高中物理磁场部分难题专练 (非常好)

高中物理磁场部分难题专练 (非常好)
高中物理磁场部分难题专练 (非常好)

2.如图所示,带正电的物块A放在不带电的小车B 上,开始时都静止,处于垂直纸面向里的匀强磁场中.t=0时加一个水平恒力F 向右拉小车B,t=t1时A相对于B开始滑动.已知地面是光滑的.AB间粗糙,A带电量保持不变,小车足够长.从t=0开始A、B的速度﹣时间图象,下面哪个可能正确()

A.B.C.D.

解答:解:分三个阶段分析本题中A、B运动情况:

开始时A与B没有相对运动,因此一起匀加速运动.A所受洛伦兹力向上,随着速度的增加而增加,对A根据牛顿第二定律有:f=ma.即静摩擦力提供其加速度,随着向上洛伦兹力的增加,因此A与B之间的压力减小,最大静摩擦力减小,当A、B之间的最大静摩擦力都不能提供A的加速度时,此时AB将发生相对滑动.

当A、B发生发生相对滑动时,由于向上的洛伦兹力继续增加,因此A与B之间的滑动摩擦力减小,故A的加速度逐渐减小,B的加速度逐渐增大.

当A所受洛伦兹力等于其重力时,A与B 恰好脱离,此时A将匀速运动,B将以更大的加速度匀加速运动.

综上分析结合v﹣t图象特点可知ABD错误,C 正确.故选C.

3.如图所示,纸面内有宽为L水平向右飞行的带电粒子流,粒子质量为m,电量为+q,速率为v0,不考虑粒子的重力及相互间的作用,要使粒子都汇聚到一点,可以在粒子流的右侧虚线框内设计一匀强磁场区域,则磁场区域

的形状及对应的磁感应强度可以是哪一种()(其中B0=,A、C、D选项中曲线均为半径是L的圆弧,B选项中曲线为半径是的圆)

A.B.C.D.

解答:解:由于带电粒子流的速度均相同,则当飞入A、B 、C这三个选项中的磁场时,它们的轨迹对应的半径均相同.唯有D选项因为磁场是2B0,它的半径是之前半径的2倍.然而当粒子射入B、C两选项时,均不可能汇聚于同一点.而D选项粒子是向上偏转,但仍不能汇聚一点.所以只有A选项,能汇聚于一点.故选:A

4.如图所示,匀强磁场的方向竖直向下.磁场中有光滑的水平桌面,在桌面上平放

着内壁光滑、底部有带电小球的试管.试管在水平拉力F作用下向右匀速运动,带

电小球能从管口处飞出.关于带电小球及其在离开试管前的运动,下列说法中正确

的是()

A.小球带负电

B.洛伦兹力对小球做正功

C.小球运动的轨迹是一条抛物线

D.维持试管匀速运动的拉力F应增大

解答:解:A、小球能从管口处飞出,说明小球受到指向管口洛伦兹力,根据左手定则判断,小球带正电.故A 错误.

B、洛伦兹力总是与速度垂直,不做功.故B错误.

C、设管子运动速度为v1,小球垂直于管子向右的分运动是匀速直线运动.小球沿管子方向受到洛伦兹力

的分力F1=qv1B,q、v1、B均不变,F1不变,则小球沿管子做匀加速直线运动.与平抛运动类似,小球运动的轨迹是一条抛物线.故C正确.

D、设小球沿管子的分速度大小为v2,则小球受到垂直管子向左的洛伦兹力的分力F2=qv2B,v2增大,则

F2增大,而拉力F=F2,则F逐渐增大.故D正确.故选CD.

5.如图所示,在第二象限内有水平向右的匀强电场,电场强度为E,在第一、第四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以初速度v0垂直x轴,从x轴上的P点进入匀强电场,恰好与y 轴成45°角射出电场,再经过一段时间又恰好垂直于x轴进入下面的磁场.已知OP之间的距离为d,则带电粒子()

A.在电场中运动的时间为

B.在磁场中做圆周运动的半径为 d

C.入磁场至第二次经过x轴所用时间为

D.自进入电场至在磁场中第二次经过x轴的时间为

解答:解:根据题意作出粒子的运动轨迹,如图所示:

A、粒子进入电场后做类平抛运动,从x轴上的P点进入匀强电场,恰好与y轴成45°角射出电场,

所以v==v x=v0tan45°=v0沿x轴方向有:x=所以

OA=2OP=2d在垂直电场方向做匀速运动,所以在电场中运动的时间为:t1=,故A正确;

B、如图,AO1为在磁场中运动的轨道半径,根据几何关系可知:

AO1=,故B错误;

C、粒子从A点进入磁场,先在第一象限运动个圆周而进入第四象限,后经过半个圆周,第

二次经过x轴,

所以自进入磁场至第二次经过x轴所用时间为t2=,故C错误;

D、自进入电场至在磁场中第二次经过x轴的时间为t=t1+t2=,故D正确.故

选AD

6.如图(甲)所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m,带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,速度方向与x轴夹角为30°.此时在圆形区域加如图(乙)所示周期性变化的磁场,以垂直于纸面向外为磁场正方向),最后电子运动一段时间后从N飞出,速度方向与进入磁场时的速度方向相同(与x轴夹角也为30°).求:

(1)电子进入圆形磁场区域时的速度大小;

(2)0≤x≤L区域内匀强电场场强E的大小;

(3)写出圆形磁场区域磁感应强度B0的大小、磁场变化周期T各应满足的表达式.

解答:

解:(1)电子在电场中作类平抛运动,射出电场时,如图1所示.

由速度关系:解得

(2)由速度关系得在竖直方向解得

(3)在磁场变化的半个周期内粒子的偏转角为60°,根据几何知识,在磁场变化的半个周期内,粒子在x轴方向上的位移恰好等于R.粒子到达N点而且速度符合要求的空间条件是:2nR=2L

电子在磁场作圆周运动的轨道半径解得(n=1、2、3…)

若粒子在磁场变化的半个周期恰好转过圆周,同时MN间运动时间是磁场变化周期的整数倍时,

可使粒子到达N点并且速度满足题设要求.应满足的时间条件:

解得T的表达式得:(n=1、2、3…)

7.如图所示为一种获得高能粒子的装置.环形区域内存在垂直纸面向外、大小可调的匀强磁场.M、N为两块中心开有小孔的距离很近的极板,板间距离为d,每当带电粒子经过M、N板时,都会被加速,加速电压均为U;每当粒子飞离电场后,M、N板间的电势差立即变为零.粒子在电场中一次次被加速,动能不断增大,而绕行半径R 不变.当t=0时,质量为m、电荷量为+q的粒子静止在M板小孔处.(1)求粒子绕行n圈回到M板时的速度大小v n;

(2)为使粒子始终保持在圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时磁感应强度B n的大小;(3)求粒子绕行n圈所需总时间t总.

解答:解:(1)粒子绕行一圈电场做功一次,由动能定理:

即第n次回到M板时的速度为:

(2)绕行第n圈的过程中,由牛顿第二定律:得

(3)粒子在每一圈的运动过程中,包括在MN板间加速过程和在磁场中圆周运动过程.

在MN板间经历n次加速过程中,因为电场力大小相同,故有:

即加速n次的总时间

而粒子在做半径为R的匀速圆周运动,每一圈所用时间为,由于每一圈速度不同,所以每一圈所需时间也不同.

第1圈:

第2圈:…

第n圈:

故绕行n圈过程中在磁场里运动的时间

综上:粒子绕行n圈所需总时间t总=+.

8.如图所示,圆心为坐标原点、半径为R的圆将xoy平面分为两个区域,即圆内区域Ⅰ和圆外区域Ⅱ.区域Ⅰ内有方向垂直于xoy平面的匀强磁场B1.平行于x轴的荧光屏垂直于xoy平面,放置在坐标y=﹣2.2R的位置.一束质量为m电荷量为q动能为E0的带正电粒子从坐标为(﹣R,0)的A点沿x轴正方向射入区域Ⅰ,当区域Ⅱ内无磁场时,粒子全部打在荧光屏上坐标为(0,﹣2.2R)的M点,且此时,若将荧光屏沿y轴负方向平移,粒子打在荧光屏上的位置不变.若在区域Ⅱ内加上方向垂直于xoy平面的匀强磁场B2,上述粒子仍从A点沿x轴正方向射入区域Ⅰ,则粒子全部打在荧光屏上坐标为(0.4R,﹣2.2R)的N点.求

(1)打在M点和N点的粒子运动速度v1、v2的大小.(2)在区域Ⅰ和Ⅱ中磁感应强度B1、B2的大小和方向.(3)若将区域Ⅱ中的磁场撤去,换成平行于x轴的匀强电场,仍从A点沿x轴正方向射入区域Ⅰ的粒子恰好也打在荧光屏上的N点,则电场的场强为多大?

解答:解:(1)粒子在磁场中运动时洛伦兹力不做功,打在M点和N点的粒子动能均为E0,速度v1、v2大小相等,设为v,由可得

(2)如图所示,区域Ⅱ中无磁场时,粒子在区域Ⅰ中运动四分之一圆周后,从C点沿y轴负方向打在M 点,轨迹圆心是o1点,半径为r1=R区域Ⅱ有磁场时,粒子轨迹圆心是O2点,半径为r2,

由几何关系得r22=(1.2R)2+(r2﹣0.4R)2解得r2=2R由得故,方向垂直xoy 平面向外.

,方向垂直xoy平面向里.

(3)区域Ⅱ中换成匀强电场后,粒子从C点进入电场做类平抛运动,则有1.2R=vt,解得场强.

9.如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a.假设在点A处有一放射源可沿

∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重力忽略不计.在三角形ABO内有垂直纸面向里的匀强磁场,当电子从顶点A沿AB方向射入磁场时,电子恰好从O点射出.试求:

①从顶点A沿AB方向射入的电子在磁场中的运动时间t;

②磁场大小、方向保持不变,改变匀强磁场分布区域,使磁场存在于三角形ABO内的左侧,要使放射出的电子穿过磁场后都垂直穿过y轴后向右运动,试求匀强磁场区域分布的最小面积S.

③磁场大小、方向保持不变,现改变匀强磁场分布区域,使磁场存在于y轴与虚线之间,示意图见图乙所示,仍使放射出的电子最后都垂直穿过y轴后向右运动,试确定匀强磁场左侧边界虚线的曲线方

程.

解答:

解:(1)根据题意,电子在磁场中的运动的轨道半径R=a,由evB=得:B=由T=t==

(2)有界磁场的上边界:

以AB方向发射的电子在磁场中的运动轨迹与AO中垂线交点的左侧圆弧

有界磁场的上边界:以A点正上方、距A点的距离为a的点为圆心,以a为半径的圆弧.

故最小磁场区域面积为:

(3)设在坐标(x,y)的点进入磁场,由相似三角形得到:

圆的方程为:x2+(y+b)2=a2消去(y+b),磁场边界的方程为:

10.如图,在直角坐标系xoy中,点M(0,1)处不断向+y方向发射出大量质量为m、带电量为﹣q的粒子,粒子的初速度大小广泛分布于零到v0之间.已知这些粒子此后所经磁场的磁感应强度大小为B,方向垂直于纸面向里,所有粒子都沿+x方向经过b区域,都沿﹣y的方向通过点N(3,0).(1)通过计算,求出符合要求的磁场范围的最小面积;

(2)若其中速度为k1v0和k2v0的两个粒子同时到达N点(1>k1>k2>0),求二者发射的时间差.

解答:解

(1)在a区域,设任一速度为v的粒子偏转90°后从(x,y)离开磁场,由几何关系有x=R,

得,上式与R无关,说明磁场右边界是一条直线

左边界是速度为v0的粒子的轨迹:,得:

此后粒子均沿+x方向穿过b区域,进入c区域,由对称性知,其磁场区域如图.

磁场的面积

(2)如图所示,速度为k1v0的粒子在a区域磁场的时间为

两个阶段的直线运动的时间共为在c区域磁场的时间为

所以这两个粒子的发射时间差只与t2有关速度为k2v0的粒子在直线运动阶段的时间为

11.隐身技术在军事领域应用很广.某研究小组的“电磁隐形技术”可等效为下面的模型,如图所示,在y>0的区域内有一束平行的α粒子流(质量设为M,电荷量设为q),它们的速度均为v,沿x轴正向运动.在0≤x<d的区间有磁感应强度为B的匀强磁场,方向垂直纸面向里;在d≤x<3d的区间有磁感应强度为B的匀强磁场,方向垂直纸面向外;在3d≤x<4d的区间有磁感应强度为B的匀强磁场,方向垂直纸面向里.要求α粒子流经过这些区域后仍能沿原直线运动,这样使第一象限某些区域α粒子不能到达,达到“屏蔽”α粒子的作用效果.则:(1)定性画出一个α粒子的运动轨迹;(2)求对α粒子起“屏蔽”作用区间的最大面积;

(3)若v、M、q、B已知,则d应满足什么条件?

解答:解:(1)轨迹如图.

(2)要使α粒子流经过这些区域后仍能沿直线运动,则每一小段小于等于四分之一圆弧,且四分之一圆弧时“屏蔽”的面积最大.此时半径为d,如图.由几何关系可知最大面积S max=4d2

(3)由得而要使α粒子可以继续向右运动,则要求R≥d即:

12.如图所示,在xOy坐标系中分布着四个有界场区,在第三象限的AC左下方存在垂直纸面向里的匀强磁场

B1=0.5T,AC是直线y=﹣x﹣0.425(单位:m)在第三象限的部分,另一沿y轴负向的匀强电场左下边界也为线段AC的一部分,右边界为y轴,上边界是满足y=﹣10x2﹣x﹣0.025(单位:m)的抛物线的一部分,电场强度

E=2.5N/C.在第二象限有一半径为r=0.1m的圆形磁场区域,磁感应强度B2=1T,方向垂直纸面向里,该区域同时与x轴、y轴相切,切点分别为D、F.在第一象限的整个空间存在垂直纸面向外的匀强磁场,磁感应强度

B3=1T.另有一厚度不计的挡板PQ垂直纸面放置,其下端坐标P(0.1m,0.1m),上端Q在y轴上,且

∠PQF=30°.现有大量m=1×10﹣6kg,q=﹣2×10﹣4C的粒子(重力不计)同时从A点沿x轴负向以v0射入,且v0取0<v0<20m/s之间的一系列连续值,并假设任一速度的粒子数占入射粒子总数的比例相同.

(1)求所有粒子从第三象限穿越x轴时的速度;(2)设从A点发出的粒子总数为N,求最终打在挡板PQ右侧的粒子数N′.

解答:解:

(1)设某速度为v0的粒子从A点入射后到达AC上的G点,因v0与AC成45°角,其对应圆心角为90°,即恰好经过四分之一圆周,故到达G点时速度仍为v0,方向沿Y轴正向.

粒子在电场中沿Y轴正向加速运动,设G点坐标为G(x,y),刚好穿出电场时坐标为(x,y1),粒子穿出电场时速度为v1,在电场中运动的过程中,由动能定理得:

而y=﹣x﹣0.425又

代入数据解得v1=20m/s,可见粒子穿出电场时速度大小与x无关.

因v0<20m/s,由代入数据得:R<0.2m

由数学知识可知,k点坐标为k(﹣0.2m,﹣0.225m),故从A点射出的所有粒子均从AK之间以20m/s 的速度沿Y轴正向射出电场,在到达X轴之前粒子作匀速直线运动,故所有粒子从第三象限穿越X轴时的速度大小均为20m/s的速度沿Y轴正向.

(2)因为r=0.1m,故离子束射入B2时,离子束宽度刚好与2r相等,设粒子在B2中运动轨道半径为R2,,解得R2=r=0.1m

考察从任一点J进入B2的粒子,设从H穿出B2磁场,四边形JO2HO1为菱形,又因为JO2水平,而

JO2∥HO1,故H应与F重合,即所有粒子经过B2后全部从F点离开B2进入B3磁场.

对v0趋于20m/s的粒子,圆心角∠JO2F→180°,故射入B3时速度趋于Y轴负向;对v0趋于0的粒子,圆心角∠JO2F→0°,故射入B3时速度趋于Y轴正向,即进入B3的所有粒子速度与Y轴正向夹角在0~180°角之间.

由于B3=B2,所以R3=R2,由几何关系知:

无限靠近Y轴负向射入的粒子轨迹如图所示,最终打在PQ板的右侧O3;

与Y轴负向成60°角的粒子刚好经过P点到达Q点;

因此与Y轴正向在0~120°角之间从F点射出的粒子要么打在PQ板的左侧,要么打不到板上而穿越Y轴离开B3.由于是“大量”粒子,忽略打在P或Q的临界情况,所以最终打在挡板PQ右侧的粒子数

答:(1)所有粒子从第三象限穿越x轴时的速度为20m/s;(2)设从A点发出的粒子总数为N,最终打在挡板PQ右侧的粒子数N′为.

13.如图所示,有界匀强磁场磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心O到MN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e.

(1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧

的范围是多大?

(2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零).

(3)在(2)的情况下,求金属圆筒的发热功率.

解答:

解:(1)如图所示,设电子进入磁场回旋轨道半径为r,则解得 r=3R

大量电子从MN上不同点进入磁场轨迹如图,从O1上方P点射入的电子刚好擦过圆筒

同理可得到O1下Q点距离.

(2)稳定时,圆柱体上电荷不再增加,与地面电势差恒为U,U=Ir0电势φ=﹣Ir0

电子从很远处射到圆柱表面时速度为v,有解得.

(3)电流为I,单位时间到达圆筒的电子数电子所具有总能量

消耗在电阻上的功率 P r=I2r0所以圆筒发热功率.

14.图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10﹣3T,在x轴上距坐标原点L=0.50m的P处为离子的入射口,在y上安放接收器.现将一带正电荷的粒子

以v=3.5×104m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不计其重力.(1)求上述粒子的比荷;

(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形.

解答:解:(1)设粒子在磁场中的运动半径为r,依题意MP连线即为该粒子在磁场中作匀速圆周运动的直径,

由几何关系得,由洛伦兹力提供粒子在磁场中作匀速圆周运动的向心力,可得,

联立解得:=4.9×107C/kg

(2)此时加入沿x轴正方向的匀强电场,电场力与此时洛伦兹力平衡,qE=qvB,

代入数据得:E=70V/m.所加电场的场强方向沿x轴正方向.

设带点粒子做匀速圆周运动的周期为T,所求时间为t=T/8,而,解得t=7.9×10﹣6s

(3)该区域面积S=2r2=0.25m2,矩形如图所示.

15.如图所示,在 xOy 平面的第一、四象限内存在着方向垂直纸面向外,磁感应强度为 B 的匀强磁场,在第四象限内存在方向沿﹣y 方向、电场强度为 E 的匀强电场.从 y 轴上坐标为(0,a)的 P 点向磁场区发射速度大小不等的带正电同种粒子,速度方向范围是与+y 方向成30°﹣150°角,且在 xOy 平面内.结果所有粒子经过磁场偏转后都垂直打到 x 轴上,然后进入第四象限内的正交电磁场区.已知带电粒子电量为+q,质量为 m,粒子重力不计.

(1)所有通过第一象限磁场区的粒子中,求粒子经历的最短时间与最长时间的比值;(2)求粒子打到 x 轴上的范围;

(3)从 x 轴上 x=a 点射入第四象限的粒子穿过正交电磁场后从 y 轴上 y=﹣b 的 Q 点射出电磁场,求该粒子射出电磁场时的速度大小.

解答:解:(1)、各种离子在第一象限内运动时,与y轴正方向成30°的粒子运动时间最长,时间为:

…①与y轴正方向成150°的粒子运动时间最短,时间为:…②

①②两式联立得:

(2)、设带电粒子射入方向与y轴夹角成150°时的轨道半径为R1,由几何关系有:

带电粒子经过的最左边为:

设带电粒子射入方向与y轴夹角30°时的轨道半径为R2,由几何关系有:

带电粒子经过的最右边为:所以粒子打到 x 轴上的范围范围是:

(3)带电粒子在第一象限的磁场中有:由题意知:R=a

带电粒子在第四象限中运动过程中,电场力做功转化为带电粒子的动能,设经过Q点是的速度为v,由动能定理由:

解得:v=

16.如图(甲)所示,x≥0的区域内有如图乙所示大小不变、方向随时间周期性变化的磁场,磁场方向垂直纸面向外时为正方向.现有一质量为m、带电量为q的正电粒子,在t=0时刻从坐标原点O以速度v沿着与x轴正方向成75°角射入.粒子运动一段时间到达P点,P点坐标为(a,a),此时粒子的速度方向与OP延长线的夹角为30°.粒子在这过程中只受磁场力的作用.

(1)若B为已知量,试求粒子在磁场中运动时的轨道半径R及周期T的表达式.

(2)说明在OP间运动的时间跟所加磁场的变化周期T之间应有什么样的关系才能使粒子完成上述运动.

(3)若B为未知量,那么所加磁场的变化周期T、磁感强度B0的大小各应满足什么条件,才能使粒子完成上述运动?(写出T及B0各应满足条件的表达式)

例4如图所示,的区域内有如图所示大小不变、方向随时间周期性变化的磁场,磁场方向垂直纸面向外时为正方向。现有一个质量为m、电量为q的带正电的粒子,在t=0时刻从坐标原点O以速度v沿着与x轴正方向成75o角射入。粒子运动一段时间后到达P点,P点的坐标为(a,a),此时粒子的速度方向与OP延长线的夹角为30o。粒子只受磁场力作用。

(1)若Bo=B1为已知量,试求带电粒子在磁场中运动的轨道半径R和周期To的表达式;

(2)说明粒子在OP间运动的时间跟所加磁场变化周期T之间应有什么样的关系才能使粒子完成上述运动;(3)若Bo为未知量,那么所加磁场的变化周期T、磁感应强度Bo的大小各应满足什么条件,才能使粒子完成上述运动?(写出T、Bo应满足条件的表达式)

解:(1)由牛顿第二定律可得:

粒子运动的周期为:

(2)根据粒子经过O点和P点的速度方向在磁场的方向可以判断:粒子由O点到P点运动过程可能在磁场变化的半个周期之内完成;当磁场方向改变时,粒子绕行方向也改变,磁场方向变化具有周期性,粒子绕行方向也具有周期性,因此粒子由O点到P点的运动过程也可能在磁场变化的半个周期的奇数倍时间完成。

(3)若粒子由O点到P点的运动过程在磁场变化的半个周期之内完成,则磁场变化周期与粒子运动周期应满足:,由图可知粒子运动的半径为:

所以T、B分别满足:

若粒子由O点到P点的运动过程在磁场变化的半个周期的奇数倍时间完成,则磁场变化周期与粒子运动周期应满足:

由图可知:

所以T、B分别满足:

欣赏:带电粒子在磁场中周期性的运动像一条缓缓前行的波浪,浪花点点!

17.如图所示,在xoy平面上的范围内有一片稀疏的电子,从x轴的负半轴的远处以相同的速率v o

沿x轴正方向平行地向y轴射来。试设计一个磁场区域,使得:

(1)所有电子都能在磁场力作用下通过原点O;

(2)这一片电子最后扩展到范围内,继续沿x轴正方向平行地以相同的速率v o向远处射

出。已知电子的电量为e、质量为m,不考虑电子间的相互作用。

解:根据题意,电子在O点先会聚再发散,因此电子在第I象限的运动情况可以依照例1来分析。即只有当磁场垂直纸面向里、沿y轴正方向射入的电子运动轨迹为磁场上边界(如图中实线

1所示),沿其它方向射入第I象限磁场的电子均在实线2(磁场下边界)各对应点

上才平行x轴射出磁场,这些点应满足。实线1、2的交

集即为第I象限内的磁场区域。由,得,方向垂直xoy平

面向里。

显然,电子在第III象限的运动过程,可以看成是第I象限的逆过程。即只有

当磁场垂直纸面外,平行于x轴向右且距x轴为H的入射电子运动轨迹则为磁场下边界(如图中实线3所示),沿与x轴平行方向入射的其他电子均在实线4(磁场上边界)各对应点发生偏转并会

聚于O点,这些点应满足:.

实线3、4的交集即为第III象限内的磁场区域。所以,方向垂直xoy

平面向外。

同理,可在第II、IV象限内画出分别与第I、III象限对称的磁场区域,其中

,方向垂直xoy平面向里;,方向垂直xoy平面向外。

36、(18分)如图所示,有一质量为m=10-4 kg,带电量q=10-3 C的小球,从横截面为正方形的水平正长方体的D点沿DDˊ方向以v0=5m/s2速度飞入,恰好从Cˊ点飞出,正长方体空间的边长分别为L、L和5L.(取g=10m/s2).

(1)求长方体底边L的大小

(2)如给长方体这一空间区域(含边界在内)加一竖直向上的匀强电场E,以保证小球沿DDˊ做匀

速直线运动飞出,求E 的大小

(3)如保留电场E ,再给长方体这一空间区域(含边界在内)加竖直方向的磁场,使小球从空间A ˊ点飞出,求磁场的磁感应强度B

36、(18分)

解析: (1)小球从D 点飞入,从C ˊ点飞出,小球只受重力,可知

小球做平抛运动,由:

①……(2分)

② ……(2

分)

得 L =0.2m ……(1分) (2)小球处于受力平衡状态,则有:

③……(3分)

得:

……(1分)

(3)如小球从D 点飞入,从A ′点飞出,小球在长方体上表面 ADD ′A ′D 水平面内做匀速圆周运动,由分析可知,小球的运动轨迹如右图所示(俯视图),由勾股定理得:

④……(3分) 得

……(1分) 由牛顿运动定律可知:

⑤……(3分) 得

……(1分)

由左手定则,磁感应强度B 的方向为竖直向下 ……(1分)

25.(17分)在如图所示的

坐标系中,

的区域

内存在着沿

轴正方

A

B

D

C

A ˊ

ˊ

ˊ

B ˊ

v 0

5L

L 第36题图

A

O

D

R

5L

向、场强为E的匀强电场,的区域内存在着垂直纸面向里、磁感应强度为B的匀强磁场。一带电粒子从

轴上的点以沿轴正方向的初速度射出,恰好能通过轴上的点。己知带电粒子的质量为,带

电量为。、、均大于0。不计重力的影响。

(1)若粒子只在电场作用下直接到D点,求粒子初速度大小;

(2)若粒子在第二次经过轴时到D点,求粒子初速度大小

(3)若粒子在从电场进入磁场时到D点,求粒子初速度大小;

25. (1)粒子只在电场作用下直接到达D点设粒子在电场中运动的时间为,粒子沿方向做匀速直线运动,则

①(1分)

沿y方向做初速度为0的匀加速直线运动,

则②(1分)加速度③(1分)

粒子只在电场作用下直接到达D点的条件为④(1分)

解①②③④得(2分)

(2)粒子在第二次经过x轴时到达D点,其轨迹如图所示。设粒子进入磁场的速度大小为,与轴的夹角为,轨迹半径为R,则

⑤(1分)⑥(2分)

粒子第二次经过轴时到达D点的条件为⑦(2分)

解①②③⑤⑥⑦得(2分)

(3)粒子在从电场进入磁场时到达D点,其轨迹如图所示。

根据运动对称性可知(1分)

粒子在从电场进入磁场时到达D点的条件为⑧(1分)

其中为非负整数。解①②③⑤⑥⑧得(2分)

22.如图所示,磁感应强度为B的条形匀强磁场区域的宽度都是d1,相邻磁场区域的间距均为d2,x轴的正上方有一电场强度为E、方向与x轴和磁场均垂直的匀强电场区域。现将质量为m、带电荷量为+q的粒子(重力忽略不计)从x轴正上方高h处自由释放。

(1)求粒子在磁场区域做圆周运动的轨迹半径r。

(2)若粒子只经过第1个和第2个磁场区域回到x

轴,则粒子从释放到回到x轴所需要的时间t为多少?

(3)若粒子以初速度v0从高h处沿x轴正方向水平射

出后,最远到达第k个磁场区域并回到x轴,则

d1、d2如应该满足什么条件?

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

人教版高中物理相互作用好题难题教学内容

2017年04月30日高中物理相互作用组卷 一.选择题(共14小题) 1.把一个薄板状物体悬挂起来,静止时如图所示,则对于此薄板状物体所受重力的理解,下列说法正确的是() A.重力就是地球对物体的引力 B.重力大小和物体运动状态有关 C.重力的方向总是指向地心的 D.薄板的重心一定在直线AB上 2.下列关于常见力的说法中正确的是() A.弹力、重力、支持力、摩擦力都是按照性质命名的 B.有规则形状的物体,其重心就在物体的几何中心 C.两接触面间有摩擦力存在,则一定有弹力存在 D.物体之间接触就一定产生弹力 3.下列说法中,正确的是() A.有受力物体,就必定有施力物体 B.力只能产生在相互接触的物体之间 C.施力物体施力在先,受力物体受力在后 D.力是一个物体就能产生的,而并不需要其他物体的存在 4.如图所示,一被吊着的空心的均匀球壳内装满了细沙,底部有一阀门,打开阀门让细沙慢慢流出的过程中,球壳与球壳内剩余细沙组成的系统的重心将会() A.一直下降B.一直不变C.先下降后上升D.先上升后下降 5.弹簧秤的秤钩上挂一个重2N的物体,当弹簧秤与所挂物体一起匀加速竖直上升时,弹簧秤示数可能出现下列哪个图所示情况?()

A.B.C.D. 6.如图所示,一轻弹簧竖直固定在地面上,一物体从弹簧上方某高处自由下落,并落在弹簧上,弹簧在压缩过程中始终遵守胡克定律.从球接触弹簧开始,直到把弹簧压缩到最短为止,小球的加速度大小() A.一直变大B.一直变小C.先变大后变小D.先变小后变大 7.如图所示,某同学在擦黑板.已知黑板擦对黑板的压力为8N,与黑板间的动摩擦因数为0.4,则黑板擦与黑板间的滑动摩擦力为() A.2N B.3.2N C.20N D.32N 8.已知一些材料间动摩擦因数如下: 材料钢﹣钢木﹣木木﹣金属木﹣冰 动摩擦因数0.250.300.200.03 质量为1kg的物块放置于水平面上,现用弹簧秤沿水平方向匀速拉动此物块时, 读得弹簧秤的示数为3N,则关于两接触面的材料可能是(取g=10m/s2)()A.钢﹣钢B.木﹣木C.木﹣金属D.木﹣冰 9.物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6kg,m2=2kg,A、B间动摩擦因数μ=0.2,如图.现用一水平向右的拉力F作用于物体A上,g=10m/s2,则下列说法中正确的是() A.当拉力F<12N时,A静止不动 B.当拉力F=16N时,A对B的摩擦力等于4N C.当拉力F>16N时,A一定相对B滑动 D.无论拉力F多大,A相对B始终静止

高一物理相遇和追及问题(含详解)

相遇和追及问题 【学习目标】 1、掌握追及和相遇问题的特点 2、能熟练解决追及和相遇问题 【要点梳理】 要点一、机动车的行驶安全问题: 要点诠释: 1、反应时间:人从发现情况到采取相应措施经过的时间为反应时间。 2、反应距离:在反应时间内机动车仍然以原来的速度v匀速行驶的距离。 3、刹车距离:从刹车开始,到机动车完全停下来,做匀减速运动所通过的距离。 4、停车距离与安全距离:反应距离和刹车距离之和为停车距离。停车距离的长短由反应距离和刹车距离 共同决定。安全距离大于一定情况下的停车距离。 要点二、追及与相遇问题的概述 要点诠释: 1、追及与相遇问题的成因 当两个物体在同一直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距越来越大或越来越小,这时就会涉及追及、相遇或避免碰撞等问题. 2、追及问题的两类情况 (1)速度小者追速度大者 (2)速度大者追速度小者

说明:①表中的Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x 0是开始追及以前两物体之间的距离;③t 2-t 0=t 0-t 1;④v 1是前面物体的速度,v 2是后面物体的速度. 特点归类: (1)若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度. (2)若后者追不上前者,则当后者的速度与前者相等时,两者相距最近. 3、 相遇问题的常见情况 (1) 同向运动的两物体的相遇问题,即追及问题. (2) 相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇. 解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了. 要点三、追及、相遇问题的解题思路 要点诠释: 追及?相遇问题最基本的特征相同,都是在运动过程中两物体处在同一位置. ①根据对两物体运动过程的分析,画出物体运动情况的示意草图. ②根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两个物体运动时间的关系反映在方程中; ③根据运动草图,结合实际运动情况,找出两个物体的位移关系; ④将以上方程联立为方程组求解,必要时,要对结果进行分析讨论. 要点四、分析追及相遇问题应注意的两个问题 要点诠释: 分析这类问题应注意的两个问题: (1)一个条件:即两个物体的速度所满足的临界条件,例如两个物体距离最大或距离最小?后面的物体恰好追上前面的物体或恰好追不上前面的物体等情况下,速度所满足的条件. 常见的情形有三种:一是做初速度为零的匀加速直线运动的物体甲,追赶同方向的做匀速直线运动的物体乙,这种情况一定能追上,在追上之前,两物体的速度相等(即v v =甲乙)时,两者之间的距离最大;二是做匀速直线运动的物体甲,追赶同方向的做匀加速直线运动的物体乙,这种情况不一定能追上,若能追上,则在相遇位置满足v v ≥甲乙;若追不上,则两者之间有个最小距离,当两物体的速度相等时,距离最小;三是做匀减速直线运动的物体追赶做匀速直线运动的物体,情况和第二种情况相似. (2)两个关系:即两个运动物体的时间关系和位移关系.其中通过画草图找到两个物体位移之间的数值关系是解决问题的突破口. 要点五、追及、相遇问题的处理方法 方法一:临界条件法(物理法):当追者与被追者到达同一位置,两者速度相同,则恰能追上或恰追不上(也是二者避免碰撞的临界条件) 方法二:判断法(数学方法):若追者甲和被追者乙最初相距d 0令两者在t 时相遇,则有0x x d -=甲乙,得到关于时间t 的一元二次方程:当2 b 4a c 0?=->时,两者相撞或相遇两次;当2 b 4a c 0?=-=时,两者恰好相遇或相撞;2 b 4a c 0?=-<时,两者不会相撞或相遇. 方法三:图象法.利用速度时间图像可以直观形象的描述两物体的运动情况,通过分析图像,可以较方便的解决这类问题。 【典型例题】 类型一、机动车的行驶安全问题

高考物理复习资料高中物理综合题难题汇编(三)高考物理压轴题汇编

高考物理复习资料高考物理压轴题汇编高中物理综合题难 题汇编(3) 1. (17分)如图所示,两根足够长的光滑直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆ab沿导轨由静止开始下滑,经过一段时间后,金属杆达到最大速度v m,在这个过程中,电阻R上产生的热量为Q。导轨和金属杆接触良好,重力加速度为g。求: (1)金属杆达到最大速度时安培力的大小; (2)磁感应强度的大小; (3)金属杆从静止开始至达到最大速度的过程中杆下降的高度。 2. (16分)如图所示,绝缘长方体B置于水平面上,两端固定一对平行带电极板,极板间形成匀强电场E。长方体B的上表面光滑,下表面与水平面的动摩擦因数 =0.05(设最大静摩擦力与滑动摩擦力相同)。B与极板的总质量 m=1.0kg。带正电的小滑块A质量 B m=0.60kg,其受到的电场力大小F=1.2N。假设A所带的电量不影响极板间的电场分布。 A t=0时刻,小滑块A从B表面上的a点以相对地面的速度 v=1.6m/s向左运动,同时,B A (连同极板)以相对地面的速度 v=0.40m/s向右运动。(g取10m/s2)问: B

(1)A 和B 刚开始运动时的加速度大小分别为多少? (2)若A 最远能到达b 点,a 、b 的距离L 应为多少?从t=0时刻至A 运动到b 点时,摩擦力对B 做的功为多少? 3. (18分)如图所示,一个质量为m 的木块,在平行于斜面向上的推力F 作用下,沿着倾角为θ的斜面匀速向上运动,木块与斜面间的动摩擦因数为μ.(θμtan <) (1)求拉力F 的大小; (2)若将平行于斜面向上的推力F 改为水平推力F 作用在木块上,使木块能沿着斜面匀速运动,求水平推力F 的大小。 4. (21分)如图所示,倾角为θ=30°的光滑斜面固定在水平地面上,斜面底端固定一垂直斜面的挡板。质量为m =0.20kg 的物块甲紧靠挡板放在斜面上,轻弹簧一端连接物块甲,另一端自由静止于A 点,再将质量相同的物块乙与弹簧另一端连接,当甲、乙及弹簧均处于静止状态时,乙位于B 点。现用力沿斜面向下缓慢压乙,当其沿斜面下降到C 点时将弹簧锁定,A 、 C 两点间的距离为△L =0.06m 。一个质量也为m 的小球丙从距离乙的斜面上方L =0.40m 处由静止自由下滑,当小球丙与乙将要接触时,弹簧立即被解除锁定。之后小球丙与乙发生碰撞(碰撞时间极短且无机械能损失),碰后立即取走小球丙。当甲第一次刚要离开挡板时,乙的速度为v =2.0m/s 。(甲、乙和小球丙均可看作质点,g 取10m/s 2)求:

高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读 一:专题训练题 1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板 将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a(a <g = 匀加速向下移动。求经过多长时间木板开始与物体分离。 分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。据牛顿第二定律有: mg-kx-N=ma 得N=mg-kx-ma 当N=0时,物体与平板分离,所以此时k a g m x )(-= 因为221at x =,所以ka a g m t )(2-=。 2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静 止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。现在给P 施加一个竖直向上的力F , 使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒 力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。 .分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离 开秤盘。此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于 原长。在0_____0.2s 这段时间内P 向上运动的距离: x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m t x a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有 F min =ma=240N. 当P 与盘分离时拉力F 最大,F max =m(a+g)=360N. 3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的 物体A 、B 。物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面 物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个 过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求: (1)此过程中所加外力F 的最大值和最小值。 (2)此过程中外力F 所做的功。 解:(1)A 原来静止时:kx 1=mg ① 当物体A 开始做匀加速运动时,拉力F 最小,设为F 1,对物体A 有: F 1+kx 1-mg =ma ② 当物体B 刚要离开地面时,拉力F 最大,设为F 2,对物体A 有: F 2-kx 2-mg =ma ③ 对物体B 有:kx 2=mg ④ 对物体A 有:x 1+x 2=22 1at ⑤ 由①、④两式解得 a =3.75m/s 2 ,分别由②、③得F 1=45N ,F 2=285N F 图8 A B F 图 9 图7

高中物理题库难题解析

第二章 直线运动 运动学基本概念 变速直线运动 (P .21) ***12.甲、乙、丙三辆汽车以相同的速度经过某一路标,以后甲车一直做匀速直线运动,乙车先加速后减速运动,丙车先减速后加速运动,它们经过下一路标时的速度又相同,则( )。[2 ] (A)甲车先通过下一个路标 (B)乙车先通过下一个路标 (C)丙车先通过下一个路标 (D)三车同时到达下一个路标 解答 由题知,三车经过二路标过程中,位移相同,又由题分析知,三车的平均速度之间存在:乙v > 甲v > 丙v ,所以三车经过二路标过程中,乙车所需时间最短。 本题的正确选项为(B )。 (P .21) ***14.质点沿半径为R 的圆周做匀速圆周运动,其间最大位移等于_______,最小位移等于________,经过 9 4 周期的位移等于_________.[2 ] 解答 位移大小为连接初末位置的线段长,质点做半径为R 的匀速圆周运动,质点的最大位移等于2R ,最小位移等于0,又因为经过T 49周期的位移与经过T 4 1 周期的位移相同,故经过 T 4 9 周期的位移的大小等于R 2。 本题的正确答案为“2R ;0;R 2” (P .22) ***16.一架飞机水平匀速地在某同学头顶飞过,当他听到飞机的发动机声从头顶正上方传来时,发现飞机在他前上方约与地面成60°角的方向上,据此可估算出此飞机的速度约为声速的____________倍.(2000年,上海卷)[5] 解答 飞机发动机的声音是从头顶向下传来的,飞机水平作匀速直线运动,设飞机在人头顶正上方时到地面的距离为Y ,发动机声音从头顶正上方传到地面的时间为t ,声音的速度为v 0,于是声音传播的距离、飞机飞行的距离和飞机与该同学的距离组成了一直角三角形,由图2-1可见: X =v t , ① Y =v 0t , ② =Y X tan300 , ③ 图2-1

【电路】高中物理电路经典例题

?在许多精密的仪器中,如果需要较精确地调节某一电阻两端的电压,常常采用如图所示的电路.通过两只滑动变阻器R1和R2对一阻值为500 Ω 左右的电阻R0两端电压进行粗调和微调.已知两个滑动变阻器的最大阻值分别为200 Ω和10 Ω.关于滑动变阻器R1、R2的连接关系和各自所起的作用,下列说法正确的是( B A.取R1=200 Ω,R2=10 Ω,调节R1起粗调作用 B.取R1=10 Ω,R2=200 Ω,调节R2起微调作用 C.取R1=200 Ω,R2=10 Ω,调节R2起粗调作用 D.取R1=10 Ω,R2=200 Ω,调节R1起微调作用 滑动变阻器的分压接法实际上是变阻器的一部分与另一部分在跟接在分压电路中的电阻并联之后的分压,如果并联的电阻较大,则并联后的总电阻接近变阻器“另一部分”的电阻值,基本上可以看成变阻器上两部分电阻的分压.由此可以确定R1应该是阻值较小的电阻,R2是阻值较大的电阻,且与R1的一部分并联后对改变电阻的影响较小,故起微调作用,因此选项B是正确的. 如图所示,把两相同的电灯分别拉成甲、乙两种电路,甲电路所加的电压为8V, 乙电路所加的电压为14V。调节变阻器R 1和R 2 使两灯都正常发光,此时变阻器 消耗的电功率分别为P 甲和P 乙 ,下列关系中正确的是( a ) A.P 甲> P 乙 B.P 甲<P 乙 C.P 甲 = P 乙 D.无法确 定 ?一盏电灯直接接在电压恒定的电源上,其功率是100 W.若将这盏灯先接一段很长的导线后,再接在同一电源上,此时导线上损失的电功率是9 W,那么此电灯的实际功率将( ) A.等于91 W B.小于91 W C.大于91 W D.条件不足,无法确定

高中物理力学经典例题集锦

高中物理典型例题集锦 力学部分 1、如图9-1所示,质量为M=3kg的木板静止在光滑水平面上,板的右端放一质量为m=1kg 的小铁块,现给铁块一个水平向左速度V0=4m/s,铁块在木板上滑行,与固定在木板左端的水平轻弹簧相碰后又返回,且恰好停在木板右端,求铁块与弹簧相碰过程中,弹性势能的最大值E P。 分析与解:在铁块运动的整个过程中,系统的动量守恒,因此弹簧压缩最大时和铁块停在木板右端时系统的共同速度(铁块与木板的速度相同)可用动量守恒定律求出。在铁块相对于木板往返运动过程中,系统总机械能损失等于摩擦力和相对运动距离的乘积,可利用能量关系分别对两过程列方程解出结果。 设弹簧压缩量最大时和铁块停在木板右端时系统速度分别为V和V’,由动量守恒得:mV0=(M+m)V=(M+m)V’ 所以,V=V’=mV0/(M+m)=1X4/(3+1)=1m/s 铁块刚在木板上运动时系统总动能为:EK=mV02==8J 弹簧压缩量最大时和铁块最后停在木板右端时,系统总动能都为: E K’=(M+m)V2=(3+1)X1=2J 铁块在相对于木板往返运过程中,克服摩擦力f所做的功为: W f=f2L=E K-E K’=8-2=6J 铁块由开始运动到弹簧压缩量最大的过程中,系统机械能损失为:fs=3J 由能量关系得出弹性势能最大值为:E P=E K-E K‘-fs=8-2-3=3J 说明:由于木板在水平光滑平面上运动,整个系统动量守恒,题中所求的是弹簧的最大弹性势能,解题时必须要用到能量关系。在解本题时要注意两个方面:①是要知道只有当铁块和木板相对静止时(即速度相同时),弹簧的弹性势能才最大;弹性势能量大时,铁块和木板的速度都不为零;铁块停在木板右端时,系统速度也不为零。 ②是系统机械能损失并不等于铁块克服摩擦力所做的功,而等于铁块克服摩擦力所做的功和摩擦力对木板所做功的差值,故在计算中用摩擦力乘上铁块在木板上相对滑动的距离。 2、如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A

高中物理难点分类解析滑块与传送带模型问题(经典)

滑块—木板模型 例1如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。 分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B 一起加速的最大加速度由A决定。解答:物块A能获得的最大加速度为:.∴A、B 一起加速运动时,拉力F的最大值为:. 变式1例1中若拉力F作用在A上呢如图2所示。解答:木板B能获得的最大加速度为:。∴A、B一起加速运动时,拉力F的最大值为: . 变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。 解答:木板B能获得的最大加速度为:,设A、B一起加速运动时,拉力F的最大值为F m,则: 解得: 《 例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒 力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。(g 取10m/s2) 解答:物体放上后先加速:a1=μg=2m/s2,此时小车的加速度为:,当小车与物体达到共同速度时:v共=a1t1=v0+a2t1,解得:t1=1s ,v共=2m/s,以后物体与小车相对静止: (∵,物体不会落后于小车)物体在t=1.5s内通过的位移为:s= a1t12+v共(t-t1)+ a3(t-t1)2=2.1m

练习1如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B 间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。最大静摩擦力可以认为等于滑动摩擦力。现在对C施加一个水平向右的恒力F=4N,A和C开始运动,经过一段时间A、B相碰,碰后立刻达到共同速度,C瞬间速度不变,但A、B并不粘连,求:经过时间t=10s时A、B、C的速度分别为多少(已知重力加速度g=10m/s2) 解答:假设力F作用后A、C一起加速,则:,而A能获得的最 大加速度为:,∵,∴假设成立,在A、C滑行6m的过程中:,∴v1=2m/s,,A、B相碰过程,由动量守恒定律可得:mv1=2mv2 ,∴v2=1m/s,此后A、C相对滑动:,故C匀速运动; ,故AB也匀速运动。设经时间t2,C从A右端滑下:v1t2-v2t2=L∴t2=1.5s,然后A、B分离,A减速运动直至停止:a A=μ2g=1m/s2,向 左,,故t=10s时,v A=0.C在B上继 续滑动,且C匀速、B加速:a B=a0=1m/s2,设经时间t4,C.B速度相 等:∴t4=1s。此过程中,C.B的相对位移为:,故C没有从B的右端滑下。然后C.B一起加速,加速度为a1,加速的时间为: ,故t=10s时,A、B、C的速度分别为0,2.5m/s,2.5m/s. $ 练习2如图5所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数,在木板的左端放置一个质量m=1kg、大小可以忽略的铁块,铁块与木板间的动摩擦因数 ,取g=10m/s2,试求: (1)若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,经过多长时间铁块运动到木板的右端 (2)若在铁块上施加一个大小从零开始连续增加的水平向右的力F,通过分析和计算后。(解答略)答案如下:(1)t=1s,(2)①当F≤N时,A、B相对静止且对地静止,f2=F;,②当2N6N时,A、B发生相对滑动,N. 滑块问题 1.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=;木板右端放着一

高中物理弹簧类问题专题练习总结附详细答案

- v 甲 高 中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 A B C D

高中物理必修一难题经典.doc

xxxXXXXX学校XXXX年学年度第二学期第二次月考 XXX年级xx班级 姓名:_______________班级:_______________考号:_______________ 题号一、计算 题 二、选择 题 三、填空 题 四、多项 选择 总分 得分 一、计算题 (每空?分,共?分) 1、下暴雨时,有时会发生山体滑坡或泥石流等地质灾害。某地有一倾角为θ=37°(sin 37 °=)的山坡C,上面 有一质量为m的石板B,其上下表面与斜坡平行;B上有一碎石堆A(含有大量泥土),A和B均处于静止状态,如图5所示。假设某次暴雨中,A浸透雨水后总质量也为m(可视为质量不变的滑块),在极短时间内,A、B间的动摩擦因数 μ1减小为,B、C间的动摩擦因数μ2减小为0.5,A、B开始运动,此时刻为计时起点;在第2 s末,B的上表面突 然变为光滑,μ2保持不变。已知A开始运动时,A离B下边缘的距离l=27 m,C足够长,设最大静摩擦力等于滑动摩擦力。取重力加速度大小g=10 m/s2。求: (1)在0~2 s时间内A和B加速度的大小; (2)A在B上总的运动时间。 2、质量为m的物块用压缩的轻质弹簧卡在竖直放置在矩形匣子中,如图所示,在匣子的顶部和底部都装有压力传感器,当匣子随升降机以a=2.0m/s2的加速度竖直向上做匀减速运动时,匣子顶部的压力传感器显示的压力为6.0N,底部的压力传感器显示的压力为10.0N(g=10m/s2) (1)当匣子顶部压力传感器的示数是底部传感器示数的一半时,试确定升降机的运动情况。 评卷人得分

(2)要使匣子顶部压力传感器的示数为零,升降机 沿竖直方向的运动情况可能是怎么样的? 3、如图10所示,位于竖直侧面的物体A的质量m A=0.5kg,放在水平面上的物体B的质量m B=1.0 kg,物体B与桌面间的动摩擦因数μ=0.2,轻绳和滑轮间的摩擦不计,且轻绳的OB部分水平,OA部分竖直,取g=10 m/s2. 问:(1)若用水平力F向左拉物体B,使物体B以加速度a=2m/s2向左做匀加速直线运动,所需水平力是多大? (2)若用与水平方向成37°角斜向左上的外力F′拉物体B,使物体B以加速度a=2m/s2向左做匀加速直线运动,则所需外力F′是多大?此过程物体B对水平面的压力是多大?(sin37°=0.6,cos37°=0.8) 4、如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s速度运动,运动方向如图所示.一个质量为m的物体(物体可以视为质点),从h=3.2m高处由静止沿斜面下滑,物体经过A点时,不管是从斜面到传送带还是从传送带到斜面,都不计其速率变化.物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s2,则: (1)物体由静止沿斜面下滑到斜面末端需要多长时间; (2)物体在传送带上向左运动的最远距离(传送带足够长);

高中物理传送带问题知识难点讲解汇总(带答案)讲解

弄死我咯,搞了一个多钟 传送带问题 一、难点形成的原因: 1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清; 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误; 3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。 二、难点突破策略: (1)突破难点1 在以上三个难点中,第1个难点应属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。 摩擦力的产生条件是:第一,物体间相互接触、挤压;第二,接触面不光滑;第三,物体间有相对运动趋势或相对运动。 前两个产生条件对于学生来说没有困难,第三个条件就比较容易出问题了。若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要阻碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,因此物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的阻碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,因此物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。 若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带前进方向的摩擦力。 若物体与传送带保持相对静止一起匀速运动,则它们之间无摩擦力,否则物体不可能匀速运动。 若物体以大于传送带的速度沿传送带运动方向滑上传送带,则物体将受到传送带提供的使它减速的摩擦力作用,直到减速到和传送带有相同的速度、相对传送带静止为止。因此该摩擦力方向一定与物体运动方向相反。 若物体与传送带保持相对静止一起匀速运动一段时间后,开始减速,因物体速度越来越小,故受到传送带提供的使它减速的摩擦力作用,方向与物体的运动方向相反,传送带则受到与传送带运动方向相同的摩擦力作用。 若传送带是倾斜方向的,情况就更为复杂了,因为在运动方向上,物体要受重力沿斜面的下滑分力作用,该力和物体运动的初速度共同决定相对运动或相对运动趋势方向。 例1:如图2—1所示,传送带与地面成夹角θ=37°,以10m/s的速度逆时针转动,在 传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已 知传送带从A→B的长度L=16m,则物体从A到B需要的时间为多少? 图2—1

高一物理必修一专题弹力、摩擦力综合问题

A级基础巩固题 1.如右图所示,A、B两物体并排放在水平桌面上,C物体叠放在A、B 上,D物体悬挂在竖直悬线下端,且与斜面接触,若接触面均光滑,下列说法正确的是 ( ) A.C对桌面的压力大小等于C的重力 B.B对A的弹力方向水平向左 C.斜面对D的支持力方向垂直斜面向上 D.D对斜面没有压力作用 2.如下图所示,质量为m的木块在质量为M的长木板上滑行,长木板与水平地面间动摩擦因数为μ1,木块与木板间的动摩擦因数为μ2.已知长木板处于静止状态,那么此时长木板受到地面的摩擦力大小为 ( ) A.μ2mg B.μ1Mg C.μ1(m+M)g D.μ2mg+μ2Mg 2题图3题图3.如图所示,水平地面上的L形木板M上放着小木块m,M与m间有一个处于压缩状态的弹簧,整个装置处于静止状态,下列说法正确的是 ( ) A.M对m的摩擦力方向向右 B.M对m的摩擦力方向向左 C.地面对M的摩擦力方向向右 D.地面对M无摩擦力的作用 4题图5题图 4.质量为m的杆AB,处于静止状态,A端用细绳竖直悬挂,B端放在地板上,如下图所示,下列有关杆B端所受摩擦力的说法中,正确的是 ( ) A.B端受到的静摩擦力方向向右 B.B端受到的静摩擦力方向向左 C.B端受到的静摩擦力沿细杆AB斜向下 D.B端不受静摩擦力作用

B级能力提升题 5.为了测定木块和竖直墙壁之间的动摩擦因数,某同学设计了一个实验如图所示,用一根弹簧将木块压在墙上,同时在木块下方有一个拉力F2作用,使木块恰好匀速向下运动,现分别测出了弹簧的弹力F1,拉力F2和木块的重力G,则动摩擦因数μ应等于 ( ) A.F 2 +G F 1 B. F 2 F 1 C.G F D. F 1 +G F 2 6.如图所示,有黑白两条毛巾交替折叠地放在地面上,白毛巾的中部用线与墙壁连接着,黑毛巾的中部用线拉住,设线均呈水平.欲将黑白毛巾分离开来,设每条毛巾的质量均为m,毛巾之间及其跟地面间的动摩擦因数均为μ,则将黑毛巾匀速拉出需用的水平拉力为 ( ) A.2μmg B.4μmg C.5μmg D.5 2 μmg 7.如图甲所示,在水平桌面上放一木块,用从零开始逐渐增大的水平拉力F拉着木块沿桌面运动,则木块所受到的摩擦力F f随拉力F变化的图象(如图乙所示)正确的是 ( ) 8.如右图所示,重400N的大木箱放在大磅秤上,箱内的小磅秤上站着一个重600N的人,当人用力向上推木箱的顶板时,两磅秤的示数将 ( ) A.小磅秤示数增大,大磅秤示数减小 B.小磅秤示数不变,大磅秤示数增大 C.小磅秤示数增大,大磅秤示数不变

高中物理力学典型例题

高中物理力学典型例题 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距 为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重 为12牛的物体。平衡时,绳中张力T=____ 分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画 力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方 法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角 为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图 中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T) 的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形 为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则: 得:牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、 B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相 等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块, 使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持 C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角 逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两 绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力 逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到 最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上, 且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度 减为零时,物块竖直下落的距离达到最大值H。 当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。 对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。 (1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知: h=L*tg30°= L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2] 克服C端恒力F做的功为:W=F*h’[3]

高中物理——物理计算题难题

1、a、b两物块可视为质点,在a以初速度v0从地面竖直上抛的同时,b以初速度 v0滑上倾角为的足够长的斜面。已知b与斜面间的动摩擦因数为,重力加速度为g,求当a落地时,b离地面的高度。 2、质量均为m的物体A和B分别系在一根不计质量的细绳两端,绳子跨过固定在倾角为30°的斜面顶端的定滑轮上,斜面固定在水平地面上,开始时把物体B拉到斜面底端,这时物体A离地面的高度为0.8m,如图所示.若摩擦力均不计,从静止开始放手让它们运动.求:(g=10m/s2) (1)物体A着地时的速度; (2)物体A着地后物体B沿斜面上滑的最大距离. 3、如图,一个质量为m的小球(可视为质点)以某一初速度从A点水平抛出,恰好从圆管BCD的B点沿切线方向进入圆弧,经BCD从圆管的最高点D射出,恰好又落到B点.已知圆弧的半径为R且A与D在同一水平线上,BC弧对应的圆心角θ=60°,不计空气阻力.求:

(1)小球从A点做平抛运动的初速度v0的大小; (2)在D点处管壁对小球的作用力N的大小及其方向; (3)小球在圆管中运动时克服阻力做的功W f. 4、如图所示,质量为m的物体,放在一固定斜面上,物体与斜面间的动摩擦因 数μ=当斜面倾角为θ时物体恰能沿斜面匀速下滑,此时再对物体施加一个大小为F的水平向右的恒力,物体可沿斜面匀速向上滑行。试求: (1)斜面倾角θ; (2)水平向右的恒力F的大小。 5、如图所示的竖直平面内,相距为d的不带电平行金属板M、N水平固定放置,与灯泡L、开关S组成回路并接地,上极板M与其上方空间的D点相距h,灯泡L的额定功率与电压分别为P L、U L。带电量为q的小物体以水平向右的速度v0从D点连续发射,落在M板其电荷立即被吸收,M板吸收一定电量后闭合开关S,灯泡能维持正常发光。设小物体视为质点,重力加速度为g,金属板面积足够大,M板吸收电量后在板面均匀分布,M、N板间形成匀强电场,忽略带电小物体间的相互作用。

高中物理难题汇编-受力分析

【例1】 A 、B 、C 三物块的质量分别为M ,m 和 0m ,作如图所示的连接.绳 子不可伸长,且绳子和滑轮的质量、滑轮的摩擦均可不计.若B 随A 一起沿水平桌面做匀速运动,则可以断定( ) A .物块A 与桌面之间有摩擦力,大小为0m g B .物块A 与B 之间有摩擦力,大小为0m g C .桌面对A ,B 对A ,都有摩擦力,两者方向相同,合力为0m g D .桌面对A ,B 对A ,都有摩擦力,两者方向相反,合力为0m g 【例2】 如图所示,在粗糙水平面上放一质量为M 、倾角为θ的斜面,质量为m 的 木块在竖直向上的力F 作用下,沿斜面匀速下滑,此过程中斜面保持静止,则地面对斜面( ) A .无摩擦力 B .有水平向左的摩擦力 C .支持力为 ()M m g + D .支持力小于()M m g + 【例3】 如图所示,质量为m ,横截面为直角三角形的物块ABC , ABC α∠=.AB 边靠 在竖直墙面上,F 是垂直于斜面BC 的推力.现物块静止不动,则摩擦力的大小为 . 【例4】 如图所示,质量为m 的物体放在水平放置的钢板C 上,物体与钢板的动摩擦 因数为μ,由于光滑导槽AB 的控制,该物体只能沿水平导槽运动,现使钢板以速度v 向右运动,同时用力F 沿导槽方向拉动物体使其以速度1v 沿槽运动,则F 的大小( ) A .等于mg μ B .大于mg μ C .小于mg μ D .不能确定 【例5】 如图所示,用三根轻绳将质量均为m 的A 、B 两小球以及水平天花板上的固 定点O 之间两两连接.然后用一水平方向的力F 作用于A 球上,此时三根轻绳均处于直线状态,且OB 绳恰好处于竖直方向,两球均处于静止状态.三根轻绳的长度之比为::3:4:5OA AB OB =.则下列说法正确的是( ) A .O B 绳中的拉力小于mg B .OA 绳中的拉力大小为53 mg C .拉力F 大小为45mg D .拉力F 大小为43mg

高中物理受力分析(动态平衡问题)典型例题(含答案)【经典】

知识点三:共点力平衡(动态平衡、矢量三角形法) 1.(单选)如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕 O点转至水平位置,则此过程中球对挡板的压力F1和球对斜面的压力F2的变化情况是().答案B A.F1先增大后减小,F2一直减小 B.F1先减小后增大,F2一直减小 C.F1和F2都一直减小 D.F1和F2都一直增大 2、(单选)(天津卷,5)如图所示,小球用细绳系住,绳的另一端固定于O点.现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平, 此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是().答案D A.F N保持不变,F T不断增大 B.F N不断增大,F T不断减小 C.F N保持不变,F T先增大后减小 D.F N不断增大,F T先减小后增大 3.(单选)如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地 推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1、半球面对小球的支持力F2的变化情况正确的是().答案B A.F1增大,F2减小B.F1增大,F2增大 C.F1减小,F2减小D.F1减小,F2增大 4、(单选)如图所示,一物块受一恒力F作用,现要使该物块沿直线AB运动,应该再加 上另一个力的作用,则加上去的这个力的最小值为().答案B A.F cos θB.F sin θ C.Ftan θD.F cot θ 5.(单选)如图所示,一倾角为30°的光滑斜面固定在地面上,一质量为m的小木块在水平力F的作用下静止在斜面上.若只改变F的方向不改变F的大小,仍使木块静止,则此时力F与水平 面的夹角为().答案A A.60°B.45° C.30°D.15° 6.(多选)一铁架台放于水平地面上,其上有一轻质细线悬挂一小球,开始时细线竖直,现将水平力F作用于小球上,使其缓慢地由实线位置运动到虚线位置,铁架台始终保持静止,则在这一 过程中().答案:AD A.细线拉力逐渐增大B.铁架台对地面的压力逐渐增大 C.铁架台对地面的压力逐渐减小D.铁架台所受地面的摩擦力逐渐增大 7、(多选)(苏州调研)如图所示,质量均为m的小球A、B用两根不可伸长的轻绳连接后悬挂于O点,在外力F的作用下,小球A、B处于静止状态.若要使两小球处于静止状态且悬线OA与竖直 方向的夹角θ保持30°不变,则外力F的大小().答案BCD A.可能为 3 3 mg B.可能为 5 2 mg C.可能为2mg D.可能为mg 8、(单选)如图所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上.现用水平力F拉绳上一点,使物体处于图中实线位置,然后改变F的大小使 其缓慢下降到图中虚线位置,圆环仍在原来的位置不动.在这一过程中,水平拉力F、环 与杆的摩擦力F摩和环对杆的压力F N的变化情况是().答案D A.F逐渐增大,F摩保持不变,F N逐渐增大B.F逐渐增大,F摩逐渐增大,F N保持不变 C.F逐渐减小,F摩逐渐增大,F N逐渐减小D.F逐渐减小,F摩逐渐减小,F N保持不变

相关文档
最新文档