结构动力学习题解答最新

合集下载

结构动力学题解(1)

结构动力学题解(1)

题图
23 l 3 = 1536 EI
则系统的自振频率
ω=
1 1536 EI = mδ 23ml 3 1 1536 EI = 2 ω 1536 EI − 23ml 3ω 2 1− ω2 1536 EI 23l 3 ⋅ ⋅F 1536 EI − 23ml 3ω 2 1536 EI
2 2 1 l12 l2 l12 k1 + l2 k2 = 1 / m + 3 2 3EI (l + l ) (l + l ) k k mδ 1 2 1 2 1 2
(e) 解,考虑质体水平单位位移时的系统劲度。
k1 = k3 = k2 =
12 EI 2 h3
3EI 2 h3
令 δ t 为两支座弹簧无限刚度时单位力作用下质体的垂直位移
1 1 l1l2 2 l1l2 l12 l22 δt = × (l1 + l2 ) × × = 3 EI (l1 + l2 )2 3 (l1 + l2 )2 2 3EI (l1 + l2 )
总变形: δ = δ t + δ M 其自振频率: ω =
F (t ) = F sin ω t
y0 =
l3 3EI 3EI ml 3
题图
系统自振频率 ω =
动力系数 µ =
1 3EI = 2 ω 3EI − ml 3ω 2 1− ω2 3EI l3 Fl 3 ⋅ ⋅ F = 3EI − ml 3ω 2 3EI 3EI − ml 3ω 2
&& , Fi1 = Fi 2 = mY
两柱的侧移劲度相等为: k =
3i 3EI = 3 (单位位移下的水平剪力) l2 l

在线测试题试题库及解答(第十章)结构动力学

在线测试题试题库及解答(第十章)结构动力学

在线测试题试题库及解答第十章结构动力学基础一、单项选择题1、结构的主振型与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案A2、结构的自振频率与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案A3、单自由度体系在简谐荷载作用下,下列哪种情况内力与位移的动力系数相同?A、均布荷载作用B、荷载作用在质点上与质点运动方向垂直C、荷载不作用在质点上D、惯性力与运动方向共线标准答案D4、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案D5、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案D6、当简谐荷载作用于有阻尼的单自由度体系质点上时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、重力C、阻尼力D、惯性力标准答案D7、设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是A、ω越大β也越大B、θ/ω越大β也越大C、θ越大β也越大D、θ/ω越接近1,β绝对值越大标准答案D8、如果体系的阻尼增大,下列论述错误的是A、自由振动的振幅衰减速度加快B、自振周期减小C、动力系数减小D、位移和简谐荷载的相位差变大标准答案B9、无阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力C、惯性力与弹性力的合力D、没有力标准答案D10、有阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力与弹性力的合力C、惯性力D、阻尼力标准答案D11、当简谐荷载作用于无阻尼的单自由度体系质点上时,若荷载频率远远小于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、阻尼力C、惯性力D、重力标准答案A12、一单自由度振动体系,其阻尼比为ξ,动力系数β,共振时下列结果正确的是A、ξ=0.05,β=10B、ξ=0.1,β=15C、ξ=0.15,β=20D、ξ=0.2,β=25标准答案A13、一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为A、ξ=0.05B、ξ=0.10C、ξ=0.15D、ξ=0.20标准答案A14、在低阻尼体系中不能忽略阻尼对什么的影响?A、频率B、主振型C、周期D、振幅标准答案D15、单自由度体系受简谐荷载作用,ω为体系自振频率,θ为荷载频率,动位移y(t)与荷载P(t)的关系是A、当θ/ω>1时,y(t)与P(t)同向,当θ/ω<1时,y(t)与P(t)反向。

结构动力学课后习题答案

结构动力学课后习题答案

结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。

它涉及到结构的振动、冲击响应、疲劳分析等方面。

课后习题是帮助学生巩固课堂知识、深化理解的重要手段。

以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。

系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。

习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。

特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。

习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。

结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。

冲击响应分析的结果可以用来评估结构的耐冲击性能。

习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。

结构动力学习题解答

结构动力学习题解答
̇̇ = hδ ( t ) ; θ 0
然后积分求初始速度
̇̇ d t = θ̇0 = θ 0
0+ 0+ 0+

0
∫ hδ ( t ) d t = h ∫ δ ( t ) d t = h
0 0 0+

再积分求初位移
̇̇ d t == h )d t = 0 ; θ0 = θ 0
0+

0

0
̇̇ 、 θ̇ 和 θ 的瞬态响应 这样方程(6)的解就是系统对于初始条件 θ 0 0 0
1.6 求图 1-35 所示系统的固有频率。图中磙子半径为 R,质量为 M,作纯滚动。弹簧刚度 为K 。 解:磙子作平面运动, 其动能 T=T 平动 +T 转动 。
K R M 图 1-35 x
T平动 = T转动
1 ̇2; Mx 2 2 2 ̇ ⎞ 1 ⎛ MR 2 ⎞ ⎛ x ̇⎞ 1 ⎛x = I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
U= r 2 1 1 1 1⎛ K A ϕ A 2 + K B ϕ B 2 = K Aϕ A 2 + K B ϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
(
)
⎞ 2 ⎟ϕ ; ⎟ A ⎠
系统的机械能为
T +U = r 2 1 1⎛ ̇ A2 + ⎜ K A + K B A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
d (T + U ) = 0 ,进一步得到系 dt
统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤: (1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷 的幅值 Ai 、 Ai +1 。 (2)由对数衰减率定义 δ = ln(

结构动力学试题及答案

结构动力学试题及答案

结构动力学试题及答案(本文按试题和答案格式进行编写)试题一:1. 请问什么是结构动力学?2. 简述结构动力学的研究对象和主要内容。

3. 结构动力学分析常用的方法有哪些?4. 结构动力学分析中常用的数学模型有哪些?5. 结构动力学的应用领域有哪些?答案一:1. 结构动力学是研究结构在外力作用下的动态响应及其稳定性的学科。

2. 结构动力学的研究对象是各种工程结构,主要内容包括结构的振动、冲击响应、瞬态响应和稳态响应等。

3. 结构动力学分析常用的方法有模态分析法、频率响应分析法、时程分析法等。

4. 结构动力学分析中常用的数学模型有单自由度体系、多自由度体系、连续体系等。

5. 结构动力学的应用领域广泛,包括建筑结构工程、桥梁工程、风力发电机组、地震工程等。

试题二:1. 结构动力学分析中,模态分析的基本原理是什么?2. 简述模态分析的步骤和计算方法。

3. 常用的模态分析软件有哪些?4. 请问什么是结构的固有频率和阻尼比?5. 结构的模态振型对结构动力响应有什么影响?答案二:1. 模态分析是基于结构的振动特性,通过求解结构的固有频率、模态振型和阻尼比等参数,来研究结构的动力响应。

2. 模态分析的步骤包括建立结构有限元模型、求解结构的固有频率和模态振型、计算结构的阻尼比等。

常用的计算方法有有限元法、拉普拉斯变换法等。

3. 常用的模态分析软件有ANSYS、ABAQUS、MSC.NASTRAN等。

4. 结构的固有频率是结构在无外力作用下自由振动的频率,阻尼比是结构振动过程中能量耗散的程度。

5. 结构的模态振型对结构动力响应有很大影响,不同的模态振型会导致不同的振动特性和反应。

试题三:1. 结构动力学分析中,频率响应分析的基本原理是什么?2. 简述频率响应分析的步骤和计算方法。

3. 频率响应分析和模态分析有什么区别?4. 结构的频率响应函数和传递函数有什么区别?5. 频率响应分析在结构设计中的应用有哪些?答案三:1. 频率响应分析是研究结构在单频激励下的响应特性,通过求解结构的频率响应函数,来获得结构的响应。

结构动力学-习题解答

结构动力学-习题解答

7-1(a)试求图示体系的自振频率与周期。

l/2
m
EI
l/2
l
l/2
l/4
7-1(b)试求图示体系的自振频率与周期。
求柔度系数:用位移法或力矩分配法 求单位力作用引起的弯矩图(图a); 将其与图b图乘,得
解:
7-1(c)试求图示体系的自振频率与周期。
由水平杆的平衡:
由右面竖杆的平衡可求出铰处约束力。
m
m
4m
4m

7-1(d)试求图示体系的自振频率与周期。

m
EI
l
EI
l
m
7-1(e)求图示体系的自振频率与周期。

m
EI
l/2
k
k
l/2
7-3 试求图示体系质点的位移幅值和最大弯矩值。 已知
解:
m
EI=常数
2l
2l
l
位移幅值
解:
7-4 图示梁跨中有重量为20kN的电动机,荷载幅值P=2kN,机器转速400r/min, ,梁长l=6m。试求梁中点处的最大动位移和最大动弯矩。
8-4.试求图示刚架的自振频率和振型。
按反对称振型振动
按对称振型振动
=1
l/2
=1
l/8
l/8
l/8
=1
3l/16
5l/32
l/2
=1
8-5.试求图示刚架的自振频率和振型。
m
2m
8-6.试求图示刚架的自振频率和振型。设楼面质量分别为m=120t和m=100t, 柱的质量已集中于楼面,柱的线刚度分别为i=20MN.m和i=14MN.m,横梁 刚度为无限大。
m
EI=常数

华科土木结构动力学-作业题汇总精选全文完整版

华科土木结构动力学-作业题汇总精选全文完整版

《结构动力学》课后习题1试确定图示各体系的动力自由度,忽略弹性杆件自身的质量和轴向变形。

(a)4个动力自由度(b)2个动力自由度(c)2个动力自由度(d)2个动力自由度m(e )3个动力自由度(f )3个动力自由度(g)2个动力自由度(h)3个动力自由度(i)2个动力自由度(j)1个动力自由度m(k )2个动力自由度(l )2个动力自由度2试比较下列图式结构(a )、(b)固有频率的大小,并说明理由。

解:(a )结构滑动铰支座刚度无穷大,而(b )结构由于二力杆可以轴向变形,所以(a )结构刚度大于(b )结构刚度;而两结构质量相等,根据ω=可以知道,(a )结构故固有频率大于(b)结构固有频率。

m(a )(b )3下图为刚性外伸梁,C 处为弹性支座,刚度系数为k ,梁端A ,D 处分别有m 和质量m /3,同时梁受集中荷载F P (t )的作用,试建立刚性梁的运动方程。

解:单自由度体系,设刚性梁转角为ϕm(t)(my )(y )3A A D D F ϕϕϕϕδδδ=-⋅+-⋅+ (1)其中A y l ϕ=2D y l ϕ= 设刚梁顺时针转动为正①当在A 处作用单位力F=1时,2()3C F =↓234329A l k klϕδ=+÷=+②当在D 处作用单位力F=1时,4()3C F =↑438329A l k klϕδ=+÷=+③当作用F p (t )时,(t)()3p C F F =↑(t)2(t)3329p p FF F l k kl ϕδ=÷=代入(1)式得:2(t)4m 8(m )((2)9399p F l l kl kl klϕϕϕ=-⋅+-⋅⋅+整理得:2(t)28279p F m k klϕϕ+=4求图示结构的自振频率ωEI =∞kθlθm解:如图所示,该体系只有一个自由度。

设固定支座处出为原点,距离原点x处的质点(mdx )位移为x θ,惯性力为()mdx x mx dx θθ''-=- 。

结构动力学试题及答案

结构动力学试题及答案

结构动力学试题及答案一、选择题1. 在结构动力学中,下列哪项不是描述结构动力响应的参数?A. 自然频率B. 阻尼比C. 静力平衡D. 模态阻尼2. 以下哪个不是结构动力学分析中的常用方法?A. 模态分析B. 时域分析C. 频域分析D. 静力分析二、简答题1. 简述结构动力学中模态分析的目的和重要性。

2. 描述阻尼对结构动力响应的影响。

三、计算题1. 假设一个单自由度系统,其质量为m,刚度为k,初始位移为x0,初始速度为v0。

若外力为F(t) = F0 * sin(ωt),求该系统在任意时间t的位移响应。

答案一、选择题1. 正确答案:C. 静力平衡解析:静力平衡是静力学的概念,与结构动力学无关。

2. 正确答案:D. 静力分析解析:静力分析是分析结构在静载荷作用下的响应,而结构动力学分析动态载荷下的结构响应。

二、简答题1. 模态分析的目的在于识别结构的自然振动特性,包括自然频率、阻尼比和模态形状。

它的重要性在于:- 预测结构在动态载荷下的响应。

- 为控制结构的振动提供基础数据。

- 优化设计,提高结构的抗震性能。

2. 阻尼对结构动力响应的影响主要表现在:- 减少振动幅度,提高结构的稳定性。

- 改变系统的自然频率和模态形状。

- 影响系统的动态响应时间。

三、计算题1. 单自由度系统的位移响应可以通过以下步骤求解:- 写出系统的动力学方程:m * d²x/dt² + c * dx/dt + k * x = F(t)- 应用初始条件:x(0) = x0, v(0) = v0- 应用外力:F(t) = F0 * sin(ωt)- 通过傅里叶变换或拉普拉斯变换求解方程。

- 应用逆变换得到位移响应的解析解或数值解。

位移响应的一般形式为:x(t) = X * cos(ωt - φ) + Y *sin(ωt - φ),其中X和Y是与系统参数和初始条件有关的常数,φ是相位角。

具体的数值需要根据系统参数和初始条件进行计算。

结构动力学习题解答(三四章)

结构动力学习题解答(三四章)

第三章 多自由度系统3.1试求图3-10所示系统在平衡位置附近作微振动的振动方程。

图3-10解:〔1〕系统自由度、广义坐标图示系统自由度N=2,选x1、x2和x3为广义坐标; 〔2〕系统运动微分方程根据牛顿第二定律,建立系统运动微分方程如下:;)(;)()(;)(34233332625323122222121111x K x x K x m x K x K x x K x x K xm x x K x K xm ---=------=---= 整理如下;0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K xm x K x K K K K x K xm x K x K K xm 写成矩阵形式;000)(0)(0)(00000321433365322221321321⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+++--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x K K K K K K K K K K K K x x x m m m 〔1〕 〔3〕系统特征方程设)sin(,)sin(,)sin(332211ϕωϕωϕω+=+=+=t A x t A x t A x 代入系统运动微分方程〔1〕得系统特征方程;000)(0)(0)(321234333226532222121⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+++---+A A A m K K K K m K K K K K K m K K ωωω〔2〕 〔4〕系统频率方程系统特征方程〔2〕有非零解的充要条件是其系数行列式等于零, 即;0)(0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K展开得系统频率方程;0))(())(()))(())(()((21212323432223432265322121=-+--+--+-+++-+ωωωωωm K K K m K K K m K K m K K K K m K K进一步计算得;0;0)()())()(()))(())((())()()(()()()()())(()())(())(())()(())(())(()))(()()())((())(())(()))(())(()((02244662123432265324321236532214321231233224316532214332216321231232123232243226321421434322124321243165322165324323653221653243212121232343222343421221265322165322121212323432223432265322121==++++-+-+++++++++++-++-+++++++++++-=++-++--++++++-++++++++-++++-+++++=-+--+--+++-+++-++++=-+--+--+-+++-+a a a a K K K K K K K K K K K K K K m K K K K K K K K K K m m m K m K m m K K K K m m K K m m K K m m m m m K K K K m K K K K m m m m m K K m m K K K K K K m m m K K K K m K K K K K K m K K K K K K K K K K K K K K m K K K m K K K m K K m m K K m K K K K m K K K K K K m K K K m K K K m K K m K K K K m K K ωωωωωωωωωωωωωωωωωωωωωωωωωω (3)其中;3216m m m a -= ;)()()(316532214332214m m K K K K m m K K m m K K a +++++++=;))(())((36532214321231233222m K K K K K K K K K K m m m K m K a ++++-++-+=);()())()((21234322653243210K K K K K K K K K K K K K K a +-+-+++++=求解方程〔3〕得系统固有频率;)3,2,1(),,,,,,,,,(654321321==i K K K K K K m m m f i i ω 〔4〕 〔5〕系统固有振型 将系统固有频率代入系统特征方程〔2〕得系统固有振型, 即各阶振型之比:)3(3)3(1)3(3)3(2)3(1)3(2)2(3)2(1)2(3)2(2)2(1)2(2)1(3)1(1)1(3)1(2)1(1)1(21,1;1,1,1,1A A A A A A A A A A A A ======γγγγγγ 〔5〕 〔6〕系统振动方程)sin()sin()sin()sin()sin()sin(33)3(1)3(3)3(1)3(2)3(122)2(1)2(3)2(1)2(2)2(111)1(1)1(3)1(1)1(2)1(133)3(3)3(2)3(122)2(3)2(2)2(111)1(3)1(2)1(1321ϕωγγϕωγγϕωγγϕωϕωϕω+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧t A A A tA A A tA A A t A A A t A A A t A A A x x x 〔6〕在方程〔6〕中含有6个待定常数:)1(1A 、)2(1A 、)3(1A 、1ϕ、2ϕ和3ϕ。

结构动力学习题答案

结构动力学习题答案

结构动力学习题答案结构动力学学习题答案结构动力学是土木工程中的一个重要分支,它研究结构在受到外部荷载作用下的响应和变形规律。

在学习结构动力学的过程中,我们经常会遇到一些复杂的问题和难题。

下面我将为大家提供一些常见结构动力学学习题的答案,希望能够帮助大家更好地理解和掌握这门学科。

1. 什么是结构的固有频率?结构的固有频率是指结构在没有外部激励作用下,自由振动时的频率。

它是结构的固有特性之一,与结构的质量、刚度和几何形状有关。

固有频率越高,结构的振动越快。

2. 如何计算结构的固有频率?计算结构的固有频率需要先求解结构的固有振型和固有频率。

常用的方法有模态分析法和有限元法。

模态分析法是通过求解结构的特征方程得到结构的固有频率和振型;有限元法则是将结构离散化为有限个单元,通过求解单元的振动特征得到整体结构的固有频率和振型。

3. 结构的固有频率对结构有何影响?结构的固有频率与结构的动态特性密切相关。

当外部激励频率接近结构的固有频率时,会引起共振现象,使结构的振幅急剧增大,从而可能导致结构的破坏。

因此,在结构设计和抗震设计中,需要合理选择结构的固有频率,以避免共振现象的发生。

4. 什么是结构的阻尼?结构的阻尼是指结构在振动过程中能量损耗的程度。

阻尼可以分为线性阻尼和非线性阻尼。

线性阻尼是指结构的阻尼与结构的振幅成正比,非线性阻尼则是指结构的阻尼与结构的振幅不成正比。

5. 如何考虑结构的阻尼?在结构动力学分析中,通常会考虑结构的阻尼对结构响应的影响。

常用的阻尼模型有粘滞阻尼模型和柱塞阻尼模型。

粘滞阻尼模型是指结构的阻尼与结构的速度成正比;柱塞阻尼模型是指结构的阻尼与结构的速度平方成正比。

根据结构的实际情况和要求,可以选择适当的阻尼模型进行分析。

6. 结构的地震反应分析中常用的方法有哪些?在结构的地震反应分析中,常用的方法有等效静力法、响应谱法和时程分析法。

等效静力法是一种简化的方法,将地震作用等效为静力作用进行计算;响应谱法是一种基于地震响应谱的方法,通过将地震作用转化为结构的响应谱进行计算;时程分析法是一种基于地震时程的方法,通过模拟地震过程对结构进行动力响应分析。

结构动力学习题解答三四章

结构动力学习题解答三四章

结构动力学习题解答三四章The Standardization Office was revised on the afternoon of December 13, 2020第三章 多自由度系统试求图3-10所示系统在平衡位置附近作微振动的振动方程。

图3-10解:(1)系统自由度、广义坐标图示系统自由度N=2,选x1、x2和x3为广义坐标; (2)系统运动微分方程根据牛顿第二定律,建立系统运动微分方程如下:;)(;)()(;)(34233332625323122222121111x K x x K xm x K x K x x K x x K xm x x K x K xm ---=------=---=整理如下;0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K xm x K x K K K K x K xm x K x K K xm 写成矩阵形式;000)(0)(0)(00000321433365322221321321⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+++--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x K K K K K K K K K K K K x x x m m m (1) (3)系统特征方程设)sin(,)sin(,)sin(332211ϕωϕωϕω+=+=+=t A x t A x t A x 代入系统运动微分方程(1)得系统特征方程;000)(0)(0)(321234333226532222121⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+++---+A A A m K K K K m K K K K K K m K K ωωω(2)(4)系统频率方程系统特征方程(2)有非零解的充要条件是其系数行列式等于零, 即;0)(0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K展开得系统频率方程;0))(())(()))(())(()((21212323432223432265322121=-+--+--+-+++-+ωωωωωm K K K m K K K m K K m K K K K m K K进一步计算得;0;0)()())()(()))(())((())()()(()()()()())(()())(())(())()(())(())(()))(()()())((())(())(()))(())(()((02244662123432265324321236532214321231233224316532214332216321231232123232243226321421434322124321243165322165324323653221653243212121232343222343421221265322165322121212323432223432265322121==++++-+-+++++++++++-++-+++++++++++-=++-++--++++++-++++++++-++++-+++++=-+--+--+++-+++-++++=-+--+--+-+++-+a a a a K K K K K K K K K K K K K K m K K K K K K K K K K m m m K m K m m K K K K m m K K m m K K m m m m m K K K K m K K K K m m m m m K K m m K K K K K K m m m K K K K m K K K K K K m K K K K K K K K K K K K K K m K K K m K K K m K K m m K K m K K K K m K K K K K K m K K K m K K K m K K m K K K K m K K ωωωωωωωωωωωωωωωωωωωωωωωωωω (3)其中;3216m m m a -= ;)()()(316532214332214m m K K K K m m K K m m K K a +++++++=;))(())((36532214321231233222m K K K K K K K K K K m m m K m K a ++++-++-+=);()())()((21234322653243210K K K K K K K K K K K K K K a +-+-+++++=求解方程(3)得系统固有频率;)3,2,1(),,,,,,,,,(654321321==i K K K K K K m m m f i i ω (4)(5)系统固有振型 将系统固有频率代入系统特征方程(2)得系统固有振型,即各阶振型之比:)3(3)3(1)3(3)3(2)3(1)3(2)2(3)2(1)2(3)2(2)2(1)2(2)1(3)1(1)1(3)1(2)1(1)1(21,1;1,1,1,1A A A A A A A A A A A A ======γγγγγγ (5)(6)系统振动方程)sin()sin()sin()sin()sin()sin(33)3(1)3(3)3(1)3(2)3(122)2(1)2(3)2(1)2(2)2(111)1(1)1(3)1(1)1(2)1(133)3(3)3(2)3(122)2(3)2(2)2(111)1(3)1(2)1(1321ϕωγγϕωγγϕωγγϕωϕωϕω+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧t A A A tA A A tA A A t A A A t A A A t A A A x x x (6)在方程(6)中含有6个待定常数:)1(1A 、)2(1A 、)3(1A 、1ϕ、2ϕ和3ϕ。

结构动力学课后答案

结构动力学课后答案

结构动力学课后答案1.结构动力学是什么?结构动力学是力学领域中实验和理论上探讨结构动态行为方面的分支。

它讨论物体及其某种结构体系的运动特性,以洞察内部活动以及如何令该结构体系受到外力的影响,从而确定结构的性质,推断出其可能存在的破坏模式,以及分析出它将如何受到外力和其他外来因素的影响。

2.结构动力学主要包括哪些内容?结构动力学主要包括:(1)动力学方程——研究结构在外力作用下的运动情况;(2)振型理论:研究结构被动力激励时发生的振动行为;(3)稳定分析:研究结构稳定性;(4)低频动力学:完善弹性动力学;(5)控制力学:考虑施加力的时间变化,以便更准确的研究结构的动态行为。

3.什么是动力学方程?动力学方程是由牛顿第二定律推出的,用于描述结构受到力学影响时的动态行为,主要是用于定义影响结构的外力矩,内力矩以及外力与内力之间的相互作用,以及结构运动的加速度等因素。

根据力学方程,我们能够确定结构对外力的反应,从而有助于推测出可能存在的破坏模式以及抗破坏做出相应的措施。

4.什么是振型理论?振型理论是一种实验和理论研究,用于探讨结构被动力激励的情况下,结构的振动行为。

振型研究的目的是为了确定激励结构的物理特性,如其固有振型,以及自激振型在特定频率下的振幅。

振型理论可以作为一种鉴定有关领域物理属性的重要工具,其研究成果在工程中有着重要的应用,如结构安全性的分析,隔震技术的应用等。

5.什么是稳定分析?稳定分析是指对结构的稳定性进行多维度分析的过程,以期深入地研究结构的力学性质以及受到外力的影响,从而可以准确地预计出特定条件下结构的动态性能,从而设计出满足特定力学要求的合理结构。

其常用技术包括稳振型矩阵法、最大振幅法、偶联杆法、稳定椭圆法等。

6.什么是低频动力学?低频动力学是一种补充性弹性动力学理论,它完善了一般弹性动力学理论在低频谱中所提出的不准确性,它完善了原始方程,能够很好地模拟结构在低频范围内的动力行为,是结构动力学分析的重要补充,在结构设计和控制方向具有多重应用。

最新克拉夫《结构动力学》习题答案汇总

最新克拉夫《结构动力学》习题答案汇总

第二章自由振动分析2-1(a )由例2 2W Tgk22()W K Tg 因此max()()D t kT 其中k=0、1、2……T D =0.64sec如果很小,T D =T222200()49.9/0.64sec 386/sec kips k kips inin 50/k kips in(b )211ln ln n n v v v v 222121()11.2ln0.3330.86210.05292()10.33320.053025.3%(a ’)21D2T21D TT 249.950/1kkips in(c)2c mW mg2T4cTg21D T T 241WcTg2240.05292000.64sec 386/sec 10.0529kipsc in 0.539sec/ckips inT=T D 0.538sec/ckips in 0.54sec/ckips in2-22k m40 4.472(1/sec )(0)(0)()sin(0)costDDDv v t et v t(0)(0)()sin(0)(0)(0))costDDDv v t et v v v t22(0)(0)()(0)cossinDtDDDv v t ev tt21D()(0)cos(0)(0)sintDDDt ev t v v t2(0)(0)()(0)c o s s i n1tD D v v t ev tt 0.055922(2)(4.47)c c cm(a) c=00D5.6(1)sin 4.470.7cos4.47 1.384.47v t in(1) 5.6cos 4.47 4.47(0.7)sin 4.47 1.69/secv t in (1) 1.4v in ,(1) 1.7/secv in (b) c=2.80.0559(2.8)0.15724.4710.1574.41D(1/sec )(0.157)(4.41)5.60.7(0.157)(4.47)(1)sin 4.410.7cos 4.414.41t e(1)0.764t in(0.157)(4.41)20.157(5.6) 4.41(0.7)(1) 5.6cos 4.41sin 4.4110.157t e (1) 1.10/sect in (1)0.76v in ,(1) 1.1/secv in 第三章谐振荷载反应3-1根据公式有21sin sin 1R t wt wt0.8w w2.778sin 0.8sin1.25R twt wt将t 以80°为增量计算)(t R 并绘制曲线如下:0 80°160°240°320°400°480°560°640°720°800°00.5471.71 -0.481 -3.214 0.357 4.33-0.19 -4.9244.9241.25w wt)(t R3-2解:由题意得:22mkips s in ,20kkips in ,(0)(0)0v v ,w w20 3.162sec2k w rad m8wt(a )0c1sin cos 2R twt wt wt将8wt 代入上式得:()412.566R t (b )0.5ck s in0.50.0395222 3.162cc c c mw1exp1cos exp sin 2R twtwtwt wt将8wt 代入上式得:()7.967R t (c ) 2.0ck s in2.00.158222 3.162cc c c mw1exp1cos exp sin 2R twtwtwt wt将8wt 代入上式得:() 3.105R t 3-3解:(a ):依据共振条件可知:1003860.0810.983sec4000k kg wwrad m W由2LTVw 得:10.9833662.96022wL V ft s(b ):122max2221212tgovv 1w w 0.41.2gov in 代入公式可得:max1.921tv in(c ):2L T Vw45m i n 66Vhf t s226611.51336V wrad secL11.513 1.04810.983w w0.4代入数据得:122max22212=1.85512t govv in3-4解:按照实际情况,当设计一个隔振系统时,将使其在高于临界频率比2下运行,在这种情况下,隔振体系可能有小的阻尼。

结构动力学参考答案

结构动力学参考答案
.. .
m u + c u + ku = Pu (t ) 2.13 一根均匀杆,图 P2.13 其单位体积质量密度 ρ ,并具有顶部质量 M,应 用假定法ψ ( x) = x L 来推导该系统轴向自由振动的运动方程。假定 AE = 常数。 解:
.. 1 EA ( ρAL + M ) u + u = P(t ) 3 L
结构动力学习题 参考答案
1
2.3 一根刚梁 AB,用力在弹簧 BC 上去激励它,其 C 点的运动规定为 Z(t),如 图 P2.3. 按 B 点的垂直运动 u 来确定系统的运动方程,假定运动是微小的。 解: 4M u + 3c u + (3k1 + 12k 2 )u = 12k 2 Z (t )
.. .
4
4.17 在振动的结构上一个点,已知其运动为 Ζ = Ζ1 cos(Ω1t ) + Ζ 2 cos(Ω 2 t ) =
0.05 cos ( 60π t ) + 0.02 cos(120π t ) 。
(a)用一加速度计其阻尼因数 ξ = 0.70 和 20 KHz 共振频率来确定振动记录 w p (t ) 。 (b) 加速度计是否会引起有效幅值或相位畸变? 解: (a) w p (t ) = w p1 (t ) + w p 2 (t ) = 6.339 × 10 −11 A1 cos 60π (t − 1.1145 × 10 −5 ) + 6.339 × 10 −11 A2 • cos 120π (t − 1.1146 × 10 −5 ) (b) w p (t ) = C[ A1 cos Ω1 (t − τ ) + A2 cos Ω 2 (t − τ )] A1 , A2 分别表示 Z1 , Z 2 的加速度幅值,所以输出 w p (t ) 与加速度输 入成正比,所以不会发生幅值畸变或相位畸变。 5.2 运送一件仪器设备重 40 1b,是用泡沫包装在一容器内。该容器的有效刚度 k=100 1b/in,有效阻尼因数 ξ = 0.05 ,若整个容器和它的包装以垂直速度 V=150 in/s 碰撞在地面上,求泡沫包装在仪器设备的最大总应力。 (如图 P5.2 所示) 解: f max = 451.739 (1b) 6.5 例 题 4.3 中的 车辆 , 已知 k = 400 × 10 3 , m = 1200kg , ξ = 0.4。 当满 载时以

结构动力考试题及答案

结构动力考试题及答案

结构动力考试题及答案一、单项选择题(每题2分,共10题)1. 根据结构动力学理论,下列哪项不是结构动力分析的基本步骤?A. 建立动力方程B. 确定动力荷载C. 计算静力平衡D. 求解动力方程答案:C2. 在结构动力分析中,以下哪项不是常见的动力荷载类型?A. 地震荷载B. 风荷载C. 温度荷载D. 交通荷载答案:C3. 以下哪种方法不适用于求解线性结构的动力响应?A. 直接积分法B. 模态叠加法C. 瑞利-里茨法D. 有限元法答案:C4. 阻尼比在结构动力分析中的作用是什么?A. 增加结构的刚度B. 减少结构的自振频率C. 减少结构的振动幅度D. 增加结构的振动周期答案:C5. 以下哪种结构类型不适合使用单自由度系统进行动力分析?A. 单层框架结构B. 多层框架结构C. 单跨梁结构D. 单层板结构答案:B6. 在结构动力分析中,如果结构的阻尼比增加,其动力响应的振动周期会如何变化?A. 增加B. 减少C. 不变D. 无法确定答案:C7. 以下哪种材料的阻尼比通常较高?A. 混凝土B. 钢材C. 橡胶D. 玻璃答案:C8. 在结构动力分析中,以下哪项不是结构的固有属性?A. 质量B. 刚度C. 阻尼比D. 荷载类型答案:D9. 以下哪种方法可以用于确定结构的固有频率?A. 有限元法B. 能量法C. 瑞利法D. 所有以上方法答案:D10. 在结构动力分析中,如果结构的阻尼比增加,其动力响应的振动幅度会如何变化?A. 增加B. 减少C. 不变D. 无法确定答案:B二、简答题(每题5分,共4题)1. 简述结构动力分析中,单自由度系统和多自由度系统的主要区别。

答:单自由度系统是指结构的动力响应可以用一个自由度来描述,而多自由度系统则需要多个自由度来描述其动力响应。

单自由度系统通常适用于简单结构,如单层框架或单跨梁,而多自由度系统适用于更复杂的结构,如多层框架或连续梁。

2. 描述结构动力分析中模态叠加法的基本思想。

结构动力学试题及答案

结构动力学试题及答案

结构动力学试题及答案一、选择题(每题2分,共10分)1. 结构动力学中,以下哪项不是动力分析的类型?A. 静态分析B. 动态分析C. 频域分析D. 时域分析答案:A2. 单自由度系统的振动方程中,以下哪个参数与系统的振动周期无关?A. 质量B. 刚度C. 阻尼D. 初始条件答案:D3. 在结构动力学中,阻尼比是用来描述什么?A. 系统的能量损失B. 系统的振动周期C. 系统的振动频率D. 系统的振动幅度答案:A4. 多自由度系统的振动分析中,以下哪项不是模态分析的组成部分?A. 模态形状B. 模态频率C. 模态阻尼D. 模态质量答案:D5. 以下哪种方法不适用于求解非线性振动问题?A. 线性化方法B. 能量平衡法C. 直接积分法D. 谐波平衡法答案:A二、填空题(每题2分,共10分)1. 在结构动力学中,_________是描述系统在受力后响应变化的学科。

答案:动力分析2. 单自由度系统的振动方程可以表示为:m*x'' + c*x' + k*x =F(t),其中m代表质量,c代表_________,k代表刚度。

答案:阻尼系数3. 阻尼比ζ定义为临界阻尼系数与实际阻尼系数的比值,即ζ =________。

答案:实际阻尼系数 / 临界阻尼系数4. 多自由度系统的模态分析中,每个模态对应一个_________,它描述了该模态下系统的振动形状。

答案:模态形状5. 在结构动力学中,_________分析是一种通过求解系统在各个频率下的响应来分析系统动态行为的方法。

答案:频域三、简答题(每题10分,共20分)1. 简述结构动力学中时域分析与频域分析的主要区别。

答案:时域分析是指在时间域内分析结构的动力响应,它直接考虑随时间变化的激励和响应。

频域分析则是将时域信号转换到频率域进行分析,它主要关注结构在不同频率下的动态特性,如模态频率和阻尼比等。

2. 解释为什么在结构动力学分析中需要考虑阻尼。

结构动力学试题及答案

结构动力学试题及答案

结构动力学试题及答案一、选择题(每题2分,共10分)1. 结构动力学中,动力响应分析通常不包括以下哪一项?A. 自振频率分析B. 模态分析C. 静力分析D. 动力放大系数分析答案:C2. 在结构动力学中,下列哪一项不是确定结构动力特性的基本参数?A. 质量B. 刚度C. 阻尼D. 材料强度答案:D3. 单自由度振动系统的动力平衡方程中,下列哪一项是正确的?A. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t)B. m\(\ddot{x}\) + c\(\dot{x}\) + kx = 0C. m\(\ddot{x}\) + c\(\dot{x}\) + kx = FD. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t) - F答案:A4. 对于多自由度振动系统,下列哪一项不是求解动力响应的方法?A. 模态叠加法B. 直接积分法C. 能量守恒法D. 振型分解法答案:C5. 在结构动力学中,阻尼比通常用来描述阻尼的相对大小,其定义为:A. 临界阻尼比B. 阻尼比C. 阻尼比的倒数D. 阻尼比的平方答案:B二、填空题(每题2分,共10分)1. 结构动力学中,当外力作用频率与结构的_________相等时,结构会发生共振。

答案:自振频率2. 多自由度振动系统的振型是指系统在自由振动时的_________。

答案:位移分布模式3. 动力响应分析中,_________是指在给定的外力作用下,结构的响应随时间变化的过程。

答案:动力响应4. 在结构动力学中,_________是指结构在动力作用下,其响应与外力作用的关系。

答案:动力特性5. 阻尼比越大,结构的_________越小,振动衰减越快。

答案:振幅三、简答题(每题5分,共20分)1. 简述结构动力学中模态分析的目的和意义。

答案:模态分析的目的是确定结构的自振频率和振型,意义在于了解结构的动力特性,为结构设计提供依据,以及评估结构在动力作用下的安全性和稳定性。

结构动力学习题+讲解

结构动力学习题+讲解

结构动力学*本章讨论结构在动力荷载作用下的反应。

**学习本章注重动力学的特征------惯性力。

*结构动力计算的目的在于确定结构在动力荷载作用下的位移、内力等量值随时间变化的规律,从而找出其最大值作为设计的依据。

*动力学研究的问题:动态作用下结构或构件的强度、刚度及稳定性分析。

一、本章重点1.振动方程的建立2.振动频率和振型的计算3.振型分解法求解多自由度体系4.最大动位移及最大动应力二、基础知识1.高等数学2.线性代数3.结构力学三、动力荷载的特征1.大小和方向是时间t的函数例如:地震作用,波浪对船体的作用,风荷载,机械振动等2.具有加速度,因而产生惯性力四、动力荷载的分类1.周期性动力荷载例如:①机械运转产生的动力荷载,②打桩时的锤击荷载。

P(t) Pt t(机械运转荷载)(打桩荷载)2.冲击荷载例如:①爆炸力产生的动力荷载,②车轮对轨道连接处的冲击。

P(t)P(t)P(t)t t t(爆炸力动力荷载)(吊车起吊钢索的受力)(随机动力荷载)3.突加常量荷载例如:吊车起吊重物时钢索的受力。

4.随机动力荷载前3类荷在是时间t的确定函数,称为确定性动力荷载;而地震作用,波浪对船体的作用,风荷载等其作用大小只能用统计的方法获得。

五、动力荷载的计算方法1.原理:达朗贝尔原理,动静法建立方程2.计算工具:微分方程,线性代数,结构力学六、体系振动的自由度---------动力自由度结构具有质量,有质量在运动时就有惯性力。

在进行动力计算时,一般把结构的质量简化为若干质点的质量,整个结构的惯性力就成为各质点的惯性力问题。

1.质点简化的一般要求①简单,②能反映主要的振动特性例如:楼房;质量集中在各层楼板平面内水塔:质量集中在水箱部分梁:无限自由度集中质量(楼房质量集中)(水塔质量集中)(梁的质量集中)2.位移y(t)即指质点的位移y(t),其加速度为y&&)(t3.动力自由度的确定即质点位移数量的确定。

结构动力学习题解析

结构动力学习题解析

结构动力学习题2.1 建立题2.1图所示的三个弹簧-质点体系的运动方程(要求从刚度的基本定义出发确定体系的等效刚度)。

题2.1图2.2 建立题2.2图所示梁框架结构的运动方程(集中质量位于梁中,框架分布质量和阻尼忽略不计)。

题2.2图2.3 试建立题2.3图所示体系的运动方程,给出体系的广义质量M、广义刚度K、广义阻尼C和广义荷载P(t),其中位移坐标u(t)定义为无重刚杆左端点的竖向位移。

题2.3图2.4 一总质量为m1、长为L的均匀刚性直杆在重力作用下摆动。

一集中质量m2沿杆轴滑动并由一刚度为K2的无质量弹簧与摆轴相连,见题 2.4图。

设体系无摩擦,并考虑大摆角,用图中的广义坐标q1和q2建立体系的运动方程。

弹簧k2的自由长度为b。

题2.4图2.5 如题2.5图所示一质量为m1的质量块可水平运动,其右端与刚度为k的弹簧相连,左端与阻尼系数为c的阻尼器相连。

摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。

建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置)。

题2.5图2.6如题2.6图所示一质量为m1的质量块可水平运动,其上部与一无重刚杆相连,无重刚杆与刚度为k2的弹簧及阻尼系数为c2的阻尼器相连,m1右端与刚度为k1的弹簧相连,左端与阻尼系数为c1的阻尼器相连。

摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。

建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置,假定系统作微幅振动,sinθ=tanθ=θ)。

计算结果要求以刚度矩阵,质量矩阵,阻尼矩阵的形式给出。

3.1单自由度建筑物的重量为900kN,在位移为3.1cm时(t=0)突然释放,使建筑产生自由振动。

如果往复振动的最大位移为2.2cm(t =0.64s),试求:(1)建筑物的刚度k;(2)阻尼比ξ;(3)阻尼系数c。

3.2 单自由度体系的质量、刚度为m=875t,k=3500kN/m,且不考虑阻尼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档