大学高等数学函数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

记作 [x]. 即
3
y = [x] = n, n ≤ x < n + 1, n = 0, ±1,± 2, … 其定义域为D( f )=(-∞,+∞),
2
-4 -3 -2 -1 o-11 2 3 4 5 x -2 -3 -4
值域为Z( f )=Z.
阶梯曲线
可以证明:对于任何实数x, 有不等式 [x] ≤x < [x] + 1.
a,b R ,且 ab. ◆开区间: {xaxb} 记作 (a,b)
oa
b
x
◆闭区间: {xaxb} 记作 [a,b]
oa
b
x
◆半开区间:
{xaxb} 记作 [a,b)
oa
b
x
{xaxb} 记作(a,b]
oa
b
x
◆区间长度
两端点间的距离(线段的长度)称为区间的长度. 区间的划分:1.有限区间 2.无限区间
(4)分段函数:在自变量的不同变化范围中,对 应法则用不同的式子来表示的函数,称为分段函 数. 注意:
(1) 分段函数的定义域是其各段定义域的并集;
(2) 分段函数在其整个定义域上是一个函数, 而不 是几个函数.
二.函数的基本特性
1、函数的奇偶性
设D关于原点对称,若 x对 D于,且
f(x)f(x)
0
U(x0,){x0xx0 } (x0,x0)(x0,x0).
其中(x0,x0)称为 x 0 的左邻域,
(x0,x0)称为 x 0 的右邻域。
函数概念
若x与y是两个变量,D是一个非空的实数集合。设有一个 对应规则 f,使每一个 x D,都有一个确定的实数 y与之对 应,则称这个对应法则 f 为定义在 D上的一个函数关系, 或称y是x的函数,记作
平时成绩:期中测验成绩,作业成绩,考勤。
2. 考勤 不许旷课、迟到、早退,自觉维护课堂纪律。
3. 作业
要求认真完成作业,按时交作业。严禁抄作业。字迹
潦草、表达混乱、乱划乱改的作业返回重做,甚至取
消该次成绩。 4. 答疑
时间:
地点:四教西305
课程特点与学习方法
特点:1. 课堂大 2. 时间长 3. 进度快
(通常说周期函数的周期是指其最小正周期或基本周期).
3l 2
l 2
l 2
3l 2
说明: (1)周期函数的图形在每一个周期长度的区间上 有相同的形状; (2)并非每个周期函数都有基本周期.
例如,函数 f(x) = C是周期函数,但它没有基本周期;
例:设函数 f (x) 是周期为T 的周期函数,试求函 数 f (ax+b) 的周期,其中a,b为常数,且 a > 0.
3、函数的单调性
单性 调 :设 f(x 函 )的数 定D 义 ,区 域 I间 D 为 , 如果 x 1 ,x 2 对 I,当 x 1 于 x 2 时 ,恒有
f(x 1 ) f(x 2 )或 (f(x 1 ) 者 f(x 2 ), )
则称f函 (x)在 数区 I上 间 是单调 (单增 调加 减 ).的 少
大体分为以下几种: a)偶次方根号 b)分式的分母 c)对数的真数 d)三角函数(正切余切)和反三角函数, e)以上情况的复合等
2.实际应用 时间,高度,热度等等
几个特殊的函数举例
(1)绝对值函数
yxxx
x0 x0
其定义域为D( f )=(-∞,+∞), 值域为Z( f )=[0, +∞).
y
y x
yf(x)
因变量
自变量
定义域:数集D叫做这个函数的定义域, 记作D(f )
值 域:函数值全体组成的数集, 即 { y |y f(x )x , D (f), 记 } Z 或 作 Z (f) 者 .
(1)、函数的定义域
1.数学角度:定义域是自变量所能取的使算式 有意义的一切实数值, 这种定义域称为函 数的自然定义域.
y
y f (x)
{x x b} 记作 (,b)
ob
x
4、邻域 设 x0与 是两个 , 且 实 数 0.
数 {x 集 xx 0}称为 x 0 的 邻 点,域
点x0叫做这邻域的中心, 叫做这邻域的半径.
记作 U(x0,){x||xx0|} {xx0xx0}.
x0
x0
x0
x
去心邻域:
0
点x0的去心 邻 的域 ,记作U(x0,).
o
x
(2) 符号函数
1 当x0 ysgnx 0 当x0
1 当x0
y
1
o
x
-1
其定义域为D( f )=(-∞,+∞), 值域为Z( f )={-1, 0, 1}. 可以证明:对于任何实数 x, 下列关系成立:
xsgnx x
(3) 取整函数
设 x 为任一实数, 不超过x
的最大整数称为 x 的整数部分, 1 4 y
f(x)ln x [1(x)2]ln(x 1x2)
(x 1x2)(x 1x2) ln
x 1x2
ln 1
lnx( 1x2)
x 1 x2
= -f (x)
∴f (x)是奇函数.
2、函数的周期性
设函f数 (x)的定义域 D, 为如果存在一个的不为零 数 T ,使 x D 得 ,(x T ) 对 D 且 f(x 于 T ) f(x )恒 成.立 则f称 (x)为周期 T称 函f为 (数 x)的 , 周 . 期
方法: 1. 课前预习 2.重点听讲 3. 简记笔记 4. 整理咀嚼 5. 后作练习 6. 答疑
第一章 函 数
函数的概念及基本特性 预备知识
1、数的扩张:
自然数 负整数
整数 分数
有理数实数
复数
无理数
ቤተ መጻሕፍቲ ባይዱ
虚数
2、数的几何表示:数轴
实数与数轴上的点之间具有一一对应的关系。
3、区间: 是指介于某两个实数之间的全体实数.这 两个实数叫做区间的端点.
则称f (x)为偶函; 数
y yf(x)
f(x)
f (x)
-x o x
x
偶函数
设 D 关于原 , 若 点对 对 x 于 D 称 , 有
f( x )f(x )
则称f(x)为奇函. 数
y
yf(x)
-x f(x)
o 奇函数
f (x)
xx
例 判断下列函数的奇偶性:
f(x)lnx( 1x2);
解:(1) ∵函数的定义域为(-∞, +∞), 且
高等数学Ⅲ
自我介绍
姓 名:张智勇 地 点:四教西305室 E-mail :
课程介绍
课程名称:微积分 学 分:4 学分 学 时:64 学时(1周-16周) 课程内容:1. 函数、极限与连续
2. 导数与微分 3. 中值定理与导数应用 4. 不定积分 5. 定积分及其应用
考核及要求
1. 期末总评成绩的计算 期末考试成绩占70%,平时成绩占30%。
相关文档
最新文档