苏教版《指数函数》(第一课时)教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:《2.2.2 指数函数》(第一课时)
一、教材分析
指数函数是学生在系统学习了函数概念及性质的基础之上,应用研究函数性质的一般方法来研究初等函数的第一次实践.它一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课所学习的内容起着承上启下的作用.也是学生体验数学思想与方法应用的过程.
指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.
二、学情分析
学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,将指数取值范围由整数集拓展到了实数集,掌握了指数运算法则,具备了进行指数运算的能力.学生缺乏对指数函数概念的准确认识,应该从大量的典型实例中抽象获得.需要注意的是,大部分引例中,自变量的取值一般为正整数,这掩盖了指数函数中对底数取值范围的要求,需引导学生进行必要的拓展.在学生初步得到用y=a x这个形式表示实例共同特征后,需引导学生讨论底数a的取值范围,得到指数函数的准确概念.
学生尚未完全掌握研究函数性质的一般方法,应该通过实际操作,经历从特殊到一般、具体到抽象的研究过程.体验数形结合的思想方法.对于部分能力较强的学生,可引导他们尝试说明(或证明)归纳出来的性质,经历数学研究的完整过程.
三、教学目标
1.通过实例,体会指数函数的重要性和广泛的用途,激发学生学习兴趣.引导学生从具体实例中概括典型特征,形成指数函数的概念,并用数学符号表示.
2.运用研究函数的一般方法,经历从特殊到一般、具体到抽象的研究过程.体验数形结合的思想方法,掌握指数函数的图象特征与性质.
3.能够利用指数函数的性质比较两个幂的大小,体会指数函数性质的应用.
四、教学重难点
1. 重点:(1)指数函数的概念、图象与性质;
(2)经历研究过程,获得研究函数的一般方法.
2. 难点:(1)根据具体指数函数图象与性质归纳一般指数函数的图象与性质;
(2)对研究函数的一般方法的理解.
五、教学方法与教学手段
问题教学法,启发式教学,探究式学习,多媒体课件辅助教学.
六、教学过程
1. 创设情境建构概念
师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?
师:大家知道细胞分裂的规律吗?(出示情境问题)
[情境问题1] 某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x 次,相应的细胞个数为y ,如何描述这两个变量的关系?
[情境问题2] 某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x 年,该物质剩余的质量为y ,如何描述这两个变量的关系?
[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式2x y =和0.84x y =.
师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?
问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?
[设计意图]通过列举生活中指数函数的具体例子,感受指数函数的与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到x y a =这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x R ∈时,x y a =是否始终有意义,因此规定0,1a a >≠并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定.1a ≠此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定1a ≠”.
[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型x y a =.
[教学预设]学生能举出具体的例子——3,5x x y y ==,….如出现(2)x y =-最好,更便于引发对a 的讨论,但一般不会出现.进而提出这类函数一般形式x y a =.
生:(举例)函数3,4x x y y ==,…(函数(1)x y a a =>)
师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)
生:函数0.5,x x y y ==,… 师:这些函数的自变量是什么?它们有什么共同特点?
生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在
指数位置.可以写成x y a =.
师:x y a =中,自变量是x ,底a 是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?
生:底数不能取负数.
师:为什么?
生:如果底数取负数或0,x 就不能取任意实数了.
师:为了研究的方便,我们要求底数0a >.当1a =时,函数就是常数函数1y =.对于这个函数,我们已经比较了解了.通常我们还规定1a ≠.今天我们就来了解一下这个新函数.(出示指数函数定义)
[阶段小结]一般地,函数(0,1)x y a a a =>≠且称为指数函数.它的定义域是R .
[设计意图]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的做法剥夺了学生参与概念形成的过程.此处不宜纠缠于22x y =是否为指数函数等细枝末节.指数函数的本质是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.
2. 实验探索 汇报交流
(1)构建研究方法
师:我们定义了一个新的函数,接下来,我们研究什么呢?
生:研究函数的性质.
问题2 你打算如何研究指数函数的性质?
[设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.
[师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.
[教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.
师:(稍等片刻)我们一般要研究哪些性质呢?
生:变量取值范围(定义域、值域)、单调性、奇偶性.
师:(板书学生回答)怎样研究这些性质呢?
生:先画出函数图象,观察图象,分析函数性质.
生:先研究几个具体的指数函数,再研究一般情况.
师:板书“画图观察”,“取特殊值”
(若没有学生提出从特殊到一般的思路.师:底数a 的取值不同,函数的性质
可能也会有不同.一次函数(0)y kx k =≠中,一次项系数k 不同,函数性质就不同.底数a 可以取无数多个值,那我们怎么办呢?)
(若有学生通过对2x y =解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))
[设计意图]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.
(2)自主探究 汇报交流
师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.
问题3 选取数据,画出图象,观察特点,归纳性质.
[设计意图]若直接规定底数取值,对于为什么要以2,3,0.5x x x y y y ===为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.
由于描点作图时列举点的个数的限制,学生对x →∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象 ,验证猜想.
数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.
[师生活动]学生选取不同的a 的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.
[教学预设]学生通过观察图象,发现指数函数(0,1)x y a a a =>≠且的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.
生:自主选择数据,在坐标纸上列表作图,列出函数性质(可进行讨论). 师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)
生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y 轴对称的两个指数函数.
师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程
中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?
师:(用彩笔描粗图象,故意出错)错在哪里?为什么?
生:指数函数是单调递增的,过定点(0,1).
师:(引导学生规范表述,并板书)指数函数在(,)-∞+∞上单调递增,图象过定点(0,1).
师:指数函数还有其它性质吗?
生:图象始终在x 轴上方.(若学生画图有误,可相互点评,掌握图象特征.) 师:也就是说值域为(0,)+∞.
生:指数函数是非奇非偶函数.
师:有不同意见吗?
生:当01a <<时,指数函数在(,)-∞+∞上单调递减.
师:(板书学生交流结果,整理成表格.注意区分“函数性质”与“函数之间的关系”.若有学生试图说明结论的合理性,可提供机会.)大家认为底数1,01a a ><<或时,指数函数图象与性质有差异.那么是不是只有这两种情况呢?(用几何画板作出底数连续变化的函数图象,验证这一结论.)我们利用图象对归纳的性质进行了验证,如果你想说明或证明上述结论,课后可以试一试.)
[设计意图]通过探究活动,使学生获得对指数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体.自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点.
3. 新知运用 巩固深化
师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?
师:函数的定义域是函数的基础,是运用性质的前提.值域是研究函数最值的前提.具备奇偶性的函数,可以利用对称性简化研究.指数函数过定点(0,1),说明可以将常数1转化为指数式,即00123===…那么函数单调性有什么用呢?
生:可以求最值,可以比较两个函数值的大小.
师:那你能举出运用指数函数单调性比大小的例子吗?(提示:既然是运用指数函数单调性,那应该有指数式.)
生:(举例并判断大小.)
师:你考察了哪个指数函数?怎么想到的?(规范表述)
师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.(出示例1)
【例1】比较下列各组数中两个值的大小:
①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.
[设计意图]引导学生运用指数函数性质.对于32与33的大小比较,学生更可能计算出幂的值直接比较.变式后,学生可能作差或作商比较,转化为比较30.1与1的大小,进而运用指数函数单调性,也可能直接运用单调性.初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解.
[师生活动]学生板演,教师组织学生点评.
[教学预设]①②两题,学生能运用指数函数单调性解决.②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质.③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法.师:(引导学生规范表达)你考察了哪个指数函数?根据函数的什么性质?
师:(对③的引导)你考虑利用哪个函数?是y=1.5x还是y=0.8x?这两个函数有什么关联?(引导学生画出图象,从形上提示:图象有什么关联?)生:它们都过点(0, 1).
师:也就是说,可以将1转化为指数形式,即1=1.50=0.80那接下来呢?
生:比较1.50.3,0.81.2和1的大小.
师:我们找到了一个比大小的中间量.以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.
【例2】(根据具体情况实施)
①已知3x≥30.5,求实数x的取值范围;
②已知0.2x<25,求实数x的取值范围.
[设计意图]指数函数单调性的逆用,同时考查指数函数的定义域.
4. 概括知识总结方法
问题4 本节课我们学习了哪些知识?你还学会了哪些方法?
[设计意图]回顾所学内容,深化认知.开放式小结,不同学生有不同的收获.[师生活动]学生发言总结,交流所得.
[教学预设]
①指数函数的定义与性质;
②研究函数的一般方法和步骤.
师:本节课我们学习了什么知识?
生:指数函数的定义和性质.
师:回顾我们的研究过程,我们是怎样研究指数函数的?
生:先确定研究的内容:定义域、值域、单调性、奇偶性和其它性质.
生:然后从几个具体的指数函数开始,画出图象,列出性质,最后得到一般情况.
师:这是一种从特殊到一般的研究方法.研究指数函数的方法,也是研究函数的一般方法,今后我们还会运用这样的方法研究新的函数.
[设计意图]课堂总结不是对所学知识的简单回顾,应让学生在知识、方法和策略上多层次地整理,促进学生理解所用学习方法的合理性与普遍性,使学生获得知识与能力的共同进步.
5. 分层作业,因材施教
(1)感受理解:课本第54页,习题2.2(2):1,2,3,4;
(2)思考运用:运用今天的研究方法,你还能得到指数函数的其它性质吗?
[设计意图]分层布置作业,“感受理解”面向全体学生,旨在掌握指数函数的图象与性质.“思考运用”提供学生运用函数研究的一般方法自主研究的机会.
七、教学设计说明
指数函数概念的获得,应符合学生认知规律,教师不能直接抛出定义.教材所呈现的,是经过数学家整理过的数学知识,不一定完全符合学生的认知习惯,不可照本宣科.利用情境问题,教师引导学生获得函数模型,使学生认识到函数是描述客观世界变化规律的重要数学模型.教师引导学生认识到实例的共同特征是自变量在指数位置,获得对指数函数本质的认识.进而将这一本质代数化,引导学生建立
函数模型x
y a
,并确定底数的取值范围,完成概念的建构.指数函数概念的形成,
经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.
学习的过程就是一个不断地提出问题、解决问题的过程,提出问题比解决问题更重要.教师应给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.学生尚未完全掌握研究函数一般方法,在自主探究活动前,应组织学生对研究的策略、方法和内容展开讨论,达成共识.问题提出后,教师及时补充启发性提示语,帮助学生理解什么叫“如何研究”,促进学生理解研究函数的一般方法.
探究活动过程中,应该通过实际操作,经历从特殊到一般、具体到抽象的研究过程,体验数形结合的思想方法.对于部分能力较强的学生,可引导他们尝试说明(或证明)归纳出来的性质,经历数学研究的完整过程.
教学过程中,应充分发动学生,通过板演、汇报、点评等活动,提供学生充分展示思维的机会.通过总结一般方法,促进学生灵活运用所学知识,体验由特殊到一般的思维过程.
针对不同学生的需求布置分层作业,不仅能帮助学生进一步掌握本课知识,还能促进学生进一步理解运用研究函数的一般方法解决问题.。

相关文档
最新文档