2014年全国中考数学试题分类汇编24 多边形与平行四边形(含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形与平行四边形
一、选择题
1. (2014•福建泉州,第4题3分)七边形外角和为()
2. (2014•广东,第5题3分)一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7
考点:多边形内角与外角.
分析:根据多边形的外角和公式(n﹣2)•180°,列式求解即可.
解答:解:设这个多边形是n边形,根据题意得,
(n﹣2)•180°=900°,
解得n=7.
故选D.
点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
3. (2014•广东,第7题3分)如图,▱ABCD中,下列说法一定正确的是()
A.A C=BD B.A C⊥BD C.A B=CD D.A B=BC
考点:平行四边形的性质.
分析:根据平行四边形的性质分别判断各选项即可.
解答:解:A、AC≠BD,故此选项错误;
B、AC不垂直BD,故此选项错误;
C、AB=CD,利用平行四边形的对边相等,故此选项正确;
D、AB≠BC,故此选项错误;
故选:C.
点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.
4.(2014•新疆,第4题5分)四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()
5.(2014•毕节地区,第9题3分)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()
6.(2014·台湾,第24题3分)下列选项中的四边形只有一个为平行四边形,根据图中所给的边长长度及角度,判断哪一个为平行四边形?()
A.B.
C.D.
分析:利用平行四边形的判定定理、等腰梯形的判定及梯形的判定方法分别对每个选项判断后即可确定答案.
解:A.上、下这一组对边平行,可能为等腰梯形;
B.上、下这一组对边平行,可能为等腰梯形,但此等腰梯形底角为90°,所以为平行四边形;
C .上、下这一组对边平行,可能为梯形;
D .上、下这一组对边平行,可能为梯形; 故选B .
点评:本题考查了平行四边形的判定定理、等腰梯形的判定及梯形的判定方法,掌握这些特殊的四边形的判定方法是解答本题的关键.
7.(2014·云南昆明,第7题3分)如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能..判定四边形ABCD 为平行四边形的是
A . A
B ∥CD ,AD ∥B
C B . OA =OC ,OB =O
D C . AD =BC ,AB ∥CD D . AB =CD ,AD =BC
8.(2014•浙江湖州,第10题3分)在连接A 地与B 地的线段上有四个不同的点D 、G 、K 、Q ,下列四幅图中的实线分别表示某人从A 地到B 地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是( )
A .
B .
O
D
C
B
A
C.D.
分析:分别构造出平行四边形和三角形,根据平行四边形的性质和全等三角形的性质进行比较,即可判断.
解:A选项延长AC、BE交于S,∵∠CAE=∠EDB=45°,∴AS∥ED,则SC∥DE.
同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,
即乙走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;
B选项延长AF、BH交于S1,作FK∥GH,
∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,
∴AS=AS1,BS=BS1,∵∠FGH=67°=∠GHB,∴FG∥KH,
∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,
∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,
∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,
同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.点评:本题考查了平行线的判定,平行四边形的性质和判定的应用,注意:两组对边分别平行的四边形是平行四边形,平行四边形的对边相等.
8. (2014•湘潭,第7题,3分)以下四个命题正确的是()
9. (2014•益阳,第7题,4分)如图,平行四边形ABCD中,E,F是对角线BD上的两点,
如果添加一个条件使△ABE≌△CDF,则添加的条件是()
(第2题图)
10. (2014•株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,
②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()
11.(2014•孝感,第8题3分)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是()
absinαabcosα
=
=
CE×absinα
的面积是:absinα
二.填空题
1. (2014•安徽省,第14题5分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)
①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.
考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.菁优网分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.
解答:解:①∵F是AD的中点,