抛物线的定义和标准方程PPT课件
合集下载
3.3.1抛物线及其标准方程(PPT)课件(人教版)

1.抛物线 y=41x2 的准线方程是(
)
A.y=-1 B.y=-2
C.x=-1 D.x=-2
A 解析:因为 y=41x2⇔x2=4y,所以抛物线的准线方程是 y=
-1.
2.顶点在原点,焦点是 F(0,3)的抛物线标准方程是( ) A.y2=12x B.x2=12y C.y2=112x D.x2=112y
解: (1)由于点 M(-6,6)在第二象限, 所以过点 M 的抛物线开口向左或开口向上. 若抛物线开口向左,焦点在 x 轴上,设其方程为 y2=-2px(p>0). 将点 M(-6,6)代入,可得 36=-2p×(-6),所以 p=3. 所以抛物线的方程为 y2=-6x.
若抛物线开口向上,焦点在 y 轴上,设其方程为 x2=2py(p>0). 将点 M(-6,6)代入,可得 36=2p×6,所以 p=3, 所以抛物线的方程为 x2=6y. 综上所述,抛物线的标准方程为 y2=-6x 或 x2=6y.
3.已知动点 P(x,y)满足 (x-1)2+(y-2)2=|3x+45y-10|, 则点 P 的轨迹是( )
A.直线 B.圆 C.椭圆 D.抛物线 D 解析:由题意知,动点 P 到定点(1,2)和定直线 3x+4y-10 =0 的距离相等,又点(1,2)不在直线 3x+4y-10=0 上,所以点 P 的轨迹是抛物线.
1.已知抛物线 y2=4x 的焦点是 F,点 P 是抛物线上的动点, 又有点 A(3,4),则|PA|+|PF|的最小值为________.
2 5 解析:由题意可知点 A(3,4)在抛物线的外部. 因为|PA|+|PF|的最小值即为 A,F 两点间的距离,F(1,0), 所以|PA|+|PF|≥|AF|= 42+22=2 5, 即|PA|+|PF|的最小值为 2 5.
抛物线的定义及标准方程PPT课件-2024鲜版

性质
抛物线具有对称性,其对称轴是 过焦点且垂直于准线的直线;抛 物线上任一点到焦点的距离等于 到准线的距离。
4
抛物线的焦点和准线
焦点
抛物线上所有点到焦点的距离相等的 点,用F表示。
准线
焦点和准线的位置关系
对于开口向上的抛物线,焦点在准线 的上方;对于开口向下的抛物线,焦 点在准线的下方。
抛物线上所有点到准线的距离相等的 直线,用l表示。
18
05
抛物线与相关曲线的联系与区别
2024/3/28
19
与直线的交点问题
抛物线与直线交点的 求解方法
交点在抛物线对称轴 上的特殊情况
2024/3/28
交点个数的判断及位 置关系
20
与圆的切线问题
抛物线与圆的切线求解方法
切线个数的判断及位置关系
切点在抛物线顶点处的特殊情况
2024/3/28
21
无限延伸
抛物线在两端无限延伸,且越来越 接近其对称轴。
12
抛物线的顶点、焦点和准线的性质
顶点
抛物线的顶点是抛物线上距离对 称轴最近的点,也是抛物线的最
高点或最低点。
焦点
抛物线的焦点位于对称轴上,且 距离顶点的距离等于焦距。所有 从焦点出发的光线经过抛物线反
射后平行于对称 轴且距离顶点等于焦距的直线。 所有从焦点出发的光线经过抛物
线反射后,都会与准线相交。
2024/3/28
13
抛物线的对称性和平移性质
对称性
抛物线关于其对称轴对称,即如果点P(x,y)在抛物线上,那么点P'(-x,y)也在抛物线上。
平移性质
抛物线可以通过平移变换得到新的抛物线。如果抛物线沿x轴平移a个单位,沿y轴平移b个单位,那么新的抛物线 的方程可以通过在原方程中替换x为x-a,y为y-b得到。这种平移变换不会改变抛物线的形状和开口方向,只会改 变其位置和顶点坐标。
抛物线具有对称性,其对称轴是 过焦点且垂直于准线的直线;抛 物线上任一点到焦点的距离等于 到准线的距离。
4
抛物线的焦点和准线
焦点
抛物线上所有点到焦点的距离相等的 点,用F表示。
准线
焦点和准线的位置关系
对于开口向上的抛物线,焦点在准线 的上方;对于开口向下的抛物线,焦 点在准线的下方。
抛物线上所有点到准线的距离相等的 直线,用l表示。
18
05
抛物线与相关曲线的联系与区别
2024/3/28
19
与直线的交点问题
抛物线与直线交点的 求解方法
交点在抛物线对称轴 上的特殊情况
2024/3/28
交点个数的判断及位 置关系
20
与圆的切线问题
抛物线与圆的切线求解方法
切线个数的判断及位置关系
切点在抛物线顶点处的特殊情况
2024/3/28
21
无限延伸
抛物线在两端无限延伸,且越来越 接近其对称轴。
12
抛物线的顶点、焦点和准线的性质
顶点
抛物线的顶点是抛物线上距离对 称轴最近的点,也是抛物线的最
高点或最低点。
焦点
抛物线的焦点位于对称轴上,且 距离顶点的距离等于焦距。所有 从焦点出发的光线经过抛物线反
射后平行于对称 轴且距离顶点等于焦距的直线。 所有从焦点出发的光线经过抛物
线反射后,都会与准线相交。
2024/3/28
13
抛物线的对称性和平移性质
对称性
抛物线关于其对称轴对称,即如果点P(x,y)在抛物线上,那么点P'(-x,y)也在抛物线上。
平移性质
抛物线可以通过平移变换得到新的抛物线。如果抛物线沿x轴平移a个单位,沿y轴平移b个单位,那么新的抛物线 的方程可以通过在原方程中替换x为x-a,y为y-b得到。这种平移变换不会改变抛物线的形状和开口方向,只会改 变其位置和顶点坐标。
高中抛物线通用课件

02 抛物线的焦点和准线是相互垂直的,且距离为 $|p|$。
抛物线的开口方向与大小
抛物线的开口方向由焦点的位置 决定,焦点在 $x$ 轴正半轴上 时,开口向右;焦点在 $x$ 轴
负半轴上时,开口向左。
抛物线的开口大小由焦距 $p$ 的绝对值决定,$|p|$ 值越大, 开口越大;$|p|$ 值越小,开口
04
抛物线的作图与计算
抛物线的作图方法
直接作图法
通过抛物线的定义,利用 直尺、圆规等工具直接画 出抛物线。
参数法
引入参数方程,通过参数 的变化来绘制抛物线。
坐标法
利用抛物线的标准方程, 通过坐标变换和函数图像 绘制抛物线。
抛物线的计算方法
标准方程法
利用抛物线的标准方程, 求出焦点、准线等几何量 。
越小。
当 $p = 0$ 时,抛物线退化为 一条直线,即 $y = 0$。
03
抛物线的应用
抛物线在几何图形中的应用
抛物线与椭圆、双曲线的比较
通过比较抛物线与椭圆、双曲线的定义和性质,理解抛 物线的几何特性。
抛物线与直线的位置关系
研究抛物线与直线相交、平行和垂直的条件,以及这些 条件下的几何意义。
抛物线在实际问题中的应用
01
抛物线与物理学
理解抛物线在物理学中的应用,如斜抛运动、光 线的反射和折射等。
02
抛物线与经济学的关系
探讨抛物线在经济学中的运用,如需求曲线、成 本曲线等。
抛物线与其他数学知识的综合应用
抛物线与三角函数
结合三角函数的知识,研究抛物线的周期性和对 称性。
抛物线与导数
利用导数研究抛物线的极值点和切线斜率,解决 实际问题中的最优化问题。
当 $p > 0$ 时,抛物线开口向右;当 $p < 0$ 时 02 ,抛物线开口向左。
2.4.1抛物线及其标准方程课件人教新课标2

∴抛物线焦点在y轴负半轴上,设标准方程为x2=-2py,并且 p 2 2
∴2p=8,
∴抛物线的标准方程为x2=-8y.
变式训练
1.根据下列条件写出抛物线的标准方程.
(1)焦点是(0,-3) ;
x2= -12y
(2)准线是x 1 ;
2
y2=2x
感悟:用待定系数法求抛物线标准方程应先确定抛物
线的情势,再求p值.
四种情势: 抛物线的标准方程有四种: y2=2px(p>0)
y2= -2px(p>0) x2=2py(p>0) x2= -2py(p>0)
12=0与x轴的交点是(4,0),与y轴的交点是
∴该抛物线标准方程有四种情 (0,﹣3),
势
∴焦点坐标为(4,0)或(0,﹣3);
y2=±2px , x2=±2py
当焦点为(4,0)时标准方程为y2=16x ,
此抛物线的标准方程有四种情
况:
当焦点为(0,﹣3)时标准方程为x2= ﹣12y ,
y2=±4x , x2=±4y
· N M
· O
x
K
F
想一想:p的几何意义?
设|KF|=p (p>0),那么焦点F的坐标为(
p
p 2
,0),准
线 l 的方程为x=- 2 .
设点M(x,y)是抛物线上任意一点,点M到l的距离
为d=|MN|
由抛物线的定义,
| MF | d
∵ | MF |
(x p)2 y2 2
(x p )2 y2 | x p |
y
o
x
想一想:怎样推导出其它几种情势的方程?
四种抛物线的标准方程对照
图形 标准方程 焦点坐标 准线方程
∴2p=8,
∴抛物线的标准方程为x2=-8y.
变式训练
1.根据下列条件写出抛物线的标准方程.
(1)焦点是(0,-3) ;
x2= -12y
(2)准线是x 1 ;
2
y2=2x
感悟:用待定系数法求抛物线标准方程应先确定抛物
线的情势,再求p值.
四种情势: 抛物线的标准方程有四种: y2=2px(p>0)
y2= -2px(p>0) x2=2py(p>0) x2= -2py(p>0)
12=0与x轴的交点是(4,0),与y轴的交点是
∴该抛物线标准方程有四种情 (0,﹣3),
势
∴焦点坐标为(4,0)或(0,﹣3);
y2=±2px , x2=±2py
当焦点为(4,0)时标准方程为y2=16x ,
此抛物线的标准方程有四种情
况:
当焦点为(0,﹣3)时标准方程为x2= ﹣12y ,
y2=±4x , x2=±4y
· N M
· O
x
K
F
想一想:p的几何意义?
设|KF|=p (p>0),那么焦点F的坐标为(
p
p 2
,0),准
线 l 的方程为x=- 2 .
设点M(x,y)是抛物线上任意一点,点M到l的距离
为d=|MN|
由抛物线的定义,
| MF | d
∵ | MF |
(x p)2 y2 2
(x p )2 y2 | x p |
y
o
x
想一想:怎样推导出其它几种情势的方程?
四种抛物线的标准方程对照
图形 标准方程 焦点坐标 准线方程
抛物线及其标准方程优秀课件

准线位置:根据抛物线 准线的位置,可以分为 准线平行于x轴、准线 平行于y轴和准线不平 行于坐标轴三种。
抛物线的标准方程
抛物线的标准方程推导
抛物线的定义:一个平面曲线,它的所有点都位于一个固定点(焦点)和一条固定直 线(准线)之间。
抛物线的标准方程:y^2 = 4px,其中p是焦点到准线的距离。
抛物线的一般形式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。 单击此处添加文本具体内容,简明扼要地阐述您的观点。根据需要可酌情增减文字, 以便观者准确地理解您传达的思想。单击此处添加文本具体内容,简明扼要地阐述您 的观点
抛物线的对称轴为x=-b/2a。 结论:二次函数的对称轴与抛物线的对称轴相同,都为x=-b/2a。
抛物线的准线方程
准线的定义: 抛物线上任意 一点到准线的
距离相等
准线的方程: x=-p(开口方 向为x轴正方向) 或x=p(开口 方向为x轴负方
向)
准线的性质: 准线是与抛物 线对称轴平行 的直线,离抛
物线最近
准线的作用: 利用准线方程 可以求出抛物 线上任意一点
的坐标
抛物线的解析性质
抛物线的导数与切线斜率
抛物线在建筑美学中的应用:古罗 马建筑中的抛物线元素
抛物线在建筑美学中的应用:桥梁、 隧道等交通设施中的抛物线应用
添加标题
添加标题
添加标题
添加标题
抛物线在建筑美学中的应用:现代 建筑中的抛物线设计
抛物线在建筑美学中的应用:室内 设计中的抛物线元素
物理学中的抛物线应用
光学应用:抛物线 镜面可以聚焦光线, 用于制造望远镜、 显微镜等光学仪器。
抛物线的渐近线方程
定义:抛物线与直线y=±x 的交点形成的直线
【2024版】】抛物线的定义及标准方程PPT课件

y
ox
﹒y o x
焦点
准线
标准方程
想一想:
1.椭圆,双曲线,抛物线各有几条准线? 2.根据上表中抛物线的标准方程的不同 形式与图形、焦点坐标、准线方程对应 关系,如何判断抛物线的焦点位置,开
口方向?
3.第一:一次项的变量如为X(或Y) 则X轴 (或Y轴)为抛物线的对称轴,焦点就在对称 轴上。! 第二:一次的系数决定了开口方向
解(直接法):设 M(x,y),则由已知,得
|MF|+1=|x+5|
l
y .M
即 (x 4)2 y2 1 x 5 化简得 y2 16x 即为点 M的轨迹方程 .
.
o
Fx
另解(定义法):
由已知,得点M到点F(4,0)的距离等于它到直线 l: x+4=0 的距离.
点M的轨迹是以F(4,0)为焦点的抛物线. 由抛物线定义知:
课题: 抛物线及 其标准方程(一)
复习:
椭圆、双曲线的第二定义:
与一个定点的距离和一条定直线的距离的比 是常数e的点的轨迹.
(1)当0<e<1时,是椭圆;
(2) 当e>1时,是双曲线;
(3)当e=1时,它的轨迹是什么?
M
N
··F
0<e <1
e>1
e=1
一、定义
定点F与定直线l的位置关系是 怎样的?
(3) (4)
(0, 021,4 -2)
准线方程
x=-5
y= -
1
—8
y 1 24
y=2
例2、求过点A(-3,2)的抛物线的
标准方程。
. 解:当抛物线的焦点在y轴
y
的正半轴上时,把A(-3,2) A
ox
﹒y o x
焦点
准线
标准方程
想一想:
1.椭圆,双曲线,抛物线各有几条准线? 2.根据上表中抛物线的标准方程的不同 形式与图形、焦点坐标、准线方程对应 关系,如何判断抛物线的焦点位置,开
口方向?
3.第一:一次项的变量如为X(或Y) 则X轴 (或Y轴)为抛物线的对称轴,焦点就在对称 轴上。! 第二:一次的系数决定了开口方向
解(直接法):设 M(x,y),则由已知,得
|MF|+1=|x+5|
l
y .M
即 (x 4)2 y2 1 x 5 化简得 y2 16x 即为点 M的轨迹方程 .
.
o
Fx
另解(定义法):
由已知,得点M到点F(4,0)的距离等于它到直线 l: x+4=0 的距离.
点M的轨迹是以F(4,0)为焦点的抛物线. 由抛物线定义知:
课题: 抛物线及 其标准方程(一)
复习:
椭圆、双曲线的第二定义:
与一个定点的距离和一条定直线的距离的比 是常数e的点的轨迹.
(1)当0<e<1时,是椭圆;
(2) 当e>1时,是双曲线;
(3)当e=1时,它的轨迹是什么?
M
N
··F
0<e <1
e>1
e=1
一、定义
定点F与定直线l的位置关系是 怎样的?
(3) (4)
(0, 021,4 -2)
准线方程
x=-5
y= -
1
—8
y 1 24
y=2
例2、求过点A(-3,2)的抛物线的
标准方程。
. 解:当抛物线的焦点在y轴
y
的正半轴上时,把A(-3,2) A
《抛物线及其标准方程一》(课件)

几何意义
抛物线的形状像一条平滑的曲线 ,它是由所有与焦点和准线等距 的点组成的。
焦点与准线
焦点
抛物线上的一个固定点,通常用大写 字母F表示。所有抛物线上的点到焦 点的距离都等于到准线的距离。
准线
抛物线所在平面内的一条定直线,通 常用小写字母l表示。准线与抛物线的 对称轴平行,且到焦点的距离等于焦 距。
抛物线与对称轴的交点,也称为抛物线的最高点或最低点。顶点的坐标可以通过 抛物线的标准方程求出。
对称轴
抛物线的一条直线,它经过顶点且与抛物线交于两点。对称轴与x轴平行或重合 ,且所有关于对称轴对称的点都在抛物线上。对称轴的方程可以通过抛物线的标 准方程求出。
02
标准方程推导与形式
标准方程推导过程
引入抛物线的定义
顶点位置
抛物线的顶点位置可以由 标准方程直接得出。
借助计算机软件进行可视化展示
使用数学软件
结合动态演示
如Mathematica、MATLAB等数学软 件,可以直接输入抛物线的标准方程, 进行可视化展示。
通过计算机软件,还可以实现抛物线 的动态演示,更直观地展示抛物线的 性质。
使用绘图工具
如GeoGebra、Desmos等在线绘图 工具,也可以方便地绘制出抛物线的 图像。
为:$d=|x+p|$。
对于开口向上或向下的抛物线, 焦点到直线上任意点的距离公式
为:$d=|y+p|$。
注意:这里的距离公式是在标准 方程下的特殊情况,对于一般的 抛物线方程,需要根据具体情况
进行推导。
03
抛物线图像绘制方法
利用描点法绘制图像
01
02
03
确定抛物线的顶点
根据抛物线的标准方程, 可以确定抛物线的顶点坐 标。
抛物线的形状像一条平滑的曲线 ,它是由所有与焦点和准线等距 的点组成的。
焦点与准线
焦点
抛物线上的一个固定点,通常用大写 字母F表示。所有抛物线上的点到焦 点的距离都等于到准线的距离。
准线
抛物线所在平面内的一条定直线,通 常用小写字母l表示。准线与抛物线的 对称轴平行,且到焦点的距离等于焦 距。
抛物线与对称轴的交点,也称为抛物线的最高点或最低点。顶点的坐标可以通过 抛物线的标准方程求出。
对称轴
抛物线的一条直线,它经过顶点且与抛物线交于两点。对称轴与x轴平行或重合 ,且所有关于对称轴对称的点都在抛物线上。对称轴的方程可以通过抛物线的标 准方程求出。
02
标准方程推导与形式
标准方程推导过程
引入抛物线的定义
顶点位置
抛物线的顶点位置可以由 标准方程直接得出。
借助计算机软件进行可视化展示
使用数学软件
结合动态演示
如Mathematica、MATLAB等数学软 件,可以直接输入抛物线的标准方程, 进行可视化展示。
通过计算机软件,还可以实现抛物线 的动态演示,更直观地展示抛物线的 性质。
使用绘图工具
如GeoGebra、Desmos等在线绘图 工具,也可以方便地绘制出抛物线的 图像。
为:$d=|x+p|$。
对于开口向上或向下的抛物线, 焦点到直线上任意点的距离公式
为:$d=|y+p|$。
注意:这里的距离公式是在标准 方程下的特殊情况,对于一般的 抛物线方程,需要根据具体情况
进行推导。
03
抛物线图像绘制方法
利用描点法绘制图像
01
02
03
确定抛物线的顶点
根据抛物线的标准方程, 可以确定抛物线的顶点坐 标。
3.3.1抛物线及其标准方程课件(人教版)

5.二次函数 = ( ≠ )的图象是抛物线吗?如果是,请写出它的焦点
坐标、准线方程.
问题1 抛物线的定义
我们把平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨
迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
问题2 当直线l经过点F时,点的轨迹是什么?
过定点F且垂直于定直线l的一条直线.
y
M
H
•
K O
•
F
x
将上式两边平方并化简,得y2=2px(p>0).
① 我们把方程①叫做抛物线的标准方程
p
它表示焦点在 x轴正半轴上,焦点是F ( ,0)
,
2
p
准线是 x 的抛物线.
2
y2 = 2px (p>0)其中p为正常数,表示焦点在x轴正半轴上.y
p
( , 0) ,
2
焦点坐标是:_________
p
x
准线方程为:_______2
向右
开口方向:_____
焦点到准线的距离(焦准距).
p的几何意义是:___________________
问题4 抛物线只有这一种形式吗 ?
M
H
K
•
O
•
F
x
四种不同的建立平面直角坐标系
y
y
M
H
M
y
H
y
•
K O
•
F
x
•
FO
•
K
x
F•
O•
K
K•
O•
F
M
H
x
M
x
H
抛物线方程特点
l
F
坐标、准线方程.
问题1 抛物线的定义
我们把平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨
迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
问题2 当直线l经过点F时,点的轨迹是什么?
过定点F且垂直于定直线l的一条直线.
y
M
H
•
K O
•
F
x
将上式两边平方并化简,得y2=2px(p>0).
① 我们把方程①叫做抛物线的标准方程
p
它表示焦点在 x轴正半轴上,焦点是F ( ,0)
,
2
p
准线是 x 的抛物线.
2
y2 = 2px (p>0)其中p为正常数,表示焦点在x轴正半轴上.y
p
( , 0) ,
2
焦点坐标是:_________
p
x
准线方程为:_______2
向右
开口方向:_____
焦点到准线的距离(焦准距).
p的几何意义是:___________________
问题4 抛物线只有这一种形式吗 ?
M
H
K
•
O
•
F
x
四种不同的建立平面直角坐标系
y
y
M
H
M
y
H
y
•
K O
•
F
x
•
FO
•
K
x
F•
O•
K
K•
O•
F
M
H
x
M
x
H
抛物线方程特点
l
F
抛物线课件ppt

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
化简得 y2 = 2px(p> 0)
方程 y2 = 2px(p>0)表示的抛物线,其
焦点 位于X轴的正半轴上,其准线交于X轴的负半轴
p
即右焦点F( 2 ,0),左准线L:x =-
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
解:如图,取过焦点F且垂直于准线L的直 线为x轴,线段KF的中垂线为y轴 F(P/2,0) x= -p/2 设动点M的坐标为(x,y)
√(x-p/2)+2y 2= |x+p/2|
1.(2010·福建高考理科)以抛物线的焦点为圆心 且过坐标原点的圆的方程为( )
A.X2 +y2+2x=0 C.X2+y2-x=0
B.x2+y 2+x=0 D.x2 +y2-2x=0
2.(2010·陕西高考理科·T8)已知抛物线 y2=2px(p>0)的准线与圆x2+y2-6 x-7=0相 切,则p的值为( )
第一步用待定系数法求出抛物线方程及其准线 方程;第二步依题意假设直线l的方程为,联立直线与抛物 线的方程,利用判别式限制参数t的范围,再由直线OA与 直线l的距离等于列出方程,求解出t的值,注意判别式对 参数t的限制.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
抛物线及其标准方程ppt课件

l
平面内与一个定点 F 和一条定直线 l(l 不经
H
过点 F)的距离相等的点的轨迹叫做抛物线.点 F
叫做抛物线的焦点,直线 l 叫做抛物线的准线.
准线
M
F
焦点
根据抛物线的几何特征,如图,取经过点 F 且垂直于直线 l 的直线为 x 轴,垂
足为 K,并使原点与线段 KF 的中点重合,建立平面直角坐标系 Oxy.设| KF | p( p 0) ,
的值是( C)
A. 4
B.2
C.4
D.8
解析:抛物线的准线方程为:
x
p 2
,因为
M
到焦点距离为
5,所以
M
到准线
的距离1 p 5 ,即 p 8 ,则抛物线方程为 y2 16x .将1, m 代入得:m2 16 ,
2
因为 m 0,所以 m 4 .故选:C.
5.抛物线 y2 mx( m 0) 的准线方程为 x 2 , 那么抛物线 y mx2 的焦点坐标为
焦点坐标
p 2
,
0
p 2
,
0
0,
p 2
0,
p 2
准线方程
x p 2
x p 2
y p 2
y p 2
四种标注方程对应抛物线的比较 相同点:
(1)顶点都是原点
(2)焦点都在坐标轴上
·
(3)焦点到准线的距离都是 p
(4)准线与焦点所在的坐标轴垂直,准线与坐标轴的交点与焦点关于原点对称,
它们与原点的距离都等于
p 2
1,得到
p
2
.
A 2.抛物线 y x 2 的焦点到双曲线 x2 y2 1 的渐近线的距离为( ) 24
抛物线的定义与标准方程.ppt

y2=2px(p>0)
方程 y2 = 2px(p>0)叫做抛物线的标 准方程。其中p为正常数,表示焦点在x轴 正半轴上.
焦点坐标是( p , 0) 准线: x p
2
2
P的几何意义是:
焦点到准线的距离
y
想一想? y
K
0
x
y2=2px(P>0)
方程是 什么?
x 0
x2 2 py( p 0)
例1、(1)已知抛物线的标准方程是y2 = 6x,
求它的焦点坐标和准线方程;
(2)已知抛物线的方程是y = -ax2, 求它的焦点坐标和准线方程;
(3)已知抛物线的焦点坐标是F(0,-2), 求它的标准方程。
例2 求以原点为顶点,坐标轴为对称轴,并且过
点A(-3,2)的抛物线的标准方程。
解 (1)当抛物线的焦点在y轴 的正半轴上时,把A(-3,2)
K 0F
x
L 1.建立坐标系 2.设动点坐标
3.列方程
4.化简,整理
以过F且垂直于L的直线为x
轴,垂足为K.以F,K的中点为
坐标原点建立直角坐标系.
设M(x,y), |FK|=P,则F ( p , 0)
准线L:
p x .
2
则
2
(x p )2 y2 | x p |
2
2
两边平方,整理得
抛
物
线
的
定莆
义 与
田 二 中
标 准
蔡 海 涛
方
程
思考:
与一个定点的距离和一条定直线的距离的比是 常数e的点的轨迹是 椭圆? 双曲线?
(1) o<e<1,是椭圆 (2) e>1, 是双曲线
3.3.1抛物线及其标准方程-课件(共26张PPT)

(2)抛物线实质上就是双曲线的一支.( × )
(3)若抛物线的方程为2 = −4,则其中的焦参数 = −2.( × )
(4)抛物线y=6x2的焦点在x轴的正半轴.( × )
1
上
2.抛物线x2= 2 y的开口向____,焦点坐标为
1
(0, )
8
,准线方程是
=−
1
8
.
典例剖析
例1
(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;
D. y 2 2ax
4.以坐标轴为对称轴,焦点在直线 3x 4 y 12 0 上的抛物线的标准方程为( C )
A. x 2 16 y 或 y 2 12x
B. y 2 16 x 或 x 2 12 y
C. y 2 16 x 或 x2 12 y
D. x 2 16 y 或 y 2 12 x
y2=8x
.
【解析】由圆(x-2)2+y2=1可得,圆心F(2,0),半径r=1.
设所求动圆圆心为P(x,y),过点P作PM⊥直线l:x+1=0,M为垂足.
则|PF|-r=|PM|,可得|PF|=|PM|+1.
因此可得,点P的轨迹是到定点F(2,0)的距离和到直线l:x=-2的距离相等的点的集合.
由抛物线的定义可知,点P的轨迹是抛物线,定点F(2,0)为焦点,定直线l:x=-2是准线.
【解】如图建立直角坐标系,
设桥拱抛物线方程为 2 = −2( > 0),
由题意可知, 4, −5 在抛物线上,所以 = 1.6,得 2 = −3.2,
当船面两侧和抛物线接触时,船不能通航,
设此时船面宽为AA’,则 2, ,
(3)若抛物线的方程为2 = −4,则其中的焦参数 = −2.( × )
(4)抛物线y=6x2的焦点在x轴的正半轴.( × )
1
上
2.抛物线x2= 2 y的开口向____,焦点坐标为
1
(0, )
8
,准线方程是
=−
1
8
.
典例剖析
例1
(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;
D. y 2 2ax
4.以坐标轴为对称轴,焦点在直线 3x 4 y 12 0 上的抛物线的标准方程为( C )
A. x 2 16 y 或 y 2 12x
B. y 2 16 x 或 x 2 12 y
C. y 2 16 x 或 x2 12 y
D. x 2 16 y 或 y 2 12 x
y2=8x
.
【解析】由圆(x-2)2+y2=1可得,圆心F(2,0),半径r=1.
设所求动圆圆心为P(x,y),过点P作PM⊥直线l:x+1=0,M为垂足.
则|PF|-r=|PM|,可得|PF|=|PM|+1.
因此可得,点P的轨迹是到定点F(2,0)的距离和到直线l:x=-2的距离相等的点的集合.
由抛物线的定义可知,点P的轨迹是抛物线,定点F(2,0)为焦点,定直线l:x=-2是准线.
【解】如图建立直角坐标系,
设桥拱抛物线方程为 2 = −2( > 0),
由题意可知, 4, −5 在抛物线上,所以 = 1.6,得 2 = −3.2,
当船面两侧和抛物线接触时,船不能通航,
设此时船面宽为AA’,则 2, ,
3.3.1抛物线及其标准方程 课件(可编辑图片版)(共35张PPT)

4.已知抛物线顶点为坐标原点,焦点在y轴上,抛物线上的 点M(m,-2)到焦点的距离为4,则m=________.
解析:由已知,可设抛物线方程为x2=-2py.由抛物线定义有
2+
p 2
=4,∴p=4,∴x2=-8y.将(m,-2)代入上式,得m2=
16.∴m=±4.
答案:±4
题型一 求抛物线的标准方程 探究 1 直接法求抛物线方程 例 1 (1)顶点在原点,对称轴是 y 轴,并且顶点与焦点的距离 等于 3 的抛物线的标准方程是( ) A.x2=±3y B.y2=±6x C.x2=±12y D.x2=±6y
3.3.1抛物线及其标准方程
[知识要点]
要点一 抛物线的定义 平面内与一个定点 F 和一条定直线 l(l 不经过点 F)距离相等的 点的轨迹叫做__抛__物__线__.点 F 叫做抛物线的__焦__点____,直线 l 叫做 抛物线的_准__线___.
【方法技巧】(1)抛物线定义的实质可归结为“一动三定”:一 个动点,设为 M;一个定点 F 叫做抛物线的焦点;一条定直线 l 叫 做抛物线的准线;一个定值,即点 M 到点 F 的距离和它到直线 l 的距离之比等于 1.
[基础自测]
1.判断正误(正确的画“√”,错误的画“×”) (1)标准方程y2=2px(p>0)中的p的几何意义是焦点到准线的距 离.( √ ) (2)平面内到一定点距离与到一定直线距离相等的点的轨迹是 抛物线.( × ) (3)只有抛物线的顶点在坐标原点,焦点在坐标轴上时,抛物 线才具有标准形式.( √ ) (4)焦点在y轴上的抛物线的标准方程x2=±2py(p>0),也可以写 成y=ax2,这与以前学习的二次函数的解析式是一致的.( √ )
受二次函数的影响,误以为 y 根据抛物线方程求准线方程时,应
《数学抛物线》PPT课件

物理学中的抛体运动轨迹
01
02
03
抛体运动的定义
物体以一定的初速度抛出 后,在仅受重力的作用下 所做的运动称为抛体运动。
抛体运动的轨迹
在忽略空气阻力的情况下, 抛体运动的轨迹是一条抛 物线。
抛体运动的应用
利用抛体运动的规律,可 以研究炮弹的射程、运动 员的跳远距离等问题。
工程技术中的最优化问题
01
04 两边成比例且夹角相等, 则两个三角形相似
解析几何中直线与圆锥曲线关系
直线与抛物线的位置关系
相切、相交、相离
直线与抛物线的交点个数及判定方法
通过联立直线和抛物线方程求解,根据判别式判断交点个数
切线性质
切线与抛物线在切点处的切线斜率相等,且切线过抛物线焦点
微积分在抛物线研究中的应用
定积分在求抛物线面积中的应用
03 抛物线在生活中 的应用举例
建筑设计中的抛物线元素
1 2
抛物线型拱门和桥梁 利用抛物线的形状和结构特性,设计出具有优美 曲线和良好承重性能的拱门和桥梁。
抛物线型屋顶 抛物线型屋顶具有良好的排水性能和独特的视觉 效果,被广泛应用于现代建筑设计。
3
抛物线型幕墙 在建筑外立面上采用抛物线型幕墙,可以增加建 筑的层次感和立体感,提高建筑的美观性。
焦点、准线及离心率
抛物线的焦点
对于y^2=2px(p>0)的抛物线, 其焦点坐标为(p/2,0);对于 x^2=2py(p>0)的抛物线,其
焦点坐标为(0,p/2)。
抛物线的准线
对于y^2=2px(p>0)的抛物线, 其准线方程为x=-p/2;对于
x^2=2py(p>0)的抛物线,其 准线方程为y=-p/2。
抛物线定义及其标准方程-课件

5(x 1 )2 (y 2 )2 |3 x 4 y 1| 2 0
则点P的轨迹为______。
例3:(1)M是抛物线y2 = 2px(P
>0)上一点,若点M 的横坐标
为X0,则点M到焦点的距离是
x0
p 2
——————————
. y M .
OF
x
练习: (1) 抛物线y2=12x上与焦 点的距离等于9的点的坐标是 _________.
1.某隧道横断面由抛物线及矩形 的三边组成,尺寸如图,某卡车 轻车时能通过此隧道,现载一集 装箱宽3米,车与箱共高4.5米, 问此车能否通过隧道?
2.如图,有一张长为8,宽为4 的矩形纸片ABCD,按图示方 法进行折叠,使每次折叠后点 B都落在AD边上,此时将B记 为B1(EF为折痕,F也可落在 CD上),过点B1作B1T∥CD交 EF于点T,求点T的轨迹方程。
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/12021/3/12021/3/1M onday, March 01, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/12021/3/12021/3/12021/3/13/1/2021
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月1日星期 一2021/3/12021/3/12021/3/1
例1.求满足下列条件的抛物 线的标准方程:
(1)过点P(4,-2);
(2)焦点在直线x-2y-4=0上。
例2:已知点M与点F(4,0)的距 离比它到直线L:x+5=0的距离小 1,求点M的轨迹方程。
练习:1.已知点M与点F(1,0) 的距离比它到y轴的距离大1,求 点M的轨迹方程。
则点P的轨迹为______。
例3:(1)M是抛物线y2 = 2px(P
>0)上一点,若点M 的横坐标
为X0,则点M到焦点的距离是
x0
p 2
——————————
. y M .
OF
x
练习: (1) 抛物线y2=12x上与焦 点的距离等于9的点的坐标是 _________.
1.某隧道横断面由抛物线及矩形 的三边组成,尺寸如图,某卡车 轻车时能通过此隧道,现载一集 装箱宽3米,车与箱共高4.5米, 问此车能否通过隧道?
2.如图,有一张长为8,宽为4 的矩形纸片ABCD,按图示方 法进行折叠,使每次折叠后点 B都落在AD边上,此时将B记 为B1(EF为折痕,F也可落在 CD上),过点B1作B1T∥CD交 EF于点T,求点T的轨迹方程。
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/12021/3/12021/3/1M onday, March 01, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/12021/3/12021/3/12021/3/13/1/2021
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月1日星期 一2021/3/12021/3/12021/3/1
例1.求满足下列条件的抛物 线的标准方程:
(1)过点P(4,-2);
(2)焦点在直线x-2y-4=0上。
例2:已知点M与点F(4,0)的距 离比它到直线L:x+5=0的距离小 1,求点M的轨迹方程。
练习:1.已知点M与点F(1,0) 的距离比它到y轴的距离大1,求 点M的轨迹方程。
抛物线及其标准方程课件

即 2p=136,2p1=94. ∴所求抛物线的方程为 y2=136x 或 x2=-94y.
方法二 ∵点(3,-4)在第四象限,
∴抛物线的方程可设为 y2=ax 或 x2=by. 把点(3,-4)分别代入,可得 a=136,b=-94, ∴所求抛物线的方程为 y2=136x 或 x2=-94y. (2)令 x=0 得 y=-5;令 y=0 得 x=-15.
所以 m2=24,所以 m=±2 6,
所以所求抛物线方程为 y2=-8x,m=±2 6.
题型三 抛物线定义的应用
例3 抛物线y2=8x上一点P到其焦点的距离为9, 求点P的坐标.
解析:点 P 到其焦点的距离等于点 P 到其准线 x=-2 的距离, 得 xp=7,yp=±2 14,点 P 的坐标为(7,±2 14).
解析:由抛物线的定义可知,抛物线上的点
到准线的距离等于到焦点的距离,由图可知,点 P,
点(0,2),和抛物线的焦点12,0三点共线时距离
之和最小,所以最小距离 d=
(0-12)2+ (2-
)2=
17 2.
变式 训练
所以所求抛物线方程为 y2=-8x,m=±2 6. 方法二 设抛物线方程为 y2=-2px(p>0),
则焦点坐标 F-p2,0,准线方程 x=p2. 由抛物线定义知,点 M 到焦点的距离等于 5,
即点 M 到准线的距离等于 5,
则
p
3+2=5,所以
p=4,所以抛物线方程为
y2=-8x.
又点 M(-3,m)在抛物线上,
C.双曲线 D.抛物线
基础 梳理
2.如下图所示,建立直角坐标系 xOy,使 x 轴经过点 F 且垂直于直线 l,垂足为 K,并使原点与线段 KF 的中点重合, 得抛物线的标准方程为 y2=2px,它表示的抛物线的焦点在 x 轴的正半轴上,坐标是p2,0,它的准线方程是 x=-p2.
方法二 ∵点(3,-4)在第四象限,
∴抛物线的方程可设为 y2=ax 或 x2=by. 把点(3,-4)分别代入,可得 a=136,b=-94, ∴所求抛物线的方程为 y2=136x 或 x2=-94y. (2)令 x=0 得 y=-5;令 y=0 得 x=-15.
所以 m2=24,所以 m=±2 6,
所以所求抛物线方程为 y2=-8x,m=±2 6.
题型三 抛物线定义的应用
例3 抛物线y2=8x上一点P到其焦点的距离为9, 求点P的坐标.
解析:点 P 到其焦点的距离等于点 P 到其准线 x=-2 的距离, 得 xp=7,yp=±2 14,点 P 的坐标为(7,±2 14).
解析:由抛物线的定义可知,抛物线上的点
到准线的距离等于到焦点的距离,由图可知,点 P,
点(0,2),和抛物线的焦点12,0三点共线时距离
之和最小,所以最小距离 d=
(0-12)2+ (2-
)2=
17 2.
变式 训练
所以所求抛物线方程为 y2=-8x,m=±2 6. 方法二 设抛物线方程为 y2=-2px(p>0),
则焦点坐标 F-p2,0,准线方程 x=p2. 由抛物线定义知,点 M 到焦点的距离等于 5,
即点 M 到准线的距离等于 5,
则
p
3+2=5,所以
p=4,所以抛物线方程为
y2=-8x.
又点 M(-3,m)在抛物线上,
C.双曲线 D.抛物线
基础 梳理
2.如下图所示,建立直角坐标系 xOy,使 x 轴经过点 F 且垂直于直线 l,垂足为 K,并使原点与线段 KF 的中点重合, 得抛物线的标准方程为 y2=2px,它表示的抛物线的焦点在 x 轴的正半轴上,坐标是p2,0,它的准线方程是 x=-p2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
的距离相等的点的轨迹叫做抛物线。
N
定点F叫做抛物线的焦点。
定直线l 叫做抛物线的准线。
M· ·F
即: 若︳︳M MNF︳︳1,则点M的轨迹是抛物线。
2020年10月2日
3
二、标准方程
想 一 想 ? ?
如何建立直角 坐标系?
2020年10月2日
l
· N M ·F
4
y y=ax2
y=ax2+y=c ax2+bx+c
8
x= —5
8
y=2
16
小结:
1、抛物线的定义,标准方程类型与图象的对应 关系以及判断方法
2、抛物线的定义、标准方程和它 的焦点、准线、方程
3、注重数形结合的思想。
2020年10月2日
17
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
解:当抛物线的焦点在y轴 的正半轴上时,把A(-3,2)
.y A
代入x2 =2py,得p= 9 4
当焦点在x轴的负半轴上时,
O
x
把A(-3,2)代入y2 = -2px,
2
得p=
3
9
∴抛物线的标准方程为x2 =
2020年10月2日
2
4
y或y2 = x 。
3 13
例3、M是抛物线y2 = 2px(P>0)上一点,若点
2020年10月2日
11
例1、(1)已知抛物线的标准方程是y2 = 6x,
求它的焦点坐标和准线方程;
(2)已知抛物线的方程是y = -6x2, 求它的焦点坐标和准线方程;
(3)已知抛物线的焦点坐标是F(0,-2), 求它的标准方程。
2020年10月2日
12
例2、求过点A(-3,2)的抛物线的
标准方程。
准线
标准方程
9
问题:
椭圆,双曲线,抛物线各有几条准线?
根据上表中抛物线的标准方 程的不同形式与图形,焦点坐标, 准线方程对应关系如何判断抛物
线的焦点位置,开口方向??
2020年10月2日
10
第一:一次项的变量如为X(或 Y) 则X轴(或Y轴)为抛物线 的对称轴,焦点就在对称轴上 呀!!! 第二:一次的系数决定了开口方 向
o
x
2020年10月2日
5
二、标准方程
设︱KF︱= p
则F(
p 2
,0),l:x = -
p 2
设点M的坐标为(x,y),
由定义可知,
(xp)2y2xp
2
2
y
l
· N M ·x
Ko F
化简得 y2 = 2px(p>0)
2020年10月2日
6
方程 y2 = 2px(p>0)叫做
抛物线的标准方程
其中 p 为正常数,它的几何意义是:
课题:
抛物线及其标准方程
2020年10月2日
1
复习:
椭圆、双曲线的第二定义:
与一个定点的距离和一条定直线的距离的比 是常数e的点的轨迹,当0<e <1时,是椭圆
当e>1时,是双曲线
当e=1时,它又是什么曲线 ?
l M
l
l
M
·M
·F
F·
·F
0<e <1
2020年10月2日
e>1
e=1
2
一、定义
平面内与一个定点F和一条定直线l
p M 的横坐标为X0,则点M到焦点的距离是
X + — 0
2 ————————————
. y M
.
OF
x
2020年10月2日Fra bibliotek14练习:
1、根据下列条件,写出抛物线的标准方程:
(1)焦点是F(3,0);
y2 =12x
(2)准线方程 是x =
1 4
;
y2 =x
(3)焦点到准线的距离是2。y2 =4x、 y2 = -4x、 x2 =4y 或 x2 = -4y
焦点到准线的距离
2020年10月2日
7
上面方程表示抛物线的焦点在X轴的正半轴上
p 则F( 2
,0),l:x = -
p 2
一条抛物线,由于它在坐标平面内 的位置不同,方程也不同,所以抛物线 的标准方程还有其它形式,
2020年10月2日
8
﹒ 图 形 y
焦点
ox
﹒y
﹒o x y
ox
﹒y o x
2020年10月2日
2020年10月2日
15
2、求下列抛物线的焦点坐标和准线方程:
(1)y2 = 20x (3)2y2 +5x =0
(2)x2= 1 y 2
(4)x2 +8y =0
焦点坐标
准线方程
(1) (5,0)
(2) (0,—18 )
(3) (- —58 ,0)
(4) 2020年10月2日
(0,-2)
x= -5
y= - —1
汇报人:XXX 汇报日期:20XX年10月10日
18