材基课后习题答案

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[123]与(-111)夹角cosφ=(8/21)1/2
[123]与(101)夹角cosλ=(4/7)1/2
故σs=τ/cosφcosλ=1.69×106N/m2
6.证明取向因子的最大值为0.5。
7.分析典型的fcc单晶体加工硬化曲线,比较与多晶体加工硬化曲线的区别。
答:典型的面心立方单晶体的加工硬化曲线可以分为三个阶段。当切应力达到晶体的临界分切应力时,其应力-应变曲线近似为直线,称为易滑移阶段,此时加工硬化率很小,滑移线细长,分布均匀;随后加工硬化率显著增加,称为线性硬化阶段,滑移系在几组相交的滑移系上发生,位错彼此交截,滑移线较短;第三阶段称为抛物线硬化阶段,加工硬化随应变增加而减少,出现许多碎断滑移带,滑移带端部出现交滑移痕迹。
解答:得到Cv=e10.35
Ag为fcc,点阵常数为a=0.40857nm,
设单位体积内点阵数目为N,则N=4/a3,=?
单位体积内空位数Nv=N Cv
若空位均匀分布,间距为L,则有=?
4.割阶或扭折对原位错线运动有何影响?
解答:取决于位错线与相互作用的另外的位错的柏氏矢量关系,位错交截后产生“扭折”或“割阶”
故柏氏矢量为a[-110]/2的螺型位错只能在与相交于[-110]的{111}面上交滑移,利用晶体学知识可知柏氏矢量为的螺型位错能在(-1-11)面上交滑移。
9.在fcc晶体的(-111)面上,全位错的柏氏矢量有哪些?如果它们是螺型位错,能在哪些面上滑移和交滑移?
解答:如图可知。fcc晶体的(-111)[面上全位错的柏氏矢量有a[101]/2、a[110]/2和a[0-11]/2,它们是螺型位错能在原滑移面(-111)面上滑移.
15.讨论金属的应变硬化现象对金属加工、使用行为的影响。
解答:加工硬化是指金属在形变加工过程总,其硬度升高,塑性降低的现象。会使加工越来越困难。
随着应变量的增加,让材料继续变形需要更大的应力,这种现象称为应变硬化。随变形量的增加,材料的强度、硬度升高而塑性、韧性下降的现象,为加工(应变)硬化(形变强化、冷作强化)。
•解答:利用空位浓度公式计算
•850℃(1123K):Cv1=
•后激冷至室温可以认为全部空位保留下来
•20℃(293K):Cv2=
•Cv1 /Cv2=
3.计算银晶体接近熔点时多少个结点上会出现一个空位(已知:银的熔点为960℃,银的空位形成能为1.10eV,1ev=)?若已知Ag的原子直径为0.289nm,问空位在晶体中的平均间距。1eV=1.602*10-19J
解答:(1)位错在各自晶面上滑动时,领先位错相遇,设领先位错为(111)晶面的a[11-2 ]/6和
(11-1)晶面的a[112 ]/6发生位错反应
位错反应为:
a[11-2 ]/6+a[112 ]/6→a[110 ]/3
故新位错的柏氏矢量为a[110 ]/3
平面(111)
平面(11-1)
两个平面(h1 k1 l1)与(h2 k2 l2)相交后交线,即为晶带轴,设为<uvw>,满足hu+kv+lw=0关系,可得
应变时效
加工硬化
织构
2.已知体心立方的滑移方向为<111>,在一定的条件下滑移面是{112},这时体心立方晶体的滑移系数目是多少?
解答:{112}滑移面有12组,每个{112}包含一个<112Leabharlann Baidu晶向,故为12个
3.如果沿fcc晶体的[110]方向拉伸,写出可能启动的滑移系
解答:滑移面和滑移方向垂直。面(abc)和方向[hkl]一定有下面的关系。
•体心立方结构虽然滑移系多,但滑移面密排程度低于fcc,滑移方向个数少,较难开动,所以塑性低于面心立方结构材料,但优于密排六方结构晶体,所以α-Fe的塑性较Cu差,优于Zn。
14.分析为什么细化晶粒既可以提高金属强度,又可以提高金属的塑性。
解答:根据Hall2petch公式:σs=σ0+Kd-1/2式中,σs是材料的屈服强度,σ0是与材料有关的常数,K是常数,d是晶粒直径。可以看出,材料的屈服强度与晶粒尺寸倒数的平方根成正比。因此,晶粒细化既能提高材料的强度,又能提高材料塑性,同时也能显著提高其力学性能。细化晶粒是控制金属材料组织的最重要、最基本的方法,目前人们采用了许多办法细化金属的晶粒。
多晶体加工硬化曲线一般不出现易滑移的第一阶段,而加工硬化率明显高于单晶体。
8.屈服现象的实质是什么,吕德斯带与屈服现象有何关系,如何防止吕德斯带的出现?
9.讨论金属中内应力的基本特点,成因和对金属加工、使用的影响;
10.实践表明,高度冷轧的镁板在深冲时往往会裂开,试分析原因;
解答要点:
1.本身hcp,滑移系少,塑性差
7.在简单立方晶体的(100)面上有一个b= a [001]的螺位错。如果它(a)被(001)面上的b= a [010]刃位错交割,(b)被(001)面上b= a [100]的螺位错交割,试问在这两种情形下每个位错上会形成割阶还是弯折?
•解答:1.弯折:被b= a [010]刃位错交割,则交截部分位错沿[010]方向有一段位移(位错线段),此位错线段柏氏矢量仍为b= a [001],故决定的新的滑移面为(100),故为扭折。
如果仅仅发生了晶粒的细化而没有发生强烈的塑性变形的话,材料的塑性随着晶粒的细化应该还是提高的。
细晶强化啊,这是一种很好的强化工艺。因为细晶粒晶界多阻碍位错运动,当然提高了强度,同时又能增强韧性.
晶界和晶内的塑性变形能力有很大的差异(竹节现象),细下的晶粒会减少二者间差异,因此均匀变形能力得到提高,这也是细晶提高塑性的一个原因。
•2.同理,被a [100]的螺位错交割,则沿[100]方向形成一段位错线段,此位错线段柏氏矢量仍为b= a [001],由[100]与[001]决定的滑移面为(0-10),故为割阶
8.一个b=a[-110]/2的螺位错在(111)面上运动。若在运动过程中遇到障碍物而发生交滑移,请指出交滑移系统。
(111)面上b=a[-110]/2的螺位错运动过程中遇到障碍物而发生交滑移,理论上能在任何面上交滑移,但实际上只能在与原滑移面相交于位错线的fcc密排面(滑移面)上交滑移。
1.解释以下基本概念
肖脱基空位
弗兰克耳空位
刃型位错
螺型位错
混合位错
柏氏矢量
位错密度
位错的滑移
位错的攀移
弗兰克—瑞德源
派—纳力
单位位错
不全位错
堆垛层错
位错反应
扩展位错。
位错密度:ρv=L/V(cm/cm3);)
ρa=1/S (1/cm2)
2.纯铁的空位形成能为105kJ/mol.将纯铁加热到850℃后激冷至室温(20℃),假设高温下的空位能全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。
u+v+w=0
u+v-w=0
求得uvw比值1:-1:0
新位错的组态性质:
新位错柏氏矢量为a[110 ]/3 ,而两个位错反应后位错线只能是两个滑移面(111)与(11-1)的交线,即[1-10],
即:位错线与柏氏矢量垂直,故为刃型位错,其滑移面为[110 ]与 [1-10]决定的平面,即(001)面,也不是fcc中的惯常滑移面,故不能滑移。
由于实际的金属及合金材料并非完美晶体,存在点、线、面缺陷(空位、位错、晶界相界等)或畸变,为此材料强度远低于它的理论强度。从缺陷的角度去考虑材料强化。工程及应用中最广的的屈服强度,该强度发生在材料的塑性变形紧密相关,可以从金属滑移及其机制去分析材料机制,(如位错机制等,阻碍位错运动的方式都为强化机制,如细晶强化、时效、固溶、形变强化)
•“扭折”可以是刃型、亦可是“螺型”,可随位错线一道运动,几乎不产生阻力,且它可因位错线张力而消失
•“割阶”都是刃型位错,有滑移割阶和攀移割阶,割阶不会因位错线张力而消失,两个相互垂直螺型位错的交截造成的割节会阻碍位错运动
5.如图,某晶体的滑移面上有一柏氏矢量为b的位错环,并受到一均匀切应力τ。
•分析该位错环各段位错的结构类型。
11.总结位错理论在材料科学中的应用
•1.可以解释实际强度与理论强度差别巨大原因
•2.可以解释各种强化理论
•3.凝固中晶体长大方式之一
•4.通过位错运动完成塑性变形
•5.变形中的现象如屈服与应变时效;
•6.固态相变形核机制
•7.回复再结晶软化机制
•8.短路扩散机制
•9.断裂机制
1.滑移
滑移系
孪生
屈服
(111)晶面:a[10-1]/2→a[11-2 ]/6 + a[2-1-1]/6
(11-1)晶面:a[011]/2→a[112 ]/6 + a[-121]/6
试问:
(1)两个扩展位错在各自晶面上滑动时,其领先位错相遇发生位错反应,求出新位错的柏氏矢量;
•(2)用图解说明上述位错反应过程;
•(3)分析新位错的组态性质
(G切变模量,γ层错能)
解答思路:
位错反应:a[-110]/2→a[-12-1]/6 + a[-211]/6
当两个肖克莱不全位错之间排斥力F=γ(层错能)时,位错组态处于平衡,故依据位错之间相互作用力,F=Gb1b2/2πd=γ可得。
10、在面心立方晶体中,(111)晶面和(11-1)晶面上分别形成一个扩展位错:
17.为什么过饱和固溶体经过适当时效处理后,其强度比它的室温平衡组织强度要高?什么合金具有明显的时效强化效果?把固溶处理后的合金冷加工一定量后再进行时效,冷加工对合金的时效有何影响?
理论上能在任何面上交滑移,但实际上在与原滑移面相交于位错线的fcc密排面(滑移面)上滑移。故柏氏矢量为a[110]/2的螺型位错只能在与相交于[110]的{111}面上交滑移,利用晶体学知识可知柏氏矢量为a[110]/2的螺型位错能在(1-11)面上交滑移。
9.面心立方晶体中,在(111)面上的单位位错a[-110]/2,在(111)面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出:
2.大变形量,形成织构,塑性方向性
3.加工硬化影响,也有内应力影响
11.分析Zn、α-Fe、Cu几种金属塑性不同的原因
答:Zn、α-Fe、Cu这三种晶体的晶体结构分别是密排六方、体心立方和面心立方结构。
•密排六方结构的滑移系少,塑性变形困难,所以Zn的塑性差。
•面心立方结构滑移系多,滑移系容易开动,所以对面心立方结构的金属Cu塑性好。
6.在面心立方晶体中,把两个平行且同号的单位螺型位错从相距100nm推进到3nm时需要用多少功(已知晶体点阵常数a=0.3nm,G=7×1010Pa)?
•解答:两个平行且同号的单位螺型位错之间相互作用力为:F=τb=Gb1b2/2πr,b1=b2,所以F= Gb2/2πr
从相距100nm推进到3nm时需要功
5.将直径为5mm的铜单晶圆棒沿其轴向[123]拉伸,若铜棒在60KN的外力下开始屈服,试求其临界分切应力。
解答:fcc结构,滑移系{111}<110>,由
σs=τ/cosφcosλ,当拉伸轴沿[123],开动的滑移系为(-111)[101]。
[123]与(-111)夹角计算公式,
cosθ=[u1u2+v1v2+w1w2]/[(u12+v12+w12)1/2(u22+v22+w22) 1/2]
ah+bk+cl=0
滑移面是原子密排面,面心立方晶体密排面是{111}晶面族。
所以可能的晶面指数有(1-11),(-111)两个。
4.写出fcc金属在室温下所有可能的滑移系;
解答:滑移面和滑移方向通常是原子排列最密集的平面和方向。
对面心立方金属原子排列最密集的面是{111}共有四个,原子最密集的方向是[110]共有3个,所以它有12个滑移系。
其意义是可以使得塑变均匀,可以防止突然过载断裂,强化金属的一种手段,通过形变硬化可以改善某些金属的切削性能。
16.总结影响金属强度的因素。
解答:金属及合金主要是以金属键合方式结合的晶体。完美金属的理论抗拉强度是指与结合键能(结合力和结合能)相关的材料物理量(双原子作用模型),其影响因素可以从该模型去考虑(如温度、键能、原子间距、点阵结合方式、原子尺寸、电负性电子浓度等,这些在金属材料学应该都有);
•求各段位错线所受的力的大小及方向。
•在τ的作用下,该位错环将如何运动?
•在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大?
解答:如图所示位错类型,其他部位为混合位错
各段位错线所受的力:τ1=τb,方向垂直位错线
在τ的作用下,位错环扩展
在τ的作用下,若使此位错环在晶体中稳定不动,则τ=Gb/2R,其最小半径应为R=Gb/2τ
相关文档
最新文档