复合泊松过程模型的推广和在R语言环境下的随机模拟
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合泊松过程模型的推广和在R语言环境下的随机模拟0 引言
对保险人而言,资产和负债是影响保险人稳定经营至关重要的因素。资产和负债的差额称为盈余,简记作:
U(t)=A(t)−L(t),t>0
其中A(t)表示时刻t的资产,L(t)表示时刻t的负债,t=0时刻的盈余被称为初始盈余,简记为u,即U(0)=u。对这个初步的理论模型进行简化并根据实际情况设置一些假定情况,会得出很多不同的盈余过程模型,最经典的有Sparre Andersen的古典盈余过程模型:
U(t)=u+ct−S(t);t≥0,u≥0,c>0
这是一个以u为初值,以时间t为指标集的随机过程。其中{S(t),t>0}称为总理赔过程,满足:
S(t)={X1+X2+…+XN(t)0,N(t)>0,N(t)=0
N(t)表示[0,t]内的总理赔次数,Xi表示[0,t]内第i次理赔的金额。
根据这个古典盈余过程模型可以引出破产模型,在这个盈余过程模型中,一方面有连续不断的保费收入并以速度c进行积累,另一方面则是不断会有理赔需要支付,因此这是一个不断跳跃变化的过程。从保险人的角度来看,当然希望ct−S(t)恒大于0,否则就有可能出现U(t)<0的情况,这种情况可以定义为理论意义上的破产,以示与实际中的破产相区分,本文中后面出现的“破产”在没有特殊说明的情况下都是指这种理论情况。从研究保险人破产角度出发,可以把这个盈余过程模型看做是一个特殊的破产模型。
1 第一个推广的破产模型
在以上经典模型中,假设了保费收入速度是均匀的,而在实际中,在控制保费c的条件下,保单到达的时刻应该是一个离散的随机过程。根据现实经验,考虑一段很短的时间间隔中,认为保单到达的概率较小,而时间间隔数量可以非常之多且不清楚具体是多少,在概率论中一般用泊松分布来刻画这种概率分布,所以初步认为一段时间内保单到达的数量服从泊松分布。
同样地,由于理赔发生的概率远比保单发生的概率低,因此可以认为理赔发生的次数服从另一个独立的泊松分布。选取泊松分布来刻画这两个时间间隔的另一个原因是泊松分布具有一些优良的数学性质,便于分析和计算。根据泊松分布的性质,保单到达和理赔到达的时刻是两个独立的泊松过程。
另外,一般一款保险产品,它的保费往往是固定的,所以用固定的c来表示符合现实情况,而理赔金额往往根据发生事故的严重程度而定,可以认为每次理赔的金额服从一个独立的取值为非负的分布,根据经验,这个分布大致的要求是较高的概率
对应较小的理赔额,较低的概率对应较大的理赔额,在常用的概率分布中,指数分布较好地满足这个特性,本文初步选用指数分布来刻画每次理赔额。
因此,第一个推广的破产模型可以表示为:
U(t)=u+cM(t)−∑N(t)i=1Xi;t≥0,u≥0,c>0
其中保单到达时刻M(t)服从参数为λ1的泊松过程,理赔发生时刻N(t)服从参数为λ2的泊松过程,每次支付的保险费Xi服从参数为v的相互独立的指数分布。
在这个模型中,保险人期望cM(t)−∑N(t)i=1Xi能恒大于0,因此至少
E(cM(t)−∑N(t)i=1Xi)>0即cλ1>λ2/v,另外从经验来看,保险事故发生的概率一般不高,一次理赔的的金额应该远大于收到的保费,所以保单到达的速率应该远比理赔发生的速率大,否则这种产品就没有经营价值,保险人也将面临破产,所以λ1≫λ2。考虑以下一个具体的破产模型案例:
某一款保险产品,假设保单到达的速率为λ1=10张/天,理赔发生的速率为λ2=1次/天。假设每张保单价格c=120,理赔额服从参数为v=1/1000(以cλ1=1.2λ2/v设定)的指数分布。设定初始u=3000时,计算到第1000天为止发生破产的概率。
本文用R语言模拟了10000次,用时1625秒,大概不到半个小时的时间,时间还能接受。最终结果10000次中破产5293次,破产率大概53%。输出各阶段破产时刻频数和频率结果如下:
直方图为:
由直方图可以非常明显地看出绝大部分破产时刻都在前100天,或者说从0开始的一小段时间内,在这之后的很长时间里,破产的频率急剧减少,可以认为破产的概率同样非常小。这对保险人来说,说明3000的初始盈余不够用,保险人需要准备更多准备金,才能抵抗初期的破产风险。
2 第二个继续推广的破产模型
在上一个破产模型中考虑了一款保险产品和对应理赔的问题,但现实中保险人往往同时经营着多种不同的保险产品,同样会有多种对应的理赔问题。基于这个想法,考虑将上一个模型进一步推广,就得到了以下模型:
U(t)=u+∑i=1N(t)ciMi(t)–∑j=1Ni(t)∑i=1nXij,t≥0;u≥0;ci>0
将模型展开,可以表示为:
U(t)=u+∑i=1N(t)ciMi(t)–(∑j=1N1(t)X1j+∑j=1N2(t)X2j+…+∑j=1Nn(t)Xnj)
这个模型考虑有n款不同的保险产品,保费分别用ci表示,第i款产品的保单到达时刻为Mi(t)。这样需要对应n款产品的理赔,假设第i款产品的理赔到达时刻为Ni(t),对应的理赔额为Xij,表示第i款产品第j次的理赔额。根据上一个模型的情况,这里假设Mi(t)是服从参数为αi的泊松过程,Ni(t)是服从参数为βi的泊松过程,Xij是服从参数为vi 的指数分布。同样地,根据每个保单的对应情况,要求满足ciαi>βi/vi和αi>βi。
考虑以下一个具体的破产模型案例:
某保险人同时经营了三款不同的保险产品,假设保单到达的速率为αi=10每一单位时间(简化起见,不考虑实际单位,改用形式的一单位时间),αi=20,αi=30。理赔发生的速率为βi=1,βi=2,βi=3。X1j服从参数v1=1/1000的指数分布,假定v2=1/1500,v3=1/2000。以(20%预期收益率)的标准计算ci的值。c1=120,c2=180,c3=240。
鉴于上个模型的模拟经验,设置一个较大的初始盈余,初步设定u=10万。但是模拟结果发现破产率百分之一百,继续提高初始盈余,发现在把准备金提高到100万的情况下结果仍然全部破产,这充分说明破产概率主要不是由初始盈余决定的。在事故发生的概率,即理赔到达强度参数不可控的情况下,保险人可调整的参数剩下保费和理赔额服从指数分布的参数。首先通过同比例提高保费把预期收益率提高到40%,在设定初始盈余10万的情况下尝试模拟100次,发现仍然全部破产,直到把预期收益率提高到44%,破产率大概75%;把预期收益率提高到45%,破产概率大概70%;直到把预期收益率锁定在50%,100次模拟结果破产率大概33%,正好三分之一,这是一个比较理想的分界点。100次模拟时间76.49秒,时间稍长,如果模拟1万次,预计要花两个小时。暂时只模拟1000次来看下破产时刻的分布。1000次模拟花时845秒,模拟结果破产概率27.7%,破产时刻的分布如下: