结构动力学习题资料
《结构动力学》考试复习题
《结构动力学》考试复习题一、(概念题)(1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比0.2ξ=,则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。
(2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =⋅,则系统的固有频率ω为 ,阻尼比ξ为 ,对数衰减率n 为 。
(3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=∆st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。
(10分)(4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。
(5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++=,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。
(6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。
(7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。
(8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频率,p 为激振力的频率,ϕ为位移响应滞后于激振力的相位角。
试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。
(9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。
(10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与系统所受的阻尼力 。
(a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关2ωpππ二、(计算题)(1) 图示两个系统,已知EI 和M ,弹簧刚度316k EI l =,不计梁的质量,试确定:(1) 简支梁的等效刚度L k ;(2)两个系统的等效刚度a k 和b k ;(3) 两个系统的固有频率a ω和b ω。
结构动力学例题复习题
第十六章结构动力学【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。
图16-6【解】各刚架的自由度确定如图中所示。
这里要注意以下两点:1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。
根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。
2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。
【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。
【解】本题特点是,动荷载不是作用在质量上的集中荷载。
对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。
设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。
把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则)(R I y P D I P +δ+∆=∆+∆+∆=式中,)t (q EI 38454P =∆,EI483=δ。
将它们代入上式,并注意到ym I -=,y c R -=,得)(48)(384534y c y m EIt q EI y --+=图16-7经整理后可得)(t P ky y c y m E =++式中,3EI 481k =δ=,)(85)(t q k t P P E =∆= )(t P E 称为等效动荷载或等效干扰力。
其含义为:)(t P E 直接作用于质量上所产生的位移和实际动荷载引起的位移相等。
图a 的相当体系如图f 所示。
【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和3m质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。
【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。
结构动力学试题及答案
结构动力学试题及答案(本文按试题和答案格式进行编写)试题一:1. 请问什么是结构动力学?2. 简述结构动力学的研究对象和主要内容。
3. 结构动力学分析常用的方法有哪些?4. 结构动力学分析中常用的数学模型有哪些?5. 结构动力学的应用领域有哪些?答案一:1. 结构动力学是研究结构在外力作用下的动态响应及其稳定性的学科。
2. 结构动力学的研究对象是各种工程结构,主要内容包括结构的振动、冲击响应、瞬态响应和稳态响应等。
3. 结构动力学分析常用的方法有模态分析法、频率响应分析法、时程分析法等。
4. 结构动力学分析中常用的数学模型有单自由度体系、多自由度体系、连续体系等。
5. 结构动力学的应用领域广泛,包括建筑结构工程、桥梁工程、风力发电机组、地震工程等。
试题二:1. 结构动力学分析中,模态分析的基本原理是什么?2. 简述模态分析的步骤和计算方法。
3. 常用的模态分析软件有哪些?4. 请问什么是结构的固有频率和阻尼比?5. 结构的模态振型对结构动力响应有什么影响?答案二:1. 模态分析是基于结构的振动特性,通过求解结构的固有频率、模态振型和阻尼比等参数,来研究结构的动力响应。
2. 模态分析的步骤包括建立结构有限元模型、求解结构的固有频率和模态振型、计算结构的阻尼比等。
常用的计算方法有有限元法、拉普拉斯变换法等。
3. 常用的模态分析软件有ANSYS、ABAQUS、MSC.NASTRAN等。
4. 结构的固有频率是结构在无外力作用下自由振动的频率,阻尼比是结构振动过程中能量耗散的程度。
5. 结构的模态振型对结构动力响应有很大影响,不同的模态振型会导致不同的振动特性和反应。
试题三:1. 结构动力学分析中,频率响应分析的基本原理是什么?2. 简述频率响应分析的步骤和计算方法。
3. 频率响应分析和模态分析有什么区别?4. 结构的频率响应函数和传递函数有什么区别?5. 频率响应分析在结构设计中的应用有哪些?答案三:1. 频率响应分析是研究结构在单频激励下的响应特性,通过求解结构的频率响应函数,来获得结构的响应。
工程力学结构动力学复习题
工程力学结构动力学复习题一、简答题1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段?2、何谓结构的振动自由度?它与机动分析中的自由度有何异同?3、何谓动力系数?简谐荷载下动力系数与哪些因素有关?4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么?5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们?6、简述振型分解法是如何将耦联的运动方程解耦的.7、时域法求解与频域法求解振动问题各有何特点?8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应之比值。
简谐荷载下的动力放大系数与频率比、阻尼比有关。
当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。
原因是:当把动荷载换成作用于质量的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。
9、振型正交性的物理意义是什么?振型正交性有何应用?答:由振型关于质量、刚度正交性公式可知,i振型上的惯性力在,振型上作的虚功为0。
由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。
换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动。
这说明各个主振型都能单独出现,彼此线性无关。
这就是振型正交的物理意义。
一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。
而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。
10、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
(完整word版)结构动力学历年试题
(完整word版)结构动力学历年试题结构动力学历年试题(简答题)1.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载包括哪几种,请简述每一种荷载的特点。
P22.通过与静力问题的对比,试说明结构动力计算的特点。
P33.动力自由度数目计算类4.什么叫有势力?它有何种性质。
P145.广义力是标量还是矢量?它与广义坐标的乘积是哪个物理量的量纲?P166.什么是振型的正交性?它的成立条件是什么?P1057.在研究结构的动力反应时,重力的影响如何考虑?这样处理的前提条件是什么?P328.对于一种逐步积分计算方法,其优劣性应从哪些方面加以判断?P1329.在对结构动力反应进行计算的思路上,数值积分方法与精确积分方法的差异主要表现在哪里?第五章课件10.利用Rayleigh法求解得到的振型体系的基本振型和频率及高阶振型和频率与各自的精确解相比有何特点?造成这种现象的原因何在?P20911.根据荷载是否预先确定,动荷载可以分为哪两类?它们各自具有怎样的特点?P112.坐标耦联的产生与什么有关,与什么无关?P9613.动力反应的数值分析方法是一种近似的计算分析方法,这种近似性表现在哪些方面?P132及其课件14.请给出度哈姆积分的物理意义?P8115.结构地震反应分析的反应谱方法的基本原理是什么?P84总结16.某人用逐步积分计算方法计算的结构位移,得到如下的位移时程的计算结果:。
17.按照是否需要联立求解耦联方程组,逐步积分法可以分为哪两类?这两类的优劣性应该如何进行判断?P13218.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载又包括哪些类型,每种类型请给出一种实例。
P219.请分别给出自振频率与振型的物理意义?P10320.振型叠加法的基本思想是什么?该方法的理论基础是什么?P111参考25题21.在振型叠加法的求解过程中,只需要取有限项的低阶振型进行分析,即高阶振型的影响可以不考虑,这样处理的物理基础是什么?P11522.我们需要用数值积分方法求解一座大型的高坝结构的地震反应时程,动力自由度的总数为25000个,我们如何缩短计算所耗费的机时?P10323.什么是结构的动力自由度?动力自由度与静力自由度的区别何在?P11及卷子上答案24.一台转动机械从启动到工作转速正好要经过系统的固有频率(又称为转子的临界转速),为减小共振,便于转子顺利通过临界转速,通常采用什么措施比较直接有效?简要说明理由。
结构动力学习题
结构动⼒学习题习题集1.12重物w悬挂在简⽀梁跨中的⼀个弹簧上(图P1.12),梁长为L,弯曲刚度为EI,弹簧刚度为k,假定梁⽆质量,试求其固有频率。
1.19 将汽车粗略地理想化为⼀个集中质量⽀撑在⼀个弹簧-阻尼器系统上,如图P1.19所⽰。
汽车以恒定不变的速度v通过路⾯,路⾯的平整度为路⾯位置的⼀个已知函数。
试推导运动⽅程。
(从⾃重下的平衡位置处起算)Problem Plus1 for Ch1 (please do it in English)Derive the equations of motion for the following pendulum system. The rod length is L, and its mass density is uniform across its surface area. Assume b << L (so make small angle approximations). Mass density is ρbut total mass of rod is m. Note: the term “rod”does not imply a simple rod.a. Derive the equation of motion of the system.b. Simplify the equation of motion assuming the displacement angle,θ, is smallc. Determine the natural frequency of the rod system based on the simplifiedequation of motion in part (b).d. The same rod is taken and now rotated about a new pivot point (as shownbelow). Find the natural frequency of the new rod system configuration. Again,make small angle approximations to find the rod’s equation of motion.e. Compare the natural frequency from part (c) and (d). The new pivot point istermed the CENTER of PERCUSSIONProblem Plus2 for Ch1 (please do it in English)Determine the equation of motion of the following system using the Principle of Virtual Work.where()4x c x a=Hint: Be careful with respect to the beam with a distributed mass shown on the left. You caneither consider the rotational inertia about the hinge on the left –OR- you can consider therotational inertia about the beam’s center of mass point. If you go with considering the rotation about the beam’s center of mass, you need to account for the inertia associated with translational movement of that center of mass. In fact, a third valid approach is to not even consider the beam as a rotational element. You could discretize the beam to infinitely small slices with thickness “dx” and find the vertical translational inertia (essentially sum them using integrals). You should convince yourself of the equivalency of both approaches of analysis of the inertial properties of the system shown.2.6 ⼀个仪器的包装可如图P2.6所⽰模拟。
结构动力学试题
结构动力学试题一、选择题1. 结构动力学中的“动力响应”是指:A. 结构在静态载荷下的变形B. 结构在动态载荷下的变形C. 结构的自然频率D. 结构的阻尼比2. 单自由度系统的周期公式为:A. T = 2π√(m/k)B. T = 2π√(k/m)C. T = 2π/mD. T = π√(m/k)3. 多自由度系统的振型分解法是基于以下哪个原理?A. 结构的对称性B. 结构的不确定性C. 结构的线性叠加原理D. 结构的能量守恒原理4. 在地震分析中,反应谱方法的主要优点是:A. 考虑了地震动作用的非线性B. 可以处理任意形状的地震波形C. 能够直接给出结构的响应结果D. 适用于快速评估结构的地震安全性5. 结构阻尼比的增大通常会导致:A. 自然频率的提高B. 振幅的减小C. 周期的延长D. 响应的不稳定二、填空题1. 在结构动力学中,________是用来描述结构在动态载荷作用下的运动状态。
2. 动态载荷下,结构的响应可以通过________方法进行求解,该方法基于结构振动的线性叠加原理。
3. 地震波的________特性对结构的响应有显著影响,因此在进行地震分析时需要特别考虑。
4. 结构的阻尼比可以通过________方法进行实验测定,以评估结构的能量耗散能力。
5. 在进行结构动力分析时,通常需要将结构简化为________自由度系统,以便于计算和分析。
三、简答题1. 请简述单自由度系统与多自由度系统的区别及其各自的适用场景。
2. 描述地震波的基本特性,并解释为什么需要对其进行频谱分析。
3. 说明结构阻尼对动力响应的影响,并讨论如何通过设计来提高结构的阻尼性能。
四、计算题1. 一个单自由度系统的质量为500 kg,刚度为2000 N/m。
请计算该系统的自然频率和阻尼比为0.05时的周期。
2. 假设一个结构在地震作用下的最大加速度为0.3g,其中g为重力加速度(9.81 m/s²),请使用反应谱方法计算该结构在自然频率为2Hz时的响应加速度。
华科土木结构动力学-作业题汇总精选全文完整版
《结构动力学》课后习题1试确定图示各体系的动力自由度,忽略弹性杆件自身的质量和轴向变形。
(a)4个动力自由度(b)2个动力自由度(c)2个动力自由度(d)2个动力自由度m(e )3个动力自由度(f )3个动力自由度(g)2个动力自由度(h)3个动力自由度(i)2个动力自由度(j)1个动力自由度m(k )2个动力自由度(l )2个动力自由度2试比较下列图式结构(a )、(b)固有频率的大小,并说明理由。
解:(a )结构滑动铰支座刚度无穷大,而(b )结构由于二力杆可以轴向变形,所以(a )结构刚度大于(b )结构刚度;而两结构质量相等,根据ω=可以知道,(a )结构故固有频率大于(b)结构固有频率。
m(a )(b )3下图为刚性外伸梁,C 处为弹性支座,刚度系数为k ,梁端A ,D 处分别有m 和质量m /3,同时梁受集中荷载F P (t )的作用,试建立刚性梁的运动方程。
解:单自由度体系,设刚性梁转角为ϕm(t)(my )(y )3A A D D F ϕϕϕϕδδδ=-⋅+-⋅+ (1)其中A y l ϕ=2D y l ϕ= 设刚梁顺时针转动为正①当在A 处作用单位力F=1时,2()3C F =↓234329A l k klϕδ=+÷=+②当在D 处作用单位力F=1时,4()3C F =↑438329A l k klϕδ=+÷=+③当作用F p (t )时,(t)()3p C F F =↑(t)2(t)3329p p FF F l k kl ϕδ=÷=代入(1)式得:2(t)4m 8(m )((2)9399p F l l kl kl klϕϕϕ=-⋅+-⋅⋅+整理得:2(t)28279p F m k klϕϕ+=4求图示结构的自振频率ωEI =∞kθlθm解:如图所示,该体系只有一个自由度。
设固定支座处出为原点,距离原点x处的质点(mdx )位移为x θ,惯性力为()mdx x mx dx θθ''-=- 。
结构动力学试题及答案
结构动力学试题及答案一、选择题1. 在结构动力学中,下列哪项不是描述结构动力响应的参数?A. 自然频率B. 阻尼比C. 静力平衡D. 模态阻尼2. 以下哪个不是结构动力学分析中的常用方法?A. 模态分析B. 时域分析C. 频域分析D. 静力分析二、简答题1. 简述结构动力学中模态分析的目的和重要性。
2. 描述阻尼对结构动力响应的影响。
三、计算题1. 假设一个单自由度系统,其质量为m,刚度为k,初始位移为x0,初始速度为v0。
若外力为F(t) = F0 * sin(ωt),求该系统在任意时间t的位移响应。
答案一、选择题1. 正确答案:C. 静力平衡解析:静力平衡是静力学的概念,与结构动力学无关。
2. 正确答案:D. 静力分析解析:静力分析是分析结构在静载荷作用下的响应,而结构动力学分析动态载荷下的结构响应。
二、简答题1. 模态分析的目的在于识别结构的自然振动特性,包括自然频率、阻尼比和模态形状。
它的重要性在于:- 预测结构在动态载荷下的响应。
- 为控制结构的振动提供基础数据。
- 优化设计,提高结构的抗震性能。
2. 阻尼对结构动力响应的影响主要表现在:- 减少振动幅度,提高结构的稳定性。
- 改变系统的自然频率和模态形状。
- 影响系统的动态响应时间。
三、计算题1. 单自由度系统的位移响应可以通过以下步骤求解:- 写出系统的动力学方程:m * d²x/dt² + c * dx/dt + k * x = F(t)- 应用初始条件:x(0) = x0, v(0) = v0- 应用外力:F(t) = F0 * sin(ωt)- 通过傅里叶变换或拉普拉斯变换求解方程。
- 应用逆变换得到位移响应的解析解或数值解。
位移响应的一般形式为:x(t) = X * cos(ωt - φ) + Y *sin(ωt - φ),其中X和Y是与系统参数和初始条件有关的常数,φ是相位角。
具体的数值需要根据系统参数和初始条件进行计算。
《结构动力学》考试复习题
《结构动力学》考试复习题一、(概念题)(1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比0.2ξ=,则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。
(2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =⋅,则系统的固有频率ω为 ,阻尼比ξ为 ,对数衰减率n 为 。
(3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=∆st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。
(10分)(4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。
(5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++=,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。
(6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。
(7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。
(8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频率,p 为激振力的频率,ϕ为位移响应滞后于激振力的相位角。
试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。
(9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。
(10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与系统所受的阻尼力 。
(a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关2ωpππ二、(计算题)(1) 图示两个系统,已知EI 和M ,弹簧刚度316k EI l =,不计梁的质量,试确定:(1) 简支梁的等效刚度L k ;(2)两个系统的等效刚度a k 和b k ;(3) 两个系统的固有频率a ω和b ω。
结构动力学习题
第九章 结构动力计算一、是非题1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、忽略直杆的轴向变形,图示结构的动力自由度为4个。
3、仅在恢复力作用下的振动称为自由振动。
4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。
l /2l /2l /2l /2(a)(b)6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水平 位 移 ∆=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自振 频 率 ω=-40s 1。
∆7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。
AC10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 :m m X X h EI EI EI EI X X P t 00148242424012312⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭+--⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭=⎧⎨⎩⎫⎬⎭()二、选择题1、图 示 体 系 ,质 点 的 运 动 方 程为 :A .()()()y l P s in m y EI =-77683θ t /;B .()()m y EI y lP s in /+=19273θ t ;C .()()m y EI y l P s in /+=38473θ t ;D .()()()y l P s in m y EI =-7963θ t / 。
ll0.50.52、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以A .增 大 P ;B .增 大 m ;C .增 大 E I ; D .增 大 l 。
13结构动力学习题
13结构动⼒学习题1.1 不计轴向变形,图⽰体系的振动⾃由度为2。
1.2 不计轴向变形,图⽰体系的振动⾃由度为1。
1.3 不计轴向变形,图⽰体系的振动⾃由度为2。
1.4 结构的⾃振频率不仅与质量和刚度有关,还与⼲扰⼒有关。
1.5 单⾃由度体系,考虑阻尼时,频率变⼩。
1.6 弹性⼒与位移反向,惯性⼒与加速度反向,阻尼⼒与速度反向。
1.7 如简谐荷载作⽤在单⾃由度体系的质点上且沿着振动⽅向,体系各截⾯的内⼒和位移动⼒系数相同。
1.8 在建⽴质点振动微分⽅程时,考虑不考虑质点的重⼒,对动位移⽆影响。
1.9 图⽰体系在简谐荷载作⽤下,不论频率⽐如何,动位移y(t) 总是与荷载P(t) 同向。
1.10 多⾃由度体系⾃由振动过程中,某⼀主振型的惯性⼒不会在其它主振型上做功。
⼆、单项选择题2.1 在单⾃由度体系受迫振动的动位移幅值计算公式中,yst是A 质量的重⼒所引起的静位移B 动荷载的幅值所引起的静位移C 动荷载引起的动位移D 质量的重⼒和动荷载复制所引起的静位移2.2 ⽆阻尼单⾃由度体系的⾃由振动⽅程:。
则质点的振幅y max=2.3 多⾃由度振动体系的刚度矩阵和柔度矩阵的关系是2.4 图⽰四结构,柱⼦的刚度、⾼度相同,横梁刚度为⽆穷⼤,质量相同,集中在横梁上。
它们的⾃振频率⾃左⾄右分别为ω1,ω2,ω3,ω4,那么它们的关系是2.5 图⽰四结构,柱⼦的刚度、⾼度相同,横梁刚度为⽆穷⼤,质量相同,集中在横梁上。
它们的⾃振频率⾃左⾄右分别为ω1,ω2,ω3,ω4,那么它们的关系是2.6 已知两个⾃由度体系的质量矩阵为,Y22等于A -0.5B 0. 5C 1D -0.252.7 不计阻尼,不计⾃重,不考虑杆件的轴向变形,图⽰体系的⾃振频率为2.8 图⽰四个相同的桁架,只是集中质量m的位置不同,,它们的⾃振频率⾃左⾄右分别为ω1,ω2,ω3,ω4,(忽略阻尼及竖向振动作⽤,各杆EA为常数),那么它们的关系是2.9 设ω为结构的⾃振频率,θ为荷载频率,β为动⼒系数下列论述正确的是A ω越⼤β也越⼤B θ越⼤β也越⼤C θ/ω越接近1,β绝对值越⼤Dθ/ω越⼤β也越⼤2.10 当简谐荷载作⽤于有阻尼的单⾃由度体系时,若荷载频率远远⼤于体系的⾃振频率时,则此时与动荷载相平衡的主要是A 弹性恢复⼒B 阻尼⼒C 惯性⼒D 重⼒2.11 图⽰(a )、(b )两体系中,EI 、EI1及h 均为常数,则两者⾃振频率ωa 与ωb 的关系是2.12 图⽰三个单跨梁的⾃振频率分别为ωa ,ωb ,ωc ,它们之间的关系是2.13 ⼀单⾃由度振动体系,其阻尼⽐为ξ,共振时的动⼒系数为β则ABCD2.14 当荷载频率θ接近结构的⾃振频率ω时A 可作为静荷载处理B 荷载影响⾮常⼩C 引起共振D 可以不考虑阻尼的影响求图⽰体系的⾃振频率ω。
结构动力学试题(一)
结构动力学第1章单自由度系统1.1 总结求单自由度系统固有频率的方法和步骤。
1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。
1.3 叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。
1.4 求图1-33中标出参数的系统的固有频率。
1.5 求图1-34所示系统的固有频率。
图中匀质轮A 半径R,重物B 的重量为P/2,弹簧刚度为k.1.6求图1-35所示系统的固有频率。
图中磙子半径为R,质量为M,作纯滚动。
弹簧刚度为K 。
1.7求图1-36所示齿轮系统的固有频率。
已知齿轮A 的质量为A m ,半径为A r ,齿轮B 的质量为B m ,半径为B r ,杆AC 的扭转刚度为A k , ,杆BD 的扭转刚度为B k 。
1.8已知图1-37所示振动系统中,匀质杆长为l ,质量为m,两弹簧刚度皆为K,阻尼系数为C,求当初始条件000==θθ 时 〔1〕t F t f ωsin )(=的稳态解; 〔2〕t t t f )()(δ=的解;1.9图1-38所示盒内有一弹簧振子,其质量为m,阻尼为C,刚度为K,处于静止状态,方盒距地面高度为H,求方盒自由落下与地面粘住后弹簧振子的振动历程与振动频率。
1.10汽车以速度V 在水平路面行使。
其单自由度模型如图1-39。
设m 、k 、c 已知。
路面波动情况可以用正弦函数sin()y h at =表示。
求:〔1〕建立汽车上下振动的数学模型;〔2〕汽车振动的稳态解。
1.11.若电磁激振力可写为t H t F 02sin )(ω=,求将其作用在参数为m 、 k 、 c 的弹簧振子上的稳态响应。
1.12.若流体的阻尼力可写为3xb F d -=,求其等效粘性阻尼。
第1章1.4 a> ()3314848EIl EI k l mω=+31348k l EImlω+= c>3133k l EIml ω+= d>mk 21=ω1.5ω=1.6ω=1.7ω==1.8 运动微分方程: 366()c k f t m m mlθθθ++= 〔1〕)t θωα=-236c arctgk m ωαω=- 〔2〕()sin nt d d h e t m θωω-=22632d k cm m ω⎛⎫=- ⎪⎝⎭1.9()sin nt d dx t ω-=d ω=1.10 〔1〕)sin()cos(at kh at ach ky y cym +=++ 〔2〕sin()y t ωϕ=- 3222tan()()mc acr k k m c ωϕωω=-+1.110()sin(2/2)2Hx t A t k ωϕπ=--+20220216)4(2ωωωn mHA n +-=2202arctan4n n ωϕωω=-mk m c n n ==2,2ω 1.122243A b c n eq ω=第2章 两个自由度系统2.1 求如图2-11所示系统的固有频率和固有振型,并画出振型。
结构动力学试题及答案
结构动力学试题及答案一、选择题(每题2分,共10分)1. 结构动力学中,动力响应分析通常不包括以下哪一项?A. 自振频率分析B. 模态分析C. 静力分析D. 动力放大系数分析答案:C2. 在结构动力学中,下列哪一项不是确定结构动力特性的基本参数?A. 质量B. 刚度C. 阻尼D. 材料强度答案:D3. 单自由度振动系统的动力平衡方程中,下列哪一项是正确的?A. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t)B. m\(\ddot{x}\) + c\(\dot{x}\) + kx = 0C. m\(\ddot{x}\) + c\(\dot{x}\) + kx = FD. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t) - F答案:A4. 对于多自由度振动系统,下列哪一项不是求解动力响应的方法?A. 模态叠加法B. 直接积分法C. 能量守恒法D. 振型分解法答案:C5. 在结构动力学中,阻尼比通常用来描述阻尼的相对大小,其定义为:A. 临界阻尼比B. 阻尼比C. 阻尼比的倒数D. 阻尼比的平方答案:B二、填空题(每题2分,共10分)1. 结构动力学中,当外力作用频率与结构的_________相等时,结构会发生共振。
答案:自振频率2. 多自由度振动系统的振型是指系统在自由振动时的_________。
答案:位移分布模式3. 动力响应分析中,_________是指在给定的外力作用下,结构的响应随时间变化的过程。
答案:动力响应4. 在结构动力学中,_________是指结构在动力作用下,其响应与外力作用的关系。
答案:动力特性5. 阻尼比越大,结构的_________越小,振动衰减越快。
答案:振幅三、简答题(每题5分,共20分)1. 简述结构动力学中模态分析的目的和意义。
答案:模态分析的目的是确定结构的自振频率和振型,意义在于了解结构的动力特性,为结构设计提供依据,以及评估结构在动力作用下的安全性和稳定性。
结构动力学习题+讲解
结构动力学*本章讨论结构在动力荷载作用下的反应。
**学习本章注重动力学的特征------惯性力。
*结构动力计算的目的在于确定结构在动力荷载作用下的位移、内力等量值随时间变化的规律,从而找出其最大值作为设计的依据。
*动力学研究的问题:动态作用下结构或构件的强度、刚度及稳定性分析。
一、本章重点1.振动方程的建立2.振动频率和振型的计算3.振型分解法求解多自由度体系4.最大动位移及最大动应力二、基础知识1.高等数学2.线性代数3.结构力学三、动力荷载的特征1.大小和方向是时间t的函数例如:地震作用,波浪对船体的作用,风荷载,机械振动等2.具有加速度,因而产生惯性力四、动力荷载的分类1.周期性动力荷载例如:①机械运转产生的动力荷载,②打桩时的锤击荷载。
P(t) Pt t(机械运转荷载)(打桩荷载)2.冲击荷载例如:①爆炸力产生的动力荷载,②车轮对轨道连接处的冲击。
P(t)P(t)P(t)t t t(爆炸力动力荷载)(吊车起吊钢索的受力)(随机动力荷载)3.突加常量荷载例如:吊车起吊重物时钢索的受力。
4.随机动力荷载前3类荷在是时间t的确定函数,称为确定性动力荷载;而地震作用,波浪对船体的作用,风荷载等其作用大小只能用统计的方法获得。
五、动力荷载的计算方法1.原理:达朗贝尔原理,动静法建立方程2.计算工具:微分方程,线性代数,结构力学六、体系振动的自由度---------动力自由度结构具有质量,有质量在运动时就有惯性力。
在进行动力计算时,一般把结构的质量简化为若干质点的质量,整个结构的惯性力就成为各质点的惯性力问题。
1.质点简化的一般要求①简单,②能反映主要的振动特性例如:楼房;质量集中在各层楼板平面内水塔:质量集中在水箱部分梁:无限自由度集中质量(楼房质量集中)(水塔质量集中)(梁的质量集中)2.位移y(t)即指质点的位移y(t),其加速度为y&&)(t3.动力自由度的确定即质点位移数量的确定。
结构动力学习题
结构动力学一、填空题1、右图所示振动体系不计杆件的轴向变形,则 动力自由度数目是 。
2、单自由度体系只有当阻尼比ξ 1时才会产生振动现象。
3、已知结构的自振周期s T 3.0=,阻尼比04.0=ξ,质量m 在0,300==v mm y 的初始条件下开始振动,则至少经过 个周期后振幅可以衰减到mm 1.0以下。
4、多自由度框架结构顶部刚度和质量突然变 时,自由振动中顶部位移很大的现象称 。
二、判断以下说法是否正确.1、凡是大小、方向、作用点位置随时间变化的荷载,在结构动力计算中都必须看作动力荷载。
( )2、超静定结构体系的动力自由度数目一定等于其超静定次数。
( )3、为了避免共振,要错开激励频率和结构固有频率,一般通过改变激励频率来实现。
( )4、求冲击荷载作用下结构的反应谱曲线时一般不计阻尼的影响。
( )5、求静定的多自由度体系的频率和振型,一般采用刚度法比采用柔度法方便。
( )三、选择题1、对单自由度体系的自由振动,下列说法正确的是( B )A C 、振幅和初相角仅与初始条件有关 2、图示(a )、(b A 、b a ωω<B 、∞→EA 时b a ωω≈C 、0→EA 时b a ωω≈D 、b a ωω=3、(1)无阻尼的自由振动(2)不计阻尼,零初始条件下t P θsin 产生的过渡阶段的振动 (3)有阻尼的自由振动(4)突加荷载引起的无阻尼强迫振动 A 、(1)(2)(3) B 、(1)(2)(4)4、右图的单自由度体系,结构的固有频率为ω A 、很小 B 、很大C 、接近静位移st y一、填空题。
(11分)1、2 (3分)2、< (3分)3、14 (3分)4、小鞭梢效应(3分)二、判断以下说法是否正确,对错误的说法加以改正。
(6×3分=18分)1、(×)改正:可简单地在“都是”前加上“不”;或改为“大小、方向、作用点位置随时间变化的荷载,只有使结构的质量产生显著加速度的在结构动力计算中才看作动力荷载。
结构动力学习题
结构动力计算习题习题9-1图示各系统的动力自由度为多少?都是什么?m m m m m m mm(1) (2) (3) (1)①△1x =△2x (2)①△1x =△2x =△3x (3)①△1y =△3y ②△1y ②△1y ②△2y ③△2y ③△3ymmmmmmmmm(4) (5) (6) (4)①△1x (5)①△1y (6)①△1y ②△1y =△2y ②△2x ②△2x ③△3y ③△2y =△3y ③△2y =△3ym m mm mm mm(7) (8) (9) (10) (7)①△1x =△2x (8)①△1x (9)①△1x (10)①△1x ②△2y ②△1y ②△2x ②△2x ③△2x ③△2y ④△2ym m mm m m mm m(11) (12) (13)(11)①△1x =△2x =△3x (12)①△1x =△2x =△3x =△4x (13)①△1x =△2x②△2y ②△1y ②△1y③△4y ③△2ym mm mm mmm(14) (15) (16) (17) (14)①△1x (15)①△1x (16)①△1x (17)①△1x =△2x ②△2x ②△1y ②△1y ②△2y ③△2x ③△2x ④△2y习题9-2图示各系统作强迫振动,已知激振力的频率与系统的自振频率之比,试求系统的动力系数β和最大动弯矩m ax d M 。
2l ltF θsin m2llmFFlM 图(1)32=ωθ, 2211ωθβ-=599411=-=, Fl M d 59m ax =tF θsin mlmlM 图FFl(2)32=ωθ, 2211ωθβ-=33211=-=, Fl M d 3m ax =ltF θsin lmM 图FFl /2(3)53=ωθ, 2211ωθβ-=255311=-=, 45m ax Fl M d = tF θsin mlmlM 图FFl(4)21=ωθ, 2211ωθβ-=22111=-=, Fl M d 2m ax =l /2tF θsin l /2mM 图FFl /4(5)32=ωθ, 2211ωθβ-=33211=-=, 43m ax FlM d =l l /2tF θsin mll /2mFFl /2M 图(6)21=ωθ, 2211ωθβ-=344111=-=, 32max Fl M d =llmtF θsin llmM 图FFl(7)43=ωθ, 2211ωθβ-=44311=-=, Fl M d 4m ax =mtF θsin ll /2M 图FFl /2Fl /2(8)31=ωθ, 2211ωθβ-=233111=-=, 43m ax Fl M d = mtF θsin ll /2mM 图F Fl /2Fl /2(9)31=ωθ, 2211ωθβ-=899111=-=, 169m ax Fl M d = 习题9-3求图示各系统的自振频率。
(完整版)结构动力学-习题解答
解
11
5 48
l3 EI
;
3.098
EI ml 3
;
l/2
ml 3 T 2.027 ;
EI
m
EI y1(t)
l
l/2 l/2
l/4
7-1(b)试求图示体系的自振频率与周期。
解: 求柔度系数: 用位移法或力矩分配法 求单位力作用引起的弯矩图(图a); 将其与图b图乘,得
48EI 2k
T 2 ( 1 l3 1 )m
48 EI 2k
m
k EI
k
l/2
l/2
7-3 试求图示体系质点的位移幅值和最大弯矩值。
已知 0.6
l
解:
yst
FPl 3 EI
m
y1(t)
1
1
2
/
2
1.5625
位移幅值
A
yst
1.5625
FPl 3 EI
2l
yst
11
5 3
l3 EI
1 11
l
X11 0.4612 ; X12 4.336
X 21
X 22
12 7.965 EI / ml 3
2 2
65.53EI
/
ml 3
1 2.822 EI / ml3
8-6.试求图示刚架的自振频率和振型。设楼面质量分别为m1=120t和m2=100t,
柱的质量已集中于楼面, 柱的线刚度分别为i1=20MN.m和i2=14MN.m,横梁
m 2 A 0.3375 FP
l/2
EI=常数
FP sin t
2l
FP
FPl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构动力学习题
2.1 建立题2.1图所示的三个弹簧-质点体系的运动方程(要求从刚度的基本定义出发确定体系的等效刚度)。
题2.1图
2.2 建立题 2.2图所示梁框架结构的运动方程(集中质量位于梁中,框架分布质量和阻尼忽略不计)。
题2.2图
2.3 试建立题 2.3图所示体系的运动方程,给出体系的广义质量M、广义刚度K、广义阻尼C和广义荷载P(t),其中位移坐标u(t)定义为无重刚杆左端点的竖向位移。
题2.3图
2.4 一总质量为m1、长为L的均匀刚性直杆在重力作用下摆动。
一集中质量m2沿杆轴滑动并由一刚度为K2的无质量弹簧与摆轴相连,
见题 2.4图。
设体系无摩擦,并考虑大摆角,用图中的广义坐标q1和q2建立体系的运动方程。
弹簧k2的自由长度为b。
题2.4图
2.5 如题2.5图所示一质量为m1的质量块可水平运动,其右端与刚度为k的弹簧相连,左端与阻尼系数为c的阻尼器相连。
摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。
建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置)。
题2.5图
2.6如题2.6图所示一质量为m1的质量块可水平运动,其上部与一无重刚杆相连,无重刚杆与刚度为k2的弹簧及阻尼系数为c2的阻尼器相连,m1右端与刚度为k1的弹簧相连,左端与阻尼系数为c1的阻尼器相连。
摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。
建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置,假定系统作微幅振动,sinθ=tanθ=θ)。
计算结果要求以刚度矩阵,质量矩阵,阻尼矩阵的形式给出。
3.1单自由度建筑物的重量为900kN,在位移为 3.1cm时(t=0)突然释放,使建筑产生自由振动。
如果往复振动的最大位移为 2.2cm(t =0.64s),试求:(1)建筑物的刚度k;(2)阻尼比ξ;(3)阻尼系数c。
3.2 单自由度体系的质量、刚度为m=875t,k=3500kN/m,且不考虑阻尼。
如果初始位移为u(0)=
4.6cm,而t=1.2s时位移仍为 4.6cm,试求:(1)t=2.4s时的位移;(2)自由振动的振幅u0。
3.3重量为1120N的机器固定在由四个弹簧和四个阻尼器组成的支撑
系统上。
在机器重量作用下弹簧压缩了 2.0cm,阻尼器设计为在自由振动两个循环后使竖向振幅减为振幅的1/8,确定系统的如下特性:(1)无阻尼自由振动频率;(2)阻尼比;(3)有阻尼自由振动频率。
总结阻尼对自振频率的影响。
3.4 一质量为m1的块体用刚度为k的弹簧悬挂处于平衡状态(如题
3-4图所示)。
另一质量为m2的块体由高度h自由落下到块体m1上并与之完全粘接,确定由此引起的运动u(t),u(t)由m1-k体系的静平衡位置起算。
题3.4
3.5 单自由度结构受正弦力激振,发生共振时,结构的位移振幅为
5.0cm,当激振力的频率变为共振频率的1/10时,位移振幅为0.5cm,试求结构的阻尼比ξ。
3.6 一隔振系统安装在实验室内以减轻来自相邻工厂的地面振动对
试验的干扰(题3.6图)。
如果隔振块重908kg,地面振动频率为25Hz,
如果要隔振块的振动频率为地面的1/10,确定隔振系统弹簧的刚度(忽略阻尼)。
题3.6图
3.7 重545kg空调机固定于两平行简支钢梁的中部(见题3.7图)。
梁的跨度 2.4m,每根梁截面的惯性矩为
4.16×10-6m4,空调机转速300r/min,产生0.267kN的不平衡力,假设体系阻尼比为1%,并忽略钢梁的自重,求空调机的竖向位移振幅和加速度振幅。
(钢材的弹性模量为 2.06×108kN/㎡)
题3.7图
3.8 如题3.8 图a所示一框架结构,为了确定框架结构的水平刚度k 和阻尼系数c,对结构进行简谐振动加载试验,当试验频率为ω=10rad/s时,结构发生共振,得到题 3.8图b所示的力-位移关系(滞回)曲线,根据这些数据:(1)确定刚度k;(2)假定为粘性阻尼,试确定等效粘性阻尼比ξ和阻尼系数c;(3)假定为滞变阻尼,试确定等效滞变阻尼参数η。
题3.8图
3.9 采用Duhamel 积分法计算无阻尼单自由度结构在半周正弦脉冲作用下的位移时程,初始时刻结构处于静止状态,脉冲时程为
0sin 0/
()0/p t
t P t t ω>3.10 采用Duhamel 积分法计算无阻尼单自由度结构在矩形脉冲作用下的位移时程,初始时刻结构处于静止状态,脉冲时程为
0()0d
d
p t T P t t T >4.1试证明在选取
4.1图中所示几种广义坐标的情况下结构的耦联
性。
题4.1图
4.2 如题4.2图所示,一总质量为m的刚性梁两端由弹簧支撑,梁的质量均匀分布、两弹簧的刚度分别为k和2k。
定义的两个自由度u1和u2示于图中,建立结构体系的运动方程,并计算结构的振型和自振频率。
题4.2图
4.3 如题4.3图所示一框架结构,各楼层单位长度的质量为m(t/m),柱截面的抗弯刚度均为EI(KN/m2x m4),其余参数示于图中。
假设楼
板为刚性,计算结构的自振频率和振型;如果初始时刻各楼层的位移为0,初始速度均为1m/s,用振型将初始速度的向量 {u(0)}T ={1,1,1}T展开。
题4.3图
4.4 如题 4.4图所示的二层结构,柱截面抗弯刚度均为EI,采用集中质量法近似,将结构的质量集中刚性梁的中部,分别为m1和m2,建立结构在外荷载P1(t)和P2(t)作用下的强迫振动。
题4.4图
4.5 对题 4.4给出的二层结构,设m1=m2=m,(1)确定结构的自振频率和振型(用m,EI和h表示);(2)验证振型的正交性;(3)按正交标准化(归一化 )方法将振型标准化;(4)比较未标准化和标准化的振型质量和振型刚度,并用两种振型质量和振型刚度计算结构的自振频率。
4.6 如果题4.4中二层结构的初始速度为0而初始位移如题 4.6图b 所示突然释放使结构自由振动,忽略结构的阻尼,确定结构的运动。
题4.6图
4.7 如题4.7图所示的三层剪切型结构,各楼层集中质量和层间刚度示于图中,忽略柱的质量,①采用MATLAB计算结构的自振频率和振型,②采用Raileigh阻尼,用结构的前两阶振型阻尼比确定结构的阻尼矩阵(设ξ1=ξ2=5%)。
题4.7图
4.8 如题4.8图由一根柱和两根梁构件组成的结构,柱的下端固接于地面,梁和柱截面抗弯刚度均为EI,长度为L。
采用集中质量法近似,将各构件的质量分别集中于相应的构件两端,分别为m、3m和m,忽略构件的轴向变形,建立结构的刚度矩阵和质量矩阵,如果地面发生一水平向单位加速度脉冲的作用,即()
u t,求结构的动力反应
g
题4.8图。