色E,将其染色为第一个可用的颜色。

然后是A,由于E已经被染色为第一个颜色,A只能选择剩下的颜色。

接着是D,由于D与已经着色的节点E邻接,所以D需要选择未被使用的颜色。

然后是B和C,它们的邻居节点E和A已经被着色,所以它们只能选择未被使用的颜色。

最后是F,由于F没有邻居节点,可以选择任意颜色。

经过上述步骤,图G的每个节点都被着色,且相邻节点的颜色不相同。

4. 算法分析该算法在最坏情况下需要对节点进行O(n^2)次比较,其中n为节点数。

因此,算法的时间复杂度为O(n^2)。

同时,该算法具有较好的可行性和实用性,对于大部分图着色问题能够给出近似最优的解。

综上所述,离散数学图着色问题的算法描述如上所述。

图论中的平面图与染色问题

图论中的平面图与染色问题

图论中的平面图与染色问题图论是数学的一个分支,研究的是图的性质和图之间的关系。

在图论中,平面图与染色问题是重要的研究方向。

一、平面图平面图是指可以在平面上画出的图,其中任意两条边都不相交,任意两个顶点之间都只有一条边相连。

平面图可以用来描述许多实际问题,如地图、电路等。

在平面图中,有一个重要的定理,即欧拉定理。

欧拉定理是数学家欧拉在1736年提出并证明的,它给出了平面图中顶点数、边数和面数的关系。

根据欧拉定理,对于连通的平面图,满足公式:V - E + F = 2,其中V表示顶点数,E表示边数,F表示面数。

二、染色问题染色问题是图论中的一个经典问题,即给定一个图,如何用有限种颜色对图的各个顶点进行染色,使得相邻的顶点之间的颜色不相同。

这是一种常见的应用问题,如地图着色、课程表安排等。

在染色问题中,有一个重要的定理,即四色定理。

四色定理是染色问题中的一个著名定理,它指出任何平面图都可以用至多四种颜色对其顶点进行染色,使得相邻的顶点颜色不同。

三、平面图与染色问题的关系平面图与染色问题之间有着紧密的联系。

通过合理的染色方案,可以将一个平面图的顶点进行染色,满足相邻顶点颜色不同的要求。

同时,染色问题的解法与平面图的结构和性质也有关系。

在研究平面图与染色问题时,可以通过绘制平面图的平面嵌入图来分析和求解染色问题。

平面嵌入图是平面图在平面上的一种表示形式,可以把平面图的顶点和边绘制在平面上,形成一种更加直观的图形。

在解决染色问题时,可以借助平面嵌入图的结构和特性,通过一定的算法进行染色。

例如,可以利用贪心算法对顶点进行依次染色,确保相邻顶点染不同的颜色。

四、应用举例平面图与染色问题在实际中有广泛的应用。

一个典型的例子是地图着色问题。

在地图上,每个国家或地区可以用一个顶点表示,国家或地区之间的边表示它们的相邻关系。

通过对地图进行染色,可以实现相邻国家或地区的颜色不同,从而更加方便地辨认。

另一个例子是课程表安排问题。

实验四 回溯法(图着色问题)

实验四 回溯法(图着色问题)
对应的邻接矩阵
01 234 001 1 01 1 1 01 01 21 1 01 0 3001 01 41 1 01 0
class MGraph { public:
MGraph(int v,int s); void mColoring(int m,int *x); //一维数组x,存放1~n个顶点的颜色 ~MGraph(); private: void NextValue(int k,int m,int *x); void mColoring (int k,int m,int *x); int **a; //二维数组a,存储图的邻接矩阵 int n,e; //n表示图的顶点数,e表示边数 };
无向图G
【实验内容与要求】
图的着色问题:设G=(V,E)是一连通无向图,有3 种颜色,用这些颜色为G的各顶点着色,每个顶点着 一种颜色,且相邻顶点颜色不同。试用回溯法设计一 个算法,找出所有可能满足上述条件的着色法。
无向图G
无向图G
对应这个无向图的状态空间树应该是怎样的?
是一个完全3叉树,共6层
实验四 回溯法 — 图的着色问题
图的着色问题是由地图的着色问题引申而来的: 用m种颜色为地图着色,使得地图上的每一个 区域着一种颜色,且相邻区域颜色不同。
问题处理:如果把每一个区域收缩为一个顶点, 把相邻两个区域用一条边相连接,就可以把一
个区域图抽象为一个平面图。
地图(map)中地区的相邻关系,在图(graph )中用边表示。
//若(i, j)是图的边,且相邻结点k和j颜色相同 //发生冲突,选下一种颜色
if (j==k) return; //成功选择一种颜色返回 }while (1); //循环尝试颜色 }
运行结果:

第8节图论应用实例_图着色问题

第8节图论应用实例_图着色问题

第8节图论应用实例_图着色问题预备知识_回溯法回溯法:在实际生活中,有些问题是不能用数学公式去解决的,它需要通过一个过程,此过程要经过若干个步骤才能完成,每一个步骤又分为若干种可能;同时,为了完成任务,还必须遵守一些规则,但这些规则无法用数学公式表示,对于这样一类问题,一般采用搜索的方法来解决,回溯法就是搜索算法(广度优先、深度优先等)中的一种控制策略,它能够解决许多搜索中问题。

回溯法基本思想:试探法,撞了南墙就回头。

(一般采用深度优先搜索策略) 搜索策略:深度优先(不撞南墙不回头)。

在搜索过程中,如果求解失败,则返回搜索步骤中的上一点,去寻找新的路径,以求得答案。

要返回搜索,前进中的某些状态必须保存,才能使得退回到某种状态后能继续向前。

白话搜索:如果用数组存放搜索信息,i表示数组下标(当前状态), ++i表示往前走(下一个状态),--i表示回溯(往回退,返回上一次状态)。

第8节图论应用实例_图着色(graph coloring)问题数学定义:给定一个无向图G=(V, E),其中V为顶点集合,E为边集合,图着色问题即为将V分为k个颜色组(k为颜色数),每个组形成一个独立集,即其中没有相邻的顶点。

其优化版本是希望获得最小的k值。

典型应用:地图的着色、调度问题等。

k-着色判定问题:给定无向连通图G和k种不同的颜色。

用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色,例四色问题。

设有如图1的地图,每个区域代表一个省,区域中的数字表示省的编号,现在要求给每个省涂上红、蓝、黄、白四种颜色之一,同时使相邻的省份以不同的颜色区分。

课外拓展:搜索“四色问题”,了解四色问题相关知识。

5674231图1问题分析:(1)属于图的搜索问题。

将问题简化:将每个省抽象为一个点,省之间的联系看为一条边,可以得到图2。

16751432图2(2)用邻接矩阵表示各省之间的相邻关系,二维数组实现:1 表示省i与省j相邻, ,,ri,j,,0 表示省i与省j不相邻,由图2可以得到如下矩阵:(对称矩阵)1 2 3 4 5 6 71 0 1 0 0 0 0 12 1 0 1 1 1 1 13 0 1 0 1 0 0 04 0 1 1 0 1 0 05 0 1 0 1 0 1 06 0 1 0 0 1 0 17 1 1 0 0 0 1 0 为一对称矩阵。

图着色问题

图着色问题

ac b ed c g e bgd b ed f b ec f df
故G的极小覆盖为 { a , c , e , g } { b , c , , d , e , g } { b , d , , e ,f } { b , c , , d ,f } 取• 其S补te集p2,:得求到出G一的切所若有干极极大大独独立立集集:和所{ 有b ,顶d ,点f} 的{ a 子,,f 集} { a ,, c ,g } { a ,, e ,g }
回溯法
14
回溯法
step two:以颜色1为顶点B着色生成结点3时,产生 (1,1,0,0,0),是个无效着色,结点3为d_结点。
Step three:以颜色2为顶点B着色生成结点4,产 生(1,2,0,0,0),是个有效着色。
Step four:分别以颜色1和2为顶点C着色生成结点 5和6,产生(1,2,1,0,0)和(1,2,2,0,0),都是无效着 色,因此结点5和6都是d_结点。
9
穷举法-Welch Powell着色法
• 给定图G,用Welch Powell法对图G着
色1
A2 3
2
A3
1
A4
A5
A6 3
10
穷举法-Welch Powell着色法
• 第一步:将图G中的结点按度数的递减顺序排
列: A 5,A 3,A 7,A 1,A 2,A 4,A 6,A 8
• 第二步:用第一种颜色对A5着第一种颜色, 并对与A5不邻接的结点A1也着第一种颜色。
//搜索下一个颜色

if (color[k]<=m && k= =n)
//求解完毕,输出解

{ for (i=1; i<=n; i++)

图论课件-图的顶点着色

图论课件-图的顶点着色

AC
所以, (G) 4
7
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
注:对图的正常顶点着色,带来的是图的顶点集合的
一种划分方式。所以,对应的实际问题也是分类问题。 属于同一种颜色的顶点集合称为一个色组,它们彼此不 相邻接,所以又称为点独立集。用点色数种颜色对图G 正常着色,称为对图G的最优点着色。
若G1是非正则单图,则由数学归纳,G1是可Δ (G)顶点 正常着色的,从而,G是可Δ (G)正常顶点着色的。
(2) 容易证明:若G是1连通单图,最大度是Δ ,则
(G) (G)
15
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
(3) Δ (G)≥3
11
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
(1), (v3 )=3
v1
v6
v5
(2),C(v4)=3,C C(v4) 1, 2, 4,5, k 1
(1), (v4 )=1
v2
(2),C(v5)=1,C C(v5) 2,3, 4,5, k 2
v



G -v
17
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
由于G本身2连通,所以G-xn的每个仅含有一个割点的块 中均有点与xn邻接。设分属于H1与H2中的点x1与x2,它们与 xn邻接。由于x1与x2分属于不同块,所以x1与x2不邻接。又 因为Δ ≥3,所以G-{x1, x2}连通。

图论中的图的着色与染色问题

图论中的图的着色与染色问题

图论中的图的着色与染色问题图论是数学的一个分支,研究的是图的性质和图的应用。

在图论中,图的着色与染色问题是一个经典且重要的研究课题。

图的着色问题是指如何用有限的颜色对图的顶点或边进行染色,使得相邻的顶点或边具有不同的颜色。

本文将介绍图的着色与染色问题的基本概念和应用。

一、图的基本概念1. 无向图和有向图无向图由一些顶点和连接这些顶点的边组成,边没有方向性。

而有向图中,边是有方向性的,连接两个顶点的边有始点和终点之分。

2. 邻接矩阵和邻接表邻接矩阵是一种表示图的方法,用一个矩阵表示图中各个顶点之间的连接关系。

邻接表是另一种表示图的方法,用链表的形式表示图中各个顶点之间的连接关系。

二、图的着色问题图的着色问题是指如何用有限的颜色对图的顶点或边进行染色,使得相邻的顶点或边具有不同的颜色。

图的着色问题有以下两种情况:1. 顶点着色对于无向图或有向图的顶点,通过对每个顶点进行染色,使得图中任何相邻的顶点具有不同的颜色。

这里的相邻顶点指的是通过一条边相连的顶点。

2. 边着色对于无向图或有向图的边,通过对每条边进行染色,使得图中任何相邻的边具有不同的颜色。

这里的相邻边指的是有共同始点或终点的边。

三、图的染色算法对于图的着色问题,有不同的染色算法可以解决。

在这里我们介绍两种常用的染色算法:贪心算法和回溯算法。

1. 贪心算法贪心算法是一种基于局部最优策略的算法。

对于图的顶点着色问题,贪心算法的策略是从一个未染色的顶点开始,将其染上一个可用的颜色,并将该颜色标记为已占用,然后继续处理下一个未染色的顶点。

如果当前顶点没有可用的颜色可染,则需要增加一个新的颜色。

2. 回溯算法回溯算法是一种穷举所有可能性的算法。

对于图的着色问题,回溯算法的策略是从一个未染色的顶点开始,尝试不同的颜色进行染色,如果发现染色后与相邻顶点冲突,就回溯到上一个顶点重新尝试其他颜色,直到所有顶点都被染色。

四、图的着色问题的应用图的着色问题在实际中有广泛的应用。

7.2.2 图着色问题

7.2.2  图着色问题
1
4
2
5 4
设数组color[n]表示顶点的着色情况,合治法求解图着色问题的算法如下:
算法7.3——图着色问题
1.color[1]=1; //顶点1着颜色1 2.for (i=2; i<=n; i++) //其他所有顶点置未着色状态 color[i]=0; 3.k=0; 4.循环直到所有顶点均着色 4.1 k++; //取下一个颜色 4.2 for (i=2; i<=n; i++) //用颜色k为尽量多的顶点着色 4.2.1 若顶点i已着色,则转步骤4.2,考虑下一个顶点; 4.2.2 若图中与顶点i邻接的顶点着色与顶点i着颜色k不冲突 ,
34 A 46 19
B
12 26
B
12 E A
B
12 E
E
38
A
F
25
C 17 (a) B
F
25 D
F D (b) 17 17 12 E F 25 17 A 19 F B 12 26 E
C
C
D (c)
12 E A 19
B
A
19
F 17
25
C
C
(d) (f)
D
C
17
D
D
(e)
Kruskal方法构造最小生成树的过程
例:用合治法求解付款问题。 假设有面值为5元、2元、1元、5角、2角、1角的货币,需要找给顾客4元6角 现金,为使付出的货币的数量最少,首先选出1张面值不超过4元6角的最大面
值的货币,即2元,再选出1张面值不超过2元6角的最大面值的货币,即2元,
再选出1张面值不超过6角的最大面值的货币,即5角,再选出1张面值不超过1 角的最大面值的货币,即1角,总共付出4张货币。

图论中的图的着色与染色问题

图论中的图的着色与染色问题

图论中的图的着色与染色问题在图论中,图的着色与染色问题是一类经典的问题。

图的着色是指给图的每个顶点赋予一个颜色,要求相邻的顶点不能有相同的颜色;而图的染色是指给图的边赋予一个颜色,要求相邻的边不能有相同的颜色。

一、图的顶点着色图的顶点着色问题是图论中的经典问题之一。

给定一个无向图,要求为每个顶点分配一个颜色,使得任意两个相邻的顶点颜色不同。

这个问题的本质是将相邻的顶点划分到不同的颜色集合中。

解决图的顶点着色问题有多种算法,其中较为简单和常用的是贪心算法。

贪心算法按照某种规则为图的顶点逐个着色,每次着色时选择当前可用颜色的最小编号。

贪心算法的时间复杂度为O(n^2),其中n 为图的顶点数。

二、图的边染色图的边染色问题是另一个经典的图论问题。

给定一个无向图,要求给每条边分配一个颜色,使得任意两条相邻的边颜色不同。

这个问题的目标是将相邻的边划分到不同的颜色集合中。

解决图的边染色问题的算法有多种,其中常用的是基于回溯法和深度优先搜索的算法。

回溯法通过递归地尝试为每条边分配颜色,并根据约束条件进行回溯,直到找到可行的解或者穷尽所有可能。

深度优先搜索则通过遍历图的边,逐个给边染色,当发现某条边与相邻边颜色相同时,回溯到前一条边重新选择颜色。

三、特殊图的着色与染色问题除了一般的图的着色与染色问题,还存在一些特殊类型的图,对应着特殊的着色与染色问题。

1. 树的着色与染色:在树中,任意两个顶点之间都只有一条路径,因此树的着色与染色问题可以简化为树的边染色问题。

树的边染色问题可以使用贪心算法解决,每次为某条边选择一个未使用的颜色,直到所有边都被染色。

2. 平面图的着色与染色:平面图是指可以画在平面上,且任意两条边最多只有一个公共顶点的图。

平面图的着色与染色问题是在满足平面图约束条件下对图进行着色或染色。

对于平面图的着色与染色问题,使用四色定理可以得到解,即任何平面图最多只需要四种颜色来着色或染色。

四、应用领域图的着色与染色问题在实际应用中具有广泛的应用。

数据结构课程设计报告地图着色问题

数据结构课程设计报告地图着色问题

数据结构课程设计报告地图着色问题地图着色问题是一个经典的图论问题,涉及到如何用最少的颜色给地图上的各个区域进行着色,使得相邻的区域颜色不同。

在数据结构课程设计报告中,我们将详细介绍地图着色问题的定义、解决方法以及实现过程。

一、问题定义地图着色问题可以用图论的方式来描述。

给定一个地图,地图上的每个区域可以看作图的一个顶点,而区域之间的邻接关系可以看作图的边。

问题的目标是找到一种着色方案,使得相邻的区域颜色不同,且使用的颜色数最少。

二、解决方法1. 贪心算法:贪心算法是一种简单而有效的解决地图着色问题的方法。

具体步骤如下:a. 选择一个未着色的区域。

b. 遍历该区域的所有邻接区域,记录已经使用的颜色。

c. 选择一个未使用的颜色,给该区域着色。

d. 重复步骤a-c,直到所有区域都被着色。

2. 回溯算法:回溯算法是一种穷举所有可能解的方法,通过逐步试错来找到最优解。

具体步骤如下:a. 选择一个未着色的区域。

b. 遍历所有可用的颜色,尝试给该区域着色。

c. 检查该区域与相邻区域的颜色是否冲突,如果冲突则回溯到上一步。

d. 重复步骤a-c,直到所有区域都被着色。

三、实现过程1. 数据结构设计:在解决地图着色问题时,我们可以使用图的邻接矩阵或邻接表来表示地图的结构。

邻接矩阵适用于稠密图,而邻接表适用于稀疏图。

此外,我们还需要使用一个数组来记录每个区域的颜色。

2. 算法实现:根据选择的解决方法,我们可以实现相应的算法来解决地图着色问题。

对于贪心算法,我们可以按照贪心的策略来选择颜色;对于回溯算法,我们可以使用递归来穷举所有可能的解。

3. 算法优化:地图着色问题属于NP完全问题,因此在实际应用中,对于大规模的地图,穷举所有可能的解是不可行的。

我们可以通过一些优化策略来提高算法的效率,如剪枝、启发式搜索等。

四、实例分析假设我们有一个地图,包含5个区域,相邻区域如下所示:区域1:区域2、区域3区域2:区域1、区域3、区域4区域3:区域1、区域2、区域4、区域5区域4:区域2、区域3、区域5区域5:区域3、区域4我们可以使用贪心算法来解决这个问题。

图的着色问题

图的着色问题

顶点着色-基本概念
• K可着色:G的一个k顶点着色是指k种颜色1,2,…,k对于G各顶点的 可着色: 的一个k顶点着色是指k种颜色1,2,…,k对于G 1,2, 对于 一个分配,如果任意两个相邻顶点都分配到不同的颜色, 一个分配,如果任意两个相邻顶点都分配到不同的颜色,则称着 色是正常的。换句话说,无环图G的一个正常k顶点着色是把V 色是正常的。换句话说,无环图G的一个正常k顶点着色是把V分成 可能有空的)独立集的一个分类( 2,… k个(可能有空的)独立集的一个分类(V1,V2,…,Vk)。当G有一个 正常k顶点着色时,就成G 顶点可着色的。 正常k顶点着色时,就成G是k顶点可着色的。 • G的色数X(G)是指G为k可着色的k的最小值,若X(G)=k,则称G 的色数X 是指G 可着色的k的最小值, =k,则称G 色的。 是k色的。 • 事实上,如果我们将同色的顶点列入一个顶点子集,那么求X(G) 事实上,如果我们将同色的顶点列入一个顶点子集,那么求X 就转为求满足下列条件的最少子集数k 就转为求满足下列条件的最少子集数k: 两两子集中的顶点不同; (1)两两子集中的顶点不同; 子集中的两两顶点不相邻。 (2)子集中的两两顶点不相邻。 显然有: 为平凡图, =1; 显然有: (i)若G为平凡图,则X(G)=1; ii) 为偶图, (ii)若G为偶图,则X(G)=2 iii)对任意图G Δ+1(这里Δ (iii)对任意图G,有X(G)≤Δ+1(这里Δ表示为顶点 数最大值) 数最大值)
问题来源
图的着色
• 通常所说的着色问题是指下述两类问题: 通常所说的着色问题是指下述两类问题: • 1.给定无环图G=(V,E),用m种颜色为图中 的每条边着色,要求每条边着一种颜色, 的每条边着色,要求每条边着一种颜色,并 使相邻两条边有着不同的颜色, 使相邻两条边有着不同的颜色,这个问题称 为图的边着色问题。 为图的边着色问题。 • 2.给定无向图G=(V,E),用m种颜色为图中 的每个顶点着色,要求每个顶点着一种颜色, 的每个顶点着色,要求每个顶点着一种颜色, 并使相邻两顶点之间有着不同的颜色, 并使相邻两顶点之间有着不同的颜色,这个 问题称为图的顶着色问题。 问题称为图的顶着色问题。

图着色问题 ppt课件

图着色问题 ppt课件

例子 :
图着色问题
邻接矩阵:B
1
0
1
1
1
C 1 1 0 0 1
D
0
1
0
0
1
E 0 1 1 1 0
色,要求每个顶点着一种颜色,并使相邻两顶点之间有着不同 的颜色,这个问题称为图的顶点着色问题。
边着色:给定无环图G=(V,E),用m种颜色为图中的每条边着色,
要求每条边着一种颜色,并使相邻两条边有着不同的颜色,这 个问题称为图的边着色问题。
图着色问题
顶点着色问题的基本概念
m可着色:若一个图最少需要m种颜色才能使图中每条边连接的两个顶 点着不同的颜色,则称m为该图的色数。
图的着色问题
主讲人:XXX
图着色问题
内容
问题来源 基本概念 常用算法 回溯法 程序演示
图着色问题
问题来源——四色问题
• 图的着色问题是由地图的着色问题引申而来的:用m种颜色为地 图着色,使得地图上的每一个区域着一种颜色,且相邻区域颜 色不同。
• 四色问题:“任何一张地图只用四种颜色就能使具有共同边界 的国家着上不同的颜色。”
求m的问题称为图的m可着色优化问题。
独立集:对图G=(V,E),设S是V的一个子集,其中任意两个顶点在G中 均不相邻,则称S为G的一个独立集。 最大独立集:如果G不包含适合|S'|>|S|的独立集S',则称S为G的最
大独立集。
极大覆盖:设K是G的一个独立集,并且对于V-K的任一顶点v,K+v都 不是G的独立集,则称K是G的一个极大覆盖。 极小覆盖:极大独立集的补集称为极小覆盖。
图着色问题
问题处理:如果把每一个区域收缩为一个顶点,把相邻两个区域用一 条边相连接,就可以把一个区域图抽象为一个平面图。 例:图(a)所示的区域图可抽象为图(b)所表示的平面图。区域用 城市名表示,颜色用数字表示,则图中表示了不同区域的不同着色问 题。

图论中的图着色问题算法

图论中的图着色问题算法

图论中的图着色问题算法图着色问题是图论中的一个重要研究课题,它的目标是给定一个无向图,为每个顶点分配一个颜色,使得相邻的顶点拥有不同的颜色。

这个问题有着广泛的应用,例如地图着色、课程时间表安排以及调度等领域。

本文将介绍几种常见的图着色算法。

一、贪心算法贪心算法是解决图着色问题最直接且简便的方法之一。

其基本思想是从图的某个顶点开始,依次为每个顶点选择一个未被使用的最小颜色号。

该算法的具体步骤如下:1. 选择一个起始顶点v,并为其分配一个颜色c。

2. 对于v的所有相邻顶点u,如果u未着色,则为u选择一个未被使用的最小颜色号,并标记u为已着色。

3. 重复步骤2,直到所有顶点都被着色。

贪心算法的时间复杂度为O(n^2),其中n为顶点数。

该算法的缺点是可能得到的着色方案不是最优解。

二、回溯算法回溯算法是另一种常见的用于解决图着色问题的算法。

其基本思想是通过不断尝试不同的着色方案,直到找到一个满足条件的解。

该算法的具体步骤如下:1. 选择一个起始顶点v,并为其分配一个颜色c。

2. 对于v的所有相邻顶点u,如果u未着色,则为u选择一个未被使用的颜色号,并标记u为已着色。

3. 选择下一个未着色的顶点作为新的起始顶点,重复步骤2。

4. 如果无法为任何顶点着色,则回溯到上一步,修改之前的着色方案,为当前顶点选择一个新的颜色。

5. 重复步骤3和步骤4,直到所有顶点都被着色。

回溯算法的时间复杂度取决于图的结构和颜色数目,一般情况下是指数级的。

该算法可以得到最优解,但在处理大规模问题时效率较低。

三、基于现有算法的改进除了贪心算法和回溯算法外,还存在一些基于这两种算法的改进方法,以提高图着色问题的求解效率。

例如,使用启发式算法、剪枝技术以及约束求解等方法。

启发式算法是一种非确定性的搜索算法,通过引入启发函数来指导搜索过程,以期望更快地找到一个不错的解。

典型的启发式算法包括Tabu搜索、模拟退火算法等。

剪枝技术是在搜索过程中通过判断某些分支的无效性,从而减少搜索空间,提高算法效率。

图论课件--着色的计数与色多项式

图论课件--着色的计数与色多项式

23
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
t
ni n j 1
一方面:
t
h(Hi , x)
t
ni
aij x j
i 1
i1 j 1
该多项式中 xk 旳系数rk为:
rk
a a 1i1 2i2
atit
i1 i2 it k
另一方面:设Mj是Hj中具有ij个分支旳Hj旳理想子图。 当i1+i2+…+it=k时,M1∪ M2 ∪… ∪Mt必是G旳具有k个 分支旳理想子图。
例2 求N4(G), N5(G)。
G 10
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
解:经过观察枚举求Nr(G)
G
1) N4(G):
G
11
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
N4(G)=6
2) N5(G):
例1 求出下面各图旳色多项式。
G1
G2
G3
6
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(1)
G1
Pk (G1) k(k 1)(k 2) k(k 1) k3 2k 2 k
也可由推论: (k 1)Pk (K2 ) k3 2k 2 k
G1

图论中的图的着色与染色问题

图论中的图的着色与染色问题

图论中的图的着色与染色问题图是图论中的基本概念之一,是由顶点和边构成的数学结构。

在图的理论中,图的着色与染色问题是一个非常重要且有趣的研究领域。

本文将介绍图的着色与染色问题的基本概念、定理和算法,希望能够为读者深入了解图论领域提供一些帮助。

一、基本概念在图的理论中,图的着色与染色问题是指将图的顶点或边用不同颜色标记的过程。

着色是指给图的顶点或边分配颜色,使得相邻的顶点或边颜色不相同;而染色是指给图的顶点或边分配颜色,使得相邻的顶点或边颜色可以相同。

定理1:图的顶点着色问题对于一个简单图,顶点着色问题是指如何用最少的颜色将图的所有顶点着色,使得相邻的顶点颜色不同。

根据四色定理,任何一个平面图都可以只用四种颜色进行顶点着色。

定理2:图的边着色问题对于一个简单图,边着色问题是指如何用最少的颜色将图的所有边着色,使得任意两条依附于同一顶点的边颜色不同。

根据维茨定理,任何简单无向图都可以用最大度数加一种颜色进行边着色。

二、算法与实践在解决图的着色与染色问题时,常用的算法包括贪心算法、回溯算法、图染色算法等。

其中,Welsh-Powell算法是用来解决无向图的顶点着色问题的一种有效算法,其基本思想是优先考虑度数最大的顶点进行着色。

而在解决边着色问题时,常用的算法包括Vizing定理、边染色算法等。

三、应用与拓展图的着色与染色问题在实际生活中有着广泛的应用,如地图着色、时间表着色、调度问题等。

同时,在拓展领域中,图的着色与染色问题也与其他数学领域有着密切的联系,如组合数学、离散数学等,在各个领域都有着深入的研究与应用。

总结:图的着色与染色问题是图论领域中的一个重要研究方向,具有丰富的理论内涵和实际应用。

通过本文对图的着色与染色问题的介绍,希望读者能够对该领域有一个初步的了解,进一步深入研究与探讨。

愿本文能够为读者在图论领域的学习与研究提供一些帮助与启发。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档